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Uncertainty in the Weighted Gap Metric: A
Geometric Approach*

J. A. SEFTONYt and R. J. OBER%

A geometric approach is introduced to study robust controllers in the
weighted gap metric. Maximally stabilizing controllers are analysed and an

inverse problem is studied.
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Abstract—The stability of control systems is studied in the
context of weighted input—output signal spaces. Necessary
and sufficient conditions for a controller to stabilize a plant
are given in terms of geometric notions. These geometric
quantities can be calculated by solving . optimization
problems. Maximally stabilizing controllers in a weighted
signal space are introduced and characterized in terms of
Nehari extensions. The robustness properties of maximally
stabilizing controllers are analysed in terms of weighted
coprime factor uncertainty. Necessary and sufficient condi-
tions are established for a controller of a given plant to be
the maximally stabilizing controller of the plant with respect
to a weight. An upper bound for the mixed-sensitivity of a
control system is given where the controller is the maximally
stabilizing controller of the plant.

1. INTRODUCTION
THis PAPER PRESENTS a detailed study of robust
control from the point of view of robustness in
the gap metric and coprime factor uncertainty.
The following coprime factor uncertainty prob-
lem was first introduced and analysed by
McFarlane and Glover (1989). It attracted a
great deal of interest and stimulated research
both in a theoretical and a practical direction. It
can be summarized as follows. We assume that
we are given the transfer function G of a plant
with normalized right coprime factorization, i.e.
G=NM"', where N, M are stable coprime
rational functions with N*N + M*M =1 and M
invertible. Then the problem is to find a
controller that stabilizes a ball of maximal size
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given by

{GA such that GA = (N + AN)(M + AM)_I,

<

Another way of describing uncertainty is via the
so-called gap metric, which has been introduced
by Zames and El-Sakkary (1980) and El-Sakkary
(1985). For more recent developments see for
example Schumacher (1992) and the references
therein. There have been a number of
publications on studies of the connection
between the coprime factor uncertainy problem
and the description of uncertainty in the gap
metric (see e.g. Zhu, 1989; Georgiou and Smith,
1990a; Sefton and Ober, 1993; Habets, 1991). It
was shown (Ober and Sefton, 1991) that this
problem is in fact equivalent to finding the
maximally stabilizing controller K, of the plant
G. The maximally stabilizing controller K, is
defined as the controller that minimizes the
distance in the gap metric between the graph of
the plant and the orthogonal complement of the
transposed graph of the controller. An equiv-
alent way of defining the maximally stabilizing
controller is by introducing the following
geometric interpretation. We associated with the
plant G the set of all possible input—output pairs
that have bounded energy, called the graph
space ¥G) of G. In the frequency domain this
amounts to considering all the possible input-
output pairs corresponding to the plant G such
that both the inputs and the ouputs have Laplace
transforms that are in %,. The space ¥, contains
the space of rational functions which are square
integrable on the imaginary axis and have
analytic continuation to the right half-plane.

A
An, Ay, stable, with “ N
Ay
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Given a normalized right coprime factorization
G = NM™! of the plant the graph space is given
by (Vidyasagar, 1985)

wor=[ ]

Similarly, we can associate a graph space with a
controller K. More precisely, we need to define
the transposed graph ¥"(K) associated with a
controller which can be obtained from the graph
of the controller by simply swapping the inputs
with the outputs, i.e.

=, ]%

where K= UV ™! is a normalized right coprime
factorization of the controller K. In the space of
all possible input—output pairs, i.e. the space
3, x ¥#,, we can introduce the standard geo-
metric notions such as angles between subspaces.
If we are given two (closed) subspaces A, B of
the space of all possible input—output pairs the
minimum angle 6,,,(A, B) between these two
subspaces can be defined by

cos emin(A’ B)= sup |<u, U)l ,
ueA,veB "u” ”U”

where (u, v) is the inner product between two
elements in ¥, X #, and ||u|| is the norm of the
element u € 3, X ¥,. It was shown (Ober and
Sefton, 1991) that a controller K stabilizes the
plant G if and only if the minimal angle between
the orthogonal complement of the graph of the
plant and the orthogonal complement of the
transposed graph of the controller is positive,
i.e. if and only if

emin([g(G)]l’ [(gT(K)]l) >0.

The maximally stabilizing controller can now
also be characterized as the controller that
maximizes the distance to instability, i.e. the
distance to zero. It was shown (Ober and Sefton,
1991) that

Omin((A G, (9" (Ko)]Y)
= sup Binl (Y(G)]*, [ (K)])-

The normalized coprime factor uncertainty
problem imposes a very particular structure on
the permissible perturbations in that perturba-
tions of the numerator and perturbations of the

denominator of the plant are equally weighted.
The same comment applies to the definition of
the maximally stabilizing controller in terms of
the geometric framework that was just discussed.
The topic of this paper is to extend the above
results to include weighted coprime factor
uncertainty. In the context of the geometric
framework this amounts to weighting the input
and output spaces with minimum phase weights.
Introducing weights allows a substantial exten-
sion of the previously available resuits.
Moreover, it permits the analysis and inter-
pretation of a large class of control systems from
the point of view of coprime factor perturbations
or maximally stabilizing controllers with respect
to a certain weight. Studying coprime factor
perturbations in a weighted setting is not new.
McFarlane and Glover (1989) introduced
weights in the context of a loop-shaping design
methodology (see also Georgiou and Smith,
1991). Georgiou and Smith (1990b) defined a
weighted gap metric. Robust stabilization in the
gap metric and an expression for the appropriate
robustness margin has also been given in
Georgiou and Smith (1990b). We are however
not aware of a systematic study of this problem
as it is undertaken here.

Our analysis will be done within the geometric
framework. Our first objective will be to derive
necessary and sufficient conditions for a control-
ler to stabilize a plant. We will again have a
theorem available that states that a controller
will stabilize a plant if and only if the minimal
angle between the orthogonal complement of the
graph of the plant and the orthogonal comple-
ment of the transposed graph of the controller is
positive. Here the geometric notions are taken
with respect to the weighted graphs. These
results form the basis for our development. Of
great importance, both for practical computa-
tions and for theoretical development, are the
connections of these geometric notions to
#.-optimization problems. One of these results
permits the calculation of the minimum angle
between the orthogonal complement of the
graph of the plant and the orthogonal comple-
ment of the transposed graph of a stabilizing
controller by simply calculating the Z.-norm of a
transfer function that can be computed in a
straightforward way from coprime factors of the
plant and the controller. Similarly to the
unweighted case it is possible to define and
characterize a maximally stabilizing controller
with respect to the given weights. The robustness
of the maximally stabilizing controller can be
analysed from the point of view of weighted
coprime factor uncertainty.
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One of the main contributions of the paper
lies in the analysis of what is called the inverse
weight problem. Here we study the question as
to whether, given a control system with plant g
and controller &, the controller can be considered
to be the maximally stabilizing controller of g
with respect to a particular weight. We give
necessary and sufficient conditions for such a
weight to exist. An interesting by-product of this
investigation is a connection of the present
problem with the mixed-sensitivity minimization
problem. This observation may to an extent give
a further explanation as to why the loop-shaping
design methodology of McFarlane and Glover
(1989) appears to produce very satisfactory
designs (see e.g. Hyde et al., 1990; Englehart
and Smith, 1991).

In Section 2 we give a very brief summary of
the geometric notions that will be used in this
paper. The subsequent section is devoted to an
introduction of weighted spaces, Toeplitz and
Hankel operators on these weighted spaces and
W-normalized coprime factorizations. These are
normalized coprime factorizations with respect a
weight W. In order to be able to derive explicit
expressions for the various geometric notions
that are of interest to us it is important to have
explicit characterizations of orthogonal projec-
tions onto graph spaces of plants and onto the
orthogonal complements of such graph spaces.
This is done in Section 4. After these sections
which are devoted to the development of the
necessary background material, Section 5 con-
tains one of the main results of this paper. It
gives necessary and sufficient conditions for the
closed-loop stability of a control system in terms
of geometric notions in a weighted signal space.
This is followed by a section which is concerned
with the derivation of ¥, formulae for the
calculation of the geometric quantities that were
shown to be of importance in the previous
section in characterizing the closed-loop stability
of a control system. Maximally stabilizing
controllers with respect to weighted graph spaces
are characterized in the following section. In
Section 8 maximally stabilizing controllers are
analysed from the point of view of weighted
coprime factor uncertainty. In Section 9 and
Section 10 the inverse weight problem is
discussed. Necessary and sufficient conditions
are derived for a controller to be a maximally
stabilizing controller of a given plant g with
respect to a weight W. In Section 10 a
connection of the maximally stabilizing control-
ler with the mixed-sensitivity problem is
elaborated.

Since the submission of this paper Qiu and

Davison (1992) have published an interesting
contribution to the robust stabilization problem
in the context of simultaneous unweighted gap
metric uncertainties in the plant and the
controller.

2. GEOMETRIC NOTIONS IN HILBERT SPACE

In this paper we use extensively the following
geometric notions in a Hilbert space H. We will
not give any proofs here but refer to for example
Gohberg and Krein (1978), Nikolskii (1986) and
Weidmann (1980). Let A, B < H be two closed
subspaces; then it is possible to define the
minimal angle and the gap between these two
spaces as follows:

[{u, v)|
cos Omin(A! B) = Sup
ueA,veB ”u” "U”

and
gap (A, B)=||P, — Psll,

where P; denotes the orthogonal projection on
the closed subspace C. Alternatively, the sine of
the minimal angle can be defined by

sin Omin(A) B) = ”PAHB”_I)
where the skew projection P, is defined by
Py A+B—A, u+tv—u, ueA, veB. The
skew projection is well defined on the Hilbert
space H if H=A+ B and AN B =¢. The skew

projection is bounded if and only if
Omin(A, B) > 0. The following relationships hold:

€08 Omin(A, B) = ||PaPg|| = || PsPall

= sup
ueB,||ull=1

dist (4, A*),

where dist (u, A*) = it;fL llu —v||. The gap be-

tween two spaces can be characterized as
follows:

gap (A, B) = max {|| P4 Py ||, |[P4+P5ll}
= max {cos Oi,(A, B*),
cos B,in(B, A*)}
sup  dist (1, B),

~ max
ueA,|u|l=1

sup dist (i, A)}.

veB,|vii=1

If gap (A, B) <1 then [|P4Py.|| = |Pa-Psl.

3. WEIGHTS AND COPRIME FACTORIZATIONS

It is necessary to first define an admissible
class of weighting functions. The function
W e £ will be considered to be in the class of
weighting functions % if and only if it can be
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factored as WiWr =W, W} where W, W, ¢
HJ" are continuous on the imaginary axis,
including at «, and invertible in .. The Hardy
space #%™ contains all p X m bounded rational
functions on the imaginary axis with analytic
continuation in the right-half plane. It is a
subspace of F£*™, the space of all pxm
essentially bounded functions on the imaginary
axis. These functions all have finite %.-norm

defined by ||G||~:=ess sup Omaxl G(jw)). Given

any weighting function W e %", the Hardy
spaces H5"*, #y™ contains all r-vector valued
rational functlons f that are defined on the
imaginary axis, are square-integrable with
respect to the weight, W, (i.e. [, f*Wfdw < )
and have an analytic continuation into the right
and left half planes, respectively. These are
Hilbert spaces with inner product,

Usglwi= | _f*Wedo, f,ge 5% (9%,

and induced norm || f||3 := [f, flw- The subscript
W will be dropped if there is no danger of
ambiguity concerning the specific weight. The
space £5% is defined similarly. It consists of all
r-vector valued functions f on the imaginary axis
that are bounded with respect to [-,-]w, i.e.

U flw = _f*Wido <=

Clearly, #5% admits the generally not or-
thogonal decomposition £3% = 95"+ gep™,
The prefix R before any of these spaces denotes
the subspace of real-rational function in the
respective space.

By the definition of the elements in %™, there
exist for each element W e %" right and left
spectral factors W, W, i.e. Wy, W, € #°" such
that Wg', Wr'e#." and W=W}iWg=
W,_W;. Since the spectral factors Wy, W, are
invertible in #7." it is clear that the unweighted
spaces X3, #y" and £%’ coincide as sets with
the spaces #5"™¢, H7;™ and ¥3%. The usual
inner product on the unwelghted space 5’ is
denoted by (-,).

The maps

R: 5% > L5 x> Wex
and

LY 25 x—->Wix
are unitary maps. Similarly, R, :=R|#;* and
L_:=L|sx;™ are unitary maps. The adjoints,

respectively inverses of R and L (R, L), are
given by

R VLY, x—>Wgx'k,

and
LS IV x> Wik,
(R:'=R7 sy’ and L' =L

As an immediate consequence of these identities
we obtain expressions for the projections on the
weighted Hardy spaces.

55" )-

Lemma 3.1. Given a weight W e %" and the
spectral factorizations W = W, W} = WiW; then
the orthogonal projections PY . % — 5" and

PY. W——>££§ on the closed subspaces 5 "*
and ¥%":, respectively, are given by

PY=R- 'P.R

PY=L"'P_ L,

where P,:= P, P_:=P..

Inner functions with respect to weights will be of
particular importance for our development.
They are defined as follows.

Definition 3.2. Given a p X m function 6 then,

(1) if 6 € H2>™ and p=m then @ is called
W-inner if and only if 6*W8=1,, for
We We.

(2) If 6 H2*" and m=p then 6 is called
W-co-inner if and only if 6W6*=1,, for
We W

(3) If 6 #£*™ and p=m then 0 is called
W-all-pass if and only if 8*W6@ =1,, for
We WP

A major tool in our study will be coprime
factorizations of transfer functions.

Definition 3.3. Let G be a not necessarily
rational transfer function. The pair (N, M)
where N, M € #. constitutes a right coprime
factorization (RCF) of the transfer function G
[similarly, the pair (N, M) where N, M € ¥.,, is a
left coprime factorization (LCF) of G] if

(1) M, (M), is square and det(M(x))#0
(det (M () #0).

(2 G=NM"Y(G=M""N).

(3) N and M are right coprime, i.e. there exist
X, Ye o, such that —XN+YM=1 (N
and M are left coprime, i.e. there exist
X, Y € ¥, such that —NX + MY =1).

Let Wew?*™. Then, a right coprime
factorization G =NM~"! of the p X m transfer
function G is called a W-normalized right
coprime factorization (W-NRCF) of G if

[Z] is W-inner. A left coprime factorization

G=M"'N of G is called a W-normalized left
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coprime factorization (W-NLCF) if [M N] is
W !-co-inner. We also need a definition that
involves a transposition of the coprime factors.
A right coprime factorization G = NM~! of G is
called a W-t-normalized right coprime fac-

M
torization (W--NRCF) if [ N] is W-inner. A

left coprime factorization G=M~'N of G is
called a W-T-normalized left coprime factoriza-
tion (W-T-NLCF) if [N M] is W™ '-co-inner.
For rational transfer functions and rational
weights the existence of such factorizations can
be shown in exactly the same way as for the case
W =1 [see e.g. Vidyasagar, 1985].

We now define the graph that corresponds to a
transfer function G. We consider the multiplica-
tion operator that corresponds to this transfer
function and maps inputs to the respective
outputs. We consider this multiplication opera-
tor as acting between weighted Hardy spaces.
The multiplication operator associated with the
not necessarily stable transfer function G is
defined as follows:

M : 965%— 38™; f+> Gf.

If G is not in ., then M will be an unbounded
operator  with domain DMg)={fe€
H7% | Gf € #%™}. The graph of the operator
Mg is denoted by 4(G). If G=NM""is a right
coprime factorization of G then the graph is
given by

%G) =y |

We will also have occasion to use the so-called
transposed graph of a transfer function. It is
given by exchanging the two components of the
graph, i.e.

97 (G):= [x] .

The geometric analysis that is undertaken in this
paper will be done on the space of all
possible input—output pairs, i.e. the space
gfxza.Wn
¥x:= [ %mW] . We now define a number of
2

special Toeplitz and Hankel operators. The
Toeplitz operators map into the space ¥ or are
defined on the space #. Let Fbe a (p + m) X m
or (p+m)Xp transfer function. Then the
Toeplitz operator T is defined by

Te: %55 ")—> #;  f > Tef 1= PYFf.

Similarly, if Eisan m X (p+m) or p X (p + m)
transfer function, then Ty is defined by

Tg: %— X7:4(H8"); foTef = E’+Ef.

The symbol H} denotes the Hankel operator
HY:98"'— 5™ ", f>HPf = PYFf

with symbol F € L&*™7,

Let A:H,—>H, be a bounded operator
between the Hilbert spaces H;, and H,. Let
0>0, feH, with ||[f|=1 and geH, with
lligll = 1. Then (f, g) is a Schmidt pair of A with
singular value o if Af = og and A*g = of.

4. ORTHOGONAL PROJECTIONS

It follows from the expressions on the
geometric identities in a Hilbert space as
introduced in Section 2 that it is of importance to
have explicit representations of the projections
onto the various graph spaces. The aim of this
section is therefore to examine the projections
onto the graph spaces of a plant and a controller
in some detail. The results of this section are
analogous to the corresponding results of Zhu
(1989). Here, we prove the results for the
specific application of projections onto weighted
spaces.

Lemma 4.1. Given a weight

W*W, 0
W‘[ 0 WW,

ap X m system G and an m X p controller K, let
(N, M) be a W-NLCF of G and (0,V) a
W-T-NLCF of K. Then the operators

Zs: 37— 3" [T —mTw%0f
Zx: 30" > X5 o Tieo wTw-21f

are self-adjoint positive and have bounded
inverses.

] € o”/'p+m,

Proof. The proof is identical to the proof of
Lemma 3.1.1 (Zhu, 1989). O

In the following definition a number of
Toeplitz operators are defined with range space

H VWo
=[5 )

H?™
Definition 4.2. Assume the notation of Lemma
4.1. Let Z¥2 and Z}? be square roots of the
operator Z; and Zg, respectively, i.e.

(ZP)*Z2P =25 and (ZXN)*ZP=Zk. Then
define

. N
Eg:H3'-> X EG:fHT[:]f=[M]f

Ec:38"'> % Eg:f— Tw-(%1Z5"°f
FK: %"'19 Y 4 FK :f = Tw—l[—‘;q']zl_(llzf

‘ ) 14
Fo:95'> % Fe:f > Tipf = [U]f'



1084 J. A. SeFtoN and R. J. OBER

In the next Lemma it is shown that E; is an
isometric operator that maps the space 3"/
onto the weighted graph space of the system.
Similarly E; is an isometric operator mapping
the space #%’ onto the orthogonal complement
of the weighted graph space of the system, i.e.
onto [9(G)]*. For the expression of the graph
% G) in terms of the coprime factors of G see
Vidyasagar (1985).

Lemma 4.3. Using the notation of Definition 4.2
we have

Range (Eg) = 4G) Range (Eg)=[¥4G)]".

For any right and left coprime factorization
G=NM""'=M"'N we have

o[
o =prw| M Jos

Proof. The first expression is obvious from
the definition of E; and %G). To prove the
second expression first note that Range (Eg) =

M*

PLVW“[ N*]%z’". Let now f= [‘fl] € ¥ be
- _ 2

such that f L R(Eg). Then, for all g € ¥#%"’

o=l % o]

M*
(i % Jow)

=(g [M -NIf),

which implies that [M —N]f=0. Hence,
f, = M~'Nf, = Gf;, but this shows that f € 4G).
The result now follows by observing that E has
a closed range. The first expression of the second
set of identities follows immediately from the
definitions and the previous results by recalling
that different coprime factorizations of the same
transfer function are related by a pre- or
post-multiplication by a function that is invert-
ible in .. The second expression is proved in
the same way as the analogous expression
above. a

We now give explicit characterizations of the
projections onto the various graph spaces. These
characterizations involve Toeplitz operators
whose symbols are the coprime factors of the
transfer functions. These results are generaliza-
tions of the results on the unweighted case which
are due to Zhu (1989).

Theorem 4_.4. Given th_e definitions in Definition
4.2, E;, Eg, F; and F; are isometric operators

satisfying
Pycy= EGEG =Ti))Tine mow
P[g(G)]J. = E‘-GE-E = TW"'[_A‘;;,]

-1
X[Tm -mTw—l[_*",-;.]] T -m

ng(x) = FKF; = T[Z]T[w Uw
P[gT(K)]L = FKF;( = Tw—l[—‘;q']

-1
X[T[—fz "'ITW“[‘V-‘Z'I] Ti-o oy

Proof. First, the adjoints of the operators Eg,
E are calculated. For f e 3/, ge X

[Ecf. 8l= <[Z]f Wg> = (f, [N* M*]Wg)

= <f) T[N‘ M‘]Wg) = <f! E&)

and therefore E§ = Tjn» m+jw- TO calculate the
adjoint of the operator Eg let f e ', ge X
Then

(Eof, 1= (R-p.RW| % 227, we)

= <Zal,2f’ [M _ng)

={f, 25" T -m8)

= <f’ EGg )
and therefore £ =(Z%) YTz -5 It can be
shown that the operators are isometries as for
feap!

EGEGf = Tin- M-]wT[[;]f

=N M, |r=5

as [z] is W-inner. Since Z; is invertible and

therefore bijective, Eg is clearly an isometry by
construction.

By Lemma 4.3 Range(Eg)=¥%G) and
Range (Eg) = [4(G)]*. Therefore, the operator
E:=[E; Eg] is a unitary operator from

%rzn,l
[ ¥z ,] to .

Consider the self-adjoint operator EGEE. It
follows from Lemma 4.3 that Range (EGEg) =
HG) and H(EGEE)=[¥9G)]*. Therefore
EGE = Py, (see e.g. Weidmann, 1980, p. 82).
Similarly, we obtain EGEE = Pigqc)j-

The results for Fy, Fx can be proved analog-
ously. a

5. GEOMETRIC CHARACTERIZATION OF
CLOSED-LOOP STABILITY

We are now going to discuss how the stability
of control systems can be phrased in terms of the
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geometric notions that were introduced in
Section 2.
We will need the following lemma.

Lemma 5.1 (Nikolskii, 1986, p. 201). Let Hbe a
Hilbert space and let A, B be closed subspaces
of H. Denote the orthogonal projection operator
onto the space A by P,:H— A. Use analogous
notation for the similar operations onto the
subspace B. Then the following statements are
equivalent: (i) Pz.A =B*; (ii)) H=A + B; (iii)
{|Pa1Pg.|| <1. Also the following statements are
equivalent:

(i) P A=B*, ANB={0}; (i) H=A+B,
H=A"*+ B*; (iii) ||P4:Pg.|| <1, ||PyP5|| < 1.

Given a plant G with right and left coprime
factorizations G = NM~'= M~'N and a control-
ler K with right and left coprime factorizations
K=UV™'=V~[, there are well-known crite-
ria for a controller K to internally stabilize a
plant G (see e.g. Vidyasagar, 1985). By an
internally stable control system (G, K) we mean
the pair (G, K) of a plant G and an internally
stabilizing controller K.

Necessary and sufficient conditions for the
control system (G, K) to be internally stable, i.e.

[ T =[kaZenr “akor )

€ %gop+m)><(p+m),

N
are the invertibility of [Z M] , the invertibility

of VM — UN or the invertibility of MV — NU in
#. (see e.g. Vidyasagar, 1985).

We are now going to show how stability
criteria for control systems can be stated in terms
of geometric notions in the Hilbert space # :=
[ %g.wo

gfrzn.Wa
results of the unweighted case (Ober and Sefton,
1990, 1991) to the case of weighted spaces. A
further equivalent condition in the unweighted
case was given by Foias et al. (1990).

]. These are generalizations of the

Theorem 5.2. Let #%'"> and %75"" be the output
and input space, respectively, of the pxm
transfer function G. Let K be a m X p transfer
function and denote by # the space

%:=[%;"-Wi

For a closed subspace o ¢ ¥ let P, denote the
orthogonal projection onto &£. The following

statements are equivalent:

(S0) The pair (G, K) is internally stable.

(S1) YG)+ 9" (K)= .

(82) Pigrxy+ 4G) =[4"(K)]".

(S3) IPsoyPraraonll <1.

(84) Omin([9(G)]", [97(K)])') >0.

(S9) [YUBG)]* N[¥"(K)]* =8 and
PigoyiiisT o)+ is bounded.

(S6) gap (4G), [¢"(K)]*)<1.

Proof. (S0) and (S1) are equivalent: let
G = NM™! be a right coprime factorization of G
and K= UV™! a right coprime factorization of
K. Then by a standard result (see e.g.
Vidyasagar, 1985) (G, K) is internally stable if

d ly if (N v
and only i M U
Fprmxptm) Note that

wor+ - () L))

) is invertible in

If (SO) holds then the resulting invertibility of
N V

( M U) implies (S1). If conversely (S1) holds

then

(1) x=aorsrco=( 1))

However, this shows that (z Z) is invertible
in FP+rm*p+m (see e.g. Francis, 1987), which
implies (S0).

The equivalence of (S1), (S2) and (S3) follows
from Lemma 5.1. The equivalence of (S3) and
(S4) follows from the fact that for two closed
subspaces A, B of a Hilbert space H we have
€08 Oin(A, B) =||P4 Pg||l. (S4) is equivalent to
(S5): if (S4) holds then [4G)]* N[9"(K)]* =4.
Therefore, the skew projection Pigc)+y¢7xy)+ 18
well defined. (S5) is a now a consequence of the
fact that for two closed subspaces A, B of a
Hilbert space H we have sin 6,,(A, B)=
||Paysll . That (S5) implies (S4) follows from
the same identity and the fact that P, is
bounded if and only if 0,(A, B)>0. (S3) is
equivalent to (S6): in order to show that (S3)
implies (S6) we have to show that
| Pac)Psr | <1 since gap (4G), [¢"(K)]*) =
max {||Pgc)Parll, 1PraorPrsraopll}. Show-
ing this amounts by Lemma 5.1 to showing that
Poro|4G)|* =9"(K). Let K=UV™' be a
W-t-normalized coprime factorization of K.
Since the assumption (S3) implies internal
stability of (G, K) there exists a left coprime
factorization G = M~'N such that MV — NU =1
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(see e.g. Vidyasagar, 1985). Note that
P UGN =Ty Ty vowTw-1[%) 35",
For f € #5'" we have that

T[Z]T[V‘ U‘]WTW"[f’;;]f

[V [ M*
-\ |pv U*]W};P+WR*[_N*]f
V1 o M*
=lu)PV” U][—N*]'f

V'V“

—-U.Jﬁ

This shows the claim that Pyr)[4G)]* =
9" (K). By Lemma 5.1 we therefore have
that ||PgcyPeroll <1. Hence, gap (4(G),
[97(K)]*) < 1. That (S6) implies (S3) follows by
definition. O

In general we have for closed subspaces A, B
of a Hilbert space that gap(A4, BY)=
max {||P4Ps|, ||Pa:Ps:||}- The proof of the
previous theorem shows however that if the
subspaces are graph spaces then the gap can be
expressed in terms of just one of these
expressions. This is summarized in the following
corollary.

Corollary 5.3. We have that

c08 Omin([4(G)]*, [9"(K)]Y)
= || Pson-Prsraon-ll = gap (UG), [97 (K)]Y).

6. #.-OPTIMIZATION

In this section, it is shown how the various
quantities that are of importance in this paper
can be calculated in terms of . problems. The
approach taken is to relate the weighted
problems to unweighted problems. Then, the
results can be applied that are already available
for the unweighted problem.

The basic connection between weighted and
unweighted problems follows from the following
lemma. It is explained here how weighted
normalized copri ne factorizations are related to
unweighted normalized coprime factorizations.

Lemma 6.1. Given a weight

Wiw, 0

0 Wiw
with W,, W', W, W 'e ., a p Xm plant G
and an m X p controller K, then let (N, M) be a

W-NRCF and (N, M) a W-NLCF of G. Let
(U,V) be a W-T-NRCF and (U,V) be

we| Jewron

W-T-NLCF of K. Then

(1) (W,N, W,;M) and (MW, NW;') are an
I-NRCF and an I-NLCF, respectively, of
W,GW

(2) (WU, W,V) and (OW;!,VW;!) are an
I-NRCF and an I-NLCF, respectively, of
WKW,

Proof. As [Z] is W-inner we have

N

I=[N* M*]W[m =[N* M*]W;';WR[M]
_ [WON]*[WON]
“lwiml Lwm]®

Hence, (W,N, W, M) is I-normalized; it is

coprime as (N, M) is coprime and W, W, are

invertible in H.. We also  obtain

(W,NY(W.M)~' = W,GW'. The other identities
are proved analogously. O

The previous lemma suggests that the analysis
of the weighted problem for the plant and
controller (G, K) is closely related to the
analysis of the unweighted problem for the
weighted plant and weighted controller
(W,GW;!, W.KW;"). This is further confirmed
by the following proposition where the projec-
tion operators onto the various graph spaces are
related.

Proposition 6.2. Given a weight

WiWwW, 0

0 W'W
W, W leH,, an p xm system G and a m Xp
controller K, then

(1) P%c, = R PlawmcwnRo

(2) Placy = R3'Plsomcwrn:R+
(3) Ploroy = R3 Plaromaw, R+
(4) PgT(K) = RIIP{QT(W}KW;‘)R+'

W=[ ]e werm, with W,, W3,

Proof. To prove (1) let fe #; then, with
G =NM™" a W-NRCF of G,

N
Phof =| [PV MeIWr
-1 N * * *
=WR WR M P+[N M ]WRWRf
= RI'Pyw,cwinR+f.

N
Here we used WR[M] is an I-NRCF of
W,GW;!. The identity (2) follows since for
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fed

i x| M* o
P[‘YQ(G)]Lf= WR1P+WR*|:_N:“:P+[M —N]

VL -1
X W;1P+W;;*[M-]]

-N
X P+[M _N]WEIWRf
= R:'PlsowowiR+f.

The remaining two identities are proved analog-
ously. O

The gap between the graphs of two plants G
and G, is a well-known measure of the distance
between the plants and has been used to study
robustness properties of control systems (Zames
and El-Sakkary, 1980; El-Sakkary, 1985; Zhu,
1989; Georgiou and Smith, 1990a; Sefton and
Ober, 1993). We are now going to study the gap
between two plants also in a weighted setting.

The weighted gap metric between two p X m
systems, G and G,, defined on a weighted
Hilbert space is defined by

5W(G: G.) := gap (YUG), YGa))
:=||P%c) — Péonll

WiWw, 0
0 W'w
ously the orthogonal projection P, is the

orthogonal projection onto the graph space of G
W,

%P o
in the weighted space #:= [ %iw] . It will be
shown in fact that 2

where W = [ ] € Wr*™. As previ-

6W(G’ GA) = 61(WOGWi_1, WOGAWi—l)'

Therefore, the weighted gap between two
systems can be calculated from the unweighted
gap between two shaped systems.

In the following proposition it is shown how
the weighted gap can be calculated by solving
two weighted ¥,.-optimization problems. Similar
results are given for the gap between the graph
of the plant and the orthogonal complement of
- the transposed graph of the controller. In order
to indicate whether the gap is calculated with
respect to the weight W or the weight I, the
superscript W or I, respectively, is used.

Proposition 6.3. Given a weight

W, 0
o[l e
0o wl€

a p X m system G and an m X p controller K, let
(N, M) be a W-NRCF and (N, M) a W-NLCF of
G.

(1) Let (U, V) be a W-T-NRCF and (U, V) be

W-T-NLCF of K. Then

| Pl Plaraon-ll

M* 1%
= int [wel w1 5. )= o Je]
Q:{,lfg:xP R W _N* U Q o
N P%6yP&r ol
N -0
= int[wel [ ] - o Je]|
ngg*? RlLMm | % 0 "
and hence

gap” (¥UG), [¢4"(K)]")
= gap’' (YW.GW; "), [¢" (WKWH]")

wwo[ T ]-[olell

(2) Let (N, M,) be a W-NLCF and
[ZA] a W-NRCF of G,. Then

: (2] [4]o)

Wl -[lo)

8% (G, Gu) = 8'(W,GW[ ', W,Goa W)

= inf
Qexp>r

PY P% = inf
| Piscan-Peoll Jnf

oo

= inf
Qe¥X,

| P%cPlacn

oo

-max{gnt (]~ L)l
ot (s )- L))

Proof. Part (1). It follows from Proposition 6.2
that

| PYacon+Plaraon+ll = | Plsow.cwe - Plar macwl-
Now by Proposition 6.3 (Ober and Sefton, 1991)

| Plscw,ow: e Pl owawsnps i

- g 5wl
- gl 5]l

where (MW, NW;') and (WU, W,V) are
I-NLCF and I-NRCF of the plant W,GW;' and
the controller W, KW', respectively, with
W = diag (WiW,, WiW), W,, WJ', W, Wile
%,. The second expression follows identically.

To prove part (2) of the proposition note, by
Proposition 6.2

||Pm(GA)1LP¥(G)|| = ||Pf9(m,cAm")]LP55(WnGW')”-
Since (W,N, WM) and (W,N,, W.M,) are
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I-NRCFs of G and G,, respectively, we have
(see Georgiou, 1988)

| P{scw,Gawr - Placwawrnll
N N,
AMELAI
R M R MA Q

which proves the first identity. The second
identity follows similarly. To complete the proof
note that

8% (G, G,) = max {|| Plgcu-Péoll»
|Pl&cn-Pacnll}

= max {|| P{aw,c,wr o Paow,owenlls

= inf
Qe

2
o

| Plaw,cwinyp Plaow.cawin |l }-
O

In case the controller stabilizes the plant, the
above expressions reduce to an evaluation of the
&Z.-norm of a transfer function. We will need the
following Lemma.

Lemma 6.4. Given a weight W = [Wl 0 ] €
0 W

WrPt™ a pXm system G and an mXp
controller K, let (N, M) be a W-NRCF and
(N, M) a W-NLCF of G. Let (U, V) be a
W-T-NRCF and (U, V) a W-T-NLCF of K.
Then
(NWV* + MW, U*)*(NW,V* + MW,U™)

+ (VM - UNY*(VM - ON) =1
and
(MV — NU)(MV — NU)*

+(MW'O* + NW3'V*)

X (MWT0* + NW3;'V*)* =1
Proof. Note that the following product of two
all-pass matrices is all-pass:

vl Sl oo 30]

[N* M*]W[Z] (VM — ON)*

i —pir w7 ]

‘7*

(MV — NU)

The result follows by considering the diagonal
components of the identity YY™* = 1. O

Proposition 6.5. Given a weight

w, 0
w=|

0 W
an m X p controller K, let (N, M) be a W-NRCF
and (N, M) a W-NLCF of G. Let (U, V) be a

]e Wr*™ a p xm system G and

W-T-NRCF and (U, V) a W-T-NLCF of K.
Assume that (G, K) is internally stable, then
(1) cos Orin (UG, [YK)])Y)
= gap” (¥(G), [4K)]")

o wen]]

w0

.~ N*
=i owl g ll.
(2) sin O ((9(G)], [9(K)]Y)
= 1(MV — NU) = 1(VM — ON),
where T(F) = ess inf {0min(F(s)) | Re (s) = 0}.
Proof. That cos 8y, ([4(G)]*, [4(K)]") = gap”
(%G), [9K)]*) was proved in Corollary 5.3.
We know that
gap” (%G), [UK)]")
= gap' (Y(W,GW "), [dWKWSN]"),
where W = diag (W*W,, W}W), with W,, W',
W, Wi'eH.. Using the fact that [W,N WM]
(Mw;t Nw:') is an I-NRCF (I-NLCF)
of W, GWS ! and that [W,U W,V]
(Ow;* VW) is an I-T-NRCF (I-T-NLCF)

of W.KW_', we can apply the results by Ober
and Sefton (1991) to obtain

gap’ (4(W,GW; ), [4W.KWH]*)
= [[((WoN)*(W, V) + (W.M)*(W.U)|l
=[ve peew| ]
= [((OW)(MW)* + (VW) (NW,)*|..

-l ow[ ]

00

-

Similarly,

sin 8%, ([4G))*, [9K)]Y)
=1—[cos 8%.([4G)]*, (4K
= t(MV — NU) = ©(VM — UN),

by Lemma 6.4. o

7. ROBUST CONTROL

We are now in a position to consider the
question of robust stabilization in our frame-
work. It has turned out that the minimum angle
between the orthogonal complement of the
graph space of the plant and the orthogonal
complement of the transposed graph space of the
controller is an important quantity in the analysis
of a control system. The control system is stable
if and only if this minimum angle is positive. It
therefore appears natural to ask the question
whether or not is it possible to find a controller
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that is maximally stabilizing in the sense that it
maximizes this minimum angle. The first
objective of this section is to prove that such a
maximally stabilizing controller exists. Analysing
this controller in this and the subsequent sections
the name maximally stabilizing can indeed be
justified. It will also become clear that the
concept of the maximally stabilizing controller is
very closely related to the optimally robust
controller for normalized coprime factor uncer-
tainty as studied by McFarlane and Glover
(1989).

The maximally stabilizing controller is defined
as follows.

Definition 7.1. Given a p Xm system G and a
W
g w =
weig 0w
angle 0% with respect to the weight W is

defined by

] € W, the optimal minimal

cos 05, := inf gap™ (4(G), [¢"(K)]).

Further, a controller, K, achieving this infimum
is called a maximally stabilizing controller with
respect to the weight W.

It is now possible to give an analytical
expression for the optimal minimal angle and to
calculate a maximally stabilizing controller with
respect to a weight W.

Theorem 7.2. Given a weight
Wiw, 0
W - [ (] o
0 WiW
a pxm system G and let G=M"'N be a

W-NLCF, then the optimal minimal angle with
respect to the weight W is

] € wp +m’

cos B2, := inf gap® (¥(G), [¢" (K)]*) = oV,
K

H{%)

where o} := Hiy . Any maxi-

mally stabilizing controller satisfying the infimum
above has a right coprime factorization (U, V)
satisfying the extension

M* [V

wel w5 )=o)

R -N*] Lyl

Conversely, if U, V € ¥, are such that
_ [ M* V1T

welw= g =o)L=

then K=UV™' is a W-maximally stabilizing
controller of G.

=o}.

o

o0

Proof. It was shown in Proposition 6.3 that

gap” (4G), [¢"(K)]")
=gap' (YW.GW"), [¢" (WKW )]Y)

and therefore
inf gap” (¥(G), [¢" (K)]*)
K
= inf gap’ (YW,GW: ), [¢" (WKW H]Y).
K

Ober and Sefton (1991) solved the unweighted
problem. In particular it was shown that

inf gap’ ($(Gy), [97 (K)]*) = I1H{ 4l

with G,=M;'N, an I-NLCF of G,. Also an
I-maximally stable controller exists for G, and
each /-maximally stable controller K, has a right
coprime factorization [U; V] that satisfies

| %] [0]

U Ve¥X. _N-;‘ U %
YEARHRE
_H[—N;* A | Rl A L

Set G, :=W,GW !, where W=

diag (W2W,, W W), with W,, W3, W, Wi'e
H.., and note that [NW' MW_'"]is an I-NLCF
of G,, then

inf gap" (¥(G), [¢"(K)]")

= i2f gap’ (4(W,GW; "), [¢"(W. KW H]Y)

= inf gap’ (%(Gy), [4" (K1)

= gap' (4G, [§7(KI)
| w1 1o)

e~ [0)
-W*N* Ul
= 1 LT 72l = wi;-l
-”H[_“";i_.ﬁ_]” ”H[_ﬁ_]”-
Therefore, with K,=W'K,W, where K,=
U,V;! we have that

inf gap” (4G), [¢"(K)]*)

= gap’ (¥(G)), [¢9" (K1)
= gap” (Y(G), [9" (K)I")

The remaining statements of the theorem are
proved analogously by relating the weighted
problem to the unweighted problem and by then
applying the solution to the unweighted problem
(Ober and Sefton, 1991). ]

.
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Specializing the above result to the un-
weighted case, i.e. W =1, it is seen that the
maximally stabilizing controller is identical to the
optimally robust controller with respect to
coprime factor uncertainty as studied by
McFarlane and Glover, 1989. The above result
also gives an interpretation of the loop-shaping
procedure of McFarlane and Glover, 1989. It
shows that designing an optimal controller by
their loop-shaping procedure is equivalent to
designing a maximally stable controller on a
weighted space. Their procedure includes a
design methodology for choosing these weights
to achieve certain closed-loop performance
objectives.

8. COPRIME FACTOR PERTURBATIONS

The purpose of this section is to give the
maximally stabilizing controller an interpretation
from the point of view of allowable coprime
factor perturbations. While deriving this inter-
pretation we will also obtain further properties
of the maximally stabilizing controller. These
properties are important points of motivation for
the questions that are being considered in the
subsequent sections. From now on all the
analysis will be restricted to the case of scalar
systems.

We first need to analyse further the maximally
stabilizing controller. The following theorem
states an interesting property of the Schmidt
vectors of a Hankel operator with symbol
[ —ndl*.

Theorem 8.1. Let g, = 'A; be an I-NLCF of
the scalar transfer function g,. Let o; be the ith
singular value of the Hankel operator H[ A
with Schmidt pairs (f, h;), , n. Let

[ ] be the Nehari extension of ["; ], i.e.

AL

inf H

U, V€ Hew

(1) the Schmidt vectors satisfy [m, —7i,]f; =
oh;.

(2 ’711”1 - ﬁlul =(1- 021’)

(3) uiu, + Ulvl =(1- 02)

@ If rf:=mju,+njv;, then rir,=03(1-.

a?).

Proof. The sub- and superscripts I are dropped
for simplicity of presentation. To prove (1) first
note that

Hpw Hy s )+ T Ty =1
and hence for the input Schmidt vector A,

[ —A]Tja b = Tf_"‘;.]T[_”';.]h.- =(1- o})h;.

Since

[—"i‘;*]hi — Ti# 1k = Hy 7 by = 0iff.

Premultiplying this expression by [m —#]
implies that
olm —aAlfi=h—(1- o})h; = a’h,.
(2) follows in a straightforward way from the
m* ] h
h

for the Nehari

. v
expression [ ]=[ _
P u -i*

extension (see Foias and Frazho, 1990) and (1):
_| Y - .
7 -
[ n][u] =1-04m n]hl =1-02

(3) is shown by the following calculations:

o w1
~(i -m-af)( %)= o)
—1-di- 02+02f:£2 —1-

hTh, (see Foias arjd Fra~zho, 1990).

as fifi =

(4) follows since Y = [”i _’:] is square and
unitary and therefore n-om

PEr— L]

x[’ﬁ _ﬁ][rﬁ*—v]—a4+rr*
n* m*ll—-a*—u ! ’
which implies the required result. a

In the following corollary the analogous
results are obtained for the case of a
W-maximally stabilizing controller.

Corollary 8.2. Let g=nm™" and g=m~'i be a
W-NRCF and a W-NLCF, respectively, of the
scalar transfer function g. Then the W-
maximally stabilizing controller k, has a right
coprime factorization ko=wuv™' that has the
following properties:

@ [l ] - v [
2 ko; :;"1 is a W-T-NRCF.

(3) c*c =(o})* where ¢:=[n* m*]W[Z] .

4) v —Au=V1—(a})*
where o} = IIHE.I]”-
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Proof. The proof follows in the usual way from
the results for the I-normalized case in the
previous theorem and by suitably normalizing
the coprime factorization of the controller. [

We are now going to give an interpretation of
the maximally stabilizing controller from the
point of view of coprime factor perturbations. In
Vidyasagar and Kimura (1986) the coprime factor
uncertainty model has been introduced. Here,
we define a weighted coprime factor uncertainty
ball as follows. Let g = ~'7i be a W-NLCF of g.
Let

Pe={(m + Arn)" (A + AR) | Ari, Af € Ho;
(A ARIWR'||- < €}.

With this definition we can prove the following
theorem that characterizes the robustness of a
maximally stabilizing controller in terms of
coprime factor uncertainty.

Theorem 8.3. Let g=m"'7i be a W-NLCF of
the rational plant g, with W = diag (w;, w;) € W*
a rational weight. If the rational controller
k, is the W-maximally stabilizing controller
and cos O ([9(8)]", [¥(ko)]*) =gap” (%(g),
[9(ko)]*) := of, then the size €y, Of the largest
uncertainty ball #g= so that k, stabilizes all
8a € Pim is given by €pa= V1 —(07')’.

Proof. Let [Am Afi]e #.X ¥#. such that
I[A% ARIWRY.<V1—(07)? and let ko=

uv~! be the W-T-NRCF of k, characterized in
Corollary 8.2; then

V1= (o7)? - [( + Ari)v — (7i + AR)u] ||
= ”\/1 (7Y — (riw — i) — [Ari Aﬁ][_”u]

=“[Am Aﬁ]w,;le[_”u]

-~ ~ -1 v
=|[Am AGRIWE |l [Wr —u
=<|[am  AGIWRYl.
<Vi-(oy)~

However, this implies that

VI-(a7) = [V1-(a7)
— [(o7 + Am)v — (A + AR)u]]
= (17t + Ari)v — (7 + Afi)u
is invertible in .. Hence k, stabilizes
ga=(m+ Arﬁ)"gﬁ + Afi). We now show that
€max=V1—(07) is the largest possible radius
by constructing a perturbation of size V1 — (o7")?

AUTO 29:4-S

©
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that destabilizes the control system. Let

[Am AdA]:=V1—(o})*O[-v* u*]W
where © is a Blaschke product, i.e. a stable
rational allpass function, chosen in such a way
that [A  Afdi] € #, X . Note that
[Am  ARIWRYl.=V1— (o} ). Then the con-
troller k, does mnot stabilize g,=(#+
Am)~ (A + AR) since
(m + Am)v — (A + AR)u

=V1- (¥ - V1— (c¥)O[—v* u*]W[Z]
=V1-(a?)(1-9),

which is not invertible in ., as (1 —@®) has
zeros on the imaginary axis. O

Note that the notion of a destabilizing
perturbation used in the above proof also
includes perturbations that perturb a plant to a
plant with pole-zero cancellation in the closed
right half plane.

It was shown (Ober and Sefton, 1991) that the
I-maximally stabilizing controller of a plant g is
the optimally robust controller with respect to
unweighted normalized coprime factor perturba-
tions. It was shown by McFarlane and Glover
(1989) that the size of the maximal uncertainty
ball that can be tolerated by this controller is
given by V1-— o7, where o, is the Hankel
operator with symbol [2 —7]*, g=m™ A, an
I-normalized coprime factorization of g. The -
previous theorem shows that for W-maximally
stabilizing controllers the analogous formula
holds, where in this case o} is the first singular
value of the corresponding weighted Hankel
operator (see Theorem 7.2).

9. THE INVERSE WEIGHT PROBLEM

In the previous sections we studied maximally
stabilizing controllers of a plant g with respect to
a given weight. These controllers were analysed
regarding their robust stability properties. In this
section we are concerned with the inverse
problem: given a plant and a stabilizing
controller, is it possible to interpret this
controller as the maximally stabilizing controller
with respect to a certain weight. An unrelated
inverse weight problem in the .. framework was
considered by Lenz et al. (1988). -

The first step to the solution of this problem is
to notice that if k is a W-maximally stabilizing
controller, W = diag (w;, w,), of the plant g then
c*c=a?, for some ae®R, where c:=
n*w,v + m*w,u and where [n  m] is a W-NRCF
of g and [u v] is a W-T-NRCF of k. We will
therefore first investigate under which conditions



1092 J. A. SeFTroN and R. J. OBER

there exists a weight W = diag (w;, w»), such that
¢:=n*w,v + m*wyu is the scalar multiple of an
allpass function where [n m] is a W-NRCF of
the given transfer function g and [u v] is a
W-T-NRCF of a stabilizing controller k. The
next lemma connects this problem with the
solution to a quadratic equation.

Lemma 9.1. Given a rational SISO system g, a
rational stabilizing controller, kX, and an «,
wy 0] 2
W

0 w €
such that c*c = &2, with ¢:=n*w,v + m*w,u if
and only if W is of the form W=

1> a>0, there exists a W=[

10
wl[ 0 w] € W? where w;, is any weighting

function in %" and w € W™ satisfies the quadratic
equation

kk*w? + [(1— o) ~'gk + (1 — o) 'g*k*
— &®(1 - a?)'gg*kk* — o?(1 - a®)'Iw +gg*
=0. (1)

Proof. Assume that given 1> a>0 there exists

aW= [w, 0 ] € W? such that c*c = a® where
0 Wy

¢ =n*w,v + m*w,u, with g=nm™' a W-NRCF
and k=uv™' a W-T-NRCF. Note then
that m*m = (gwig*+wy)”' and v*v=(m+
kw,k*)~'. Therefore
o? = c*c = (n*wv + m*wyu)*(n*wyv + m*wyu)
=v*(w g + k*wy)mm*(g*w, + wyk)v
= (wy + kwok*) T (gwig* + wo) i (wig + k*wy)
X (g*wy + wyk).
Hence
a’(wy + kwok*)(gwig* + wy)
= (w8 + k*wy)(g*wy + wyk)
and therefore,
0=(1- aHwigg* + (1 - P)wikk* + wyw,gk
+ wiwag*k* — aPwywoggtkk* — &Pwyw,.
Dividing both sides by 1— a® and by w? and
setting w := w,w ' we obtain
kk*w?+[(1— o®) 7 'gk + (1 — a®)g*k*
—a®(1- o®) 7 'gg*kk* — a*(1 - a®)'lw +gg*
=0.
Conversely, assume that there is a w e W' that
solves the quadratic equation. Then clearly the

above steps can be reversed to show the reverse
implication. O

The problem of finding a weight for which a

given controller k is the W-maximally stabilizing
controller of the given plant g can by the above
Lemma only have a solution if there exists a
solution, w e %! to (1). The following lemma
summarizes some basic properties of the
solutions to this equation.

Lemma 9.2. Given the assumptions of Lemma 1
and let @ € [—%, «]. Then the equation

k(jw)k(jo)*w(jo) +[(1 - o*)~'g(jw)k(jw)
+(1-a?) 7 'g(jo)k(jo)* — a’(1 — a?)7!
x g(jw)g(jw)*k(jo)k(jw)* — a*(1— a®)7]
X w(jo) +g(jw)g(jw)* =0

has

(1) one (and therefore two) non-negative
solutions if

1-g(jo)k(jo)l
Vi-a?=< I - —.
1+ |g(jo)| [k(jw)l
(2) One repeated non-negative solution if and
only if

1 —g(jo)k(jo)i
Vi—-a?= | - ——
1+ |g(jw)l k(jw)l
(3) A solution w(jw) =0 if and only if either
g(jw) =0 or k(jw) = .
(4) A solution w(jw) == if and only if either
g(jw) = or k(jw)=0.

Proof. Notice that equation (1) evaluated on the
imaginary axis takes the form of a quadratic
equation ax®+ bx + ¢ =0 with real coefficients
such that a=0 and ¢=0. Note that the real
solutions to the equation are either both
non-negative or both non-positive. The equation
has positive solutions if and only if —b = 2(ac)'?.
Therefore a necessary and sufficient condition
for the equation to have two positive solutions is
given by the following inequality (the variables
are dropped from the expressions for simplicity
of notation):

a? o 1 1
4 o*ol¥l — k — * %
Epeht v Ll ] e L

=2 gl |kl,
which is equivalent to
&+ oPg*gk*k — gk — g*k*
=2 gl k| — a”2 Ig| IKI.
However, this is equivalent to

o1+ [g] IKIF =21g] k| + gk +g*k*
=[1+ gl kI — 11 — gkI?,
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which is the case if and only if

|1 — gkl

- - —

i= o= el
This shows statement (1). Statement (2) follows
by replacing the inequality signs in the previous
derivation by equality signs. Statement (3) can
be seen by dividing the equation by k*k.
Because of the internal stability of the control
system it is not possible to have simultaneously
g(jw) =0 and k(jw) = . Statement (4) follows
analogously by dividing the equation by g*g and
by w2 O

The next theorem studies under which
conditions there are solutions to equation (1).

Theorem 9.3. Given a rational plant g, and a
rational stabilizing controller k, such that
¢ 1= g(jw)k(jo)
wez 1+ |g(jo)k(jw)|
such that

< 1. Define a¢, 0<ac<1

1-g(jw)k(j
VI— &= inf | 8(].“’) (]w)|
wez 1+ [|g(jw)k(jw)|
Let w;, 1=i=<r, be the points at which this
infimum is attained. Order the elements x; € X,
l<i=nandy €Y, 1=i=m of the sets

X :={xe%R|jx is a pole of g or a zero of k}
Y:={y e R|jy is a zero of g or a pole of k}.

so that x; <---<x;<---<x, and y;<---<
Vi< <Ym-

(1) If there exists a solution w € W' to (1) for
al<a<l, thenl<ac=a<l.

(2) If a is such that 0 < @ < @ <1 then there
exists

(a) No solution we #"' to (1) if X #6
and Y #6.

(b) Exactly one solution w € #"' to (1) if
either X =@ or Y =4.

(c) Two solutions we W' to (1) if X =0
and Y =0.

(3) Let a = ac.

(a) If X+0 and Y #6 then there exists
one solution w € W to (1) if and only
if the following conditions are sat-
isfied: (i) if x; <y, then there exists a
wy such that x; < w, <y;, (ii) if y; <x;
then there exists a w, such that
¥, <wi <x;. Otherwise there is no
solution in %" to (1).

(b) If either X =@ or Y =0 then there
exists exactly one solution w € W to
(1).

(c) If both X =@ and Y =0 then there
exist two solutions w € %" to (1).

Proof. First note that inf E g(]- a))k({ a))|>
wez 1+ |g(jw)k(jo)|

by the stability of the control system (g, k). (1) If
there is a solution w e %" to (1) for 0<a <1
then Lemma 9.2 implies that ac=a<1. (2)
Lemma 9.2 implies that if & = a then for each
o € [—o, ] there exist two solutions to equation
(1) with values in [0,«]. Since g and k are
rational this implies that for ac=a <1 there
exist two continuous functions with values in
[0, ] that solve (1). If a continuous function on
the imaginary axis has values in ]0, «[ including
at  such a function admits a spectral
factorization with a spectral factor in %" (see
e.g. Theorem 5, Helson, 1964). Therefore, for a
solution of (1) to be in ¥ it has to be shown
that the continuous solution has values in ]0, o[
including at .

If ac<a<1 then there are two continuous
solutions to (1) with values in [0, ©]. By Lemma
9.2 these solutions do not intersect. If X ## and
Y #0 then by Lemma 9.2 one of the solutions
has poles on the imaginary axis and the other
solution has zeros on the imaginary axis. In this
case there is therefore no solution in W to (1).
If X =0 or Y #6 then one of the two solutions
has zeros on the imaginary axis. However, none
of the solutions has poles on the imaginary axis.
Since the two solutions have no intersection the
larger of the two solutions will be in #™. In a
similar way it is shown that there is one solution
in W' to (1) if X+#0 and Y=0. If X=0 and
Y = then by the same argument neither of the
two solutions has poles or zeros on the imaginary
axis. In this case there are therefore two
solutions in #* to (1). (3) First note that for
1 - g(jw)k (@) _
1+ |g(jo)k(jo)l
Hence, by Lemma 9.2 we have that the two
solutions of (1) have no intersection point at the
frequencies in X U'Y.

If X #@ and Y # 0 then a continuous solution
to (1) can only be found if the poles and zeros of
the solutions of (1) interlace with the intersec-
tion points of the two solutions such that a
solution can be constructed from the two
solutions that are in W'. This is done by
partitioning the imaginary axis into pieces
bounded by the intersection points of the two
solutions. The interlacing condition in the
statement guarantees that in between each two
intersection points there is a solution that has
neither poles nor zeros. Putting these pieces
together (we think of the point +j~ to be
identified with the point —jo), we obtain a
solution to (1). Clearly, if the interlacing
condiltion is not satisfied then there is no solution
in W

weXUY we have that
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The remaining statements follow analogously
to the respective statements in (2). O

The previous theorem gave amongst others a
criterion for the existence of two solutions in %>
to equation (1). Given one solution the second is
easily calculated as follows.

Corollary 9.4. Given the assumptions of the

previous theorem, assume that X =@ and Y = a.

Let 0 < a <1 be such that there exists a solution
1 *

we W' to equation (1) then —-i—;% is another
w

solution to equation (1) for the same value of a.

Proof. The assumptions imply that 18
' P Py et L ki

Since the product of two solutions to equation

e W

*
(1) is i*i the second solution is given by

8'g
Wk*k.

O

Given a plant g and a controller k, the
previous theorem gives necessary and sufficient
conditions for the existence of a weight W such
that ¢ =m*w,v + n*w,u is an allpass function
scaled by the scalar a. It will now be investigated
under which conditions the controller k is the
maximally stabilizing controller of g with respect
to W.

The solution of this problem is based on the
work on so-called badly approximable functions
(Poreda, 1972; Garnett, 1981; Helton and
Marshall, 1990). The following theorem gives
the continuous-time equivalent of a result
usually stated in the discrete-time version. The
winding number is here defined to be the change
in argument of a function, which is continuous
on the imaginary axis, as the frequency w is
changed from —w to +.

Theorem 9.5. Given an all-pass SISO transfer
function ¢ € £L** then

inf |lc +qll==lic|l-
qeH

if and only if the winding number of c is strictly
positive.

We can now give a necessary and sufficient
condition for a controller to be a W-maximally
stabilizing controller given that c=n*wv +
n*w,u is a scaled all-pass function. We first need
the following Lemma.

Lemma 9.6. Given a SISO plant g, rational
stabilizing controller k, and weight W=
[wl 0
0 w,
W-NRCF and a W-NLCEF, respectively, and let
ko=uovys' be a W-T-NRCF. If c*c=a, for
0<a<1and c:=n*wvg+ m*wyu, then

mvo"ﬁuo-: V1-—a“.

Proof. We only give the proof in the I-
normalized case. The general case follows by the

m* 18

] is normalized we have that

] eW? letg=nm™'and g=rm"'Aibe a

. . m
usual reduction method. Since [n*

. . Vo
unitary and since
Uo

=5 )]

S e e

= (v, — filg)*(1ve — Aig) =1 —c*c =1~ a’.

As k, stabilizes g we have that mv,— fiu, is a
unit. But the only units that have constant
modulus are constants. Hence mvy— fiug=
Vi- &2 O

Theorem 9.7. Given a rational SISO plant g,
rational stabilizing controller k,, and weight
W= [wl 0 ] € W? such that c*c = o for some
0 w

0<a<1, where c:=n*wvo+m*wou, with
g=nm~' a W-NRCF and ko=uov,' a W-T-
NRCF; then, k, is the W-maximally stabilizing
controller of g if and only if the winding number
of ¢ is strictly positive.

Proof. In order to prove the theorem we have to
show that

inf gap” (Xg), [9(k)]) =
gap” (4(g), [9(ko)]")

if and only if the winding number of c is strictly
positive. However

inf gap” (%(g), [4RT)

= inf gap" (%), [4(K)]")
k stabilizing
= inf lIn*wiv + m*wulf2
k stabilizing

k=uv~! W-T-NRCF

=1- sup *(rv — fiu),
k stabilizing
k=uv~! W-T-NRCF

where (v — Aiu) = inf |(iv — fiu)(jw)| and g =
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m~'% a W-NLCF of g. However

sup *(rv — fAiu)
k stabilizing
k=uv~' W-T-NRCF

is attained for the same k, that achieves

inf | (v — Aw) |2
k stabilizing
k=uv~! W-T-NRCF
= inf [(1—gk)"'(1—-gk)™*
k stabilizing

+
(gwlg w,) (W, + szk*)
Wi W,

By the Youla-parametrization each stabilizing

+
controller has a representation k= L= M9 ,
vo+ngq
q € ¥.. Note that by Lemma 9.6, muv, — fiug =
V1-a? Then
+ 1
(1-ghy=[1- 2522
m vy + nq
_ [rﬁvo + mnqg — fiug — r’tmq]“ _m(vo + ng)
m(ve + nq) Vi—-a?
Further
A A*

*
wg ¥ +wo=—w——t+w;
818 "

Wi W,

= *

1
= ~x (ﬁwlﬁ* +’ﬁW2rﬁ*) =
mm mm

and

ug+mq uo+mqi*
Wit kwo k™ = w [v0+nq]wz[v0+nq]
_ 1
" (vo+nq)(vo+ng)*
+ (up + mq)wy(uo + mq)*}
_ 1
~ (vo+nq)(vo+ng)*
+ mgwyud + vowin*q* + ugw,m*q*

[(vo + ng)wi(vo + ng)*

[vow, V& + ugwaud + ngw vg

+ nwyn*qq* + mw,m*qq*]

1
= + * + * + *
Gor )t mgy LA edHad]
1
= PR T [1-a*+(c+g)c+q))
0

Summarizing, we therefore have that

inf gap” (%(g), [9(k)]*) is attained for k that
k

attains

inf |(1-gk)"'(1—gk)™*

k stabilizing

+
(gwlg W) (W +kw2k*)

Wiw,
= inf 1-a?+(c+ +q)*%
Jnf 1= az'l (c+g)c+q)*
=1+ mf llc + qll3.

a,2

Recall that the parameter g =0 corresponds to

k = ko. The result is therefore established since

c*c = o and by Proposition 9.5 inf |lc +g|%=
qe

llcll2 = a? if and only if the winding number of c
is strictly positive. O

The above theorem gave a test for the
optimality of the controller k. This test can be
made more concrete if the transfer functions and
weights are rational.

Corollary 9.8. Given the assumptions of the
previous theorem and assume moreover that g,
k, and W = diag (w; wo, ww,) are rational, with

we, w3', w, wi'€H,; then ko is the

W-maximally stabilizing controller of g if and

only if the McMillan degree of %’g is strictly

Wi
greater than the McMillan degree of w—ko,
having performed possible pole-zero cancella-
. . wo wi
tions in — g and — K.

w; W,
wO - .
Proof. Recall that :V—g=w°n(wim) ! is an

I-NRCF of %’g and %k=wiu(w(,u)~1 is an

I-NRCF of %k It is shown (Sefton, 1991;
Sefton and Ober, 1991) that
¢ = (won)*(Wov) + (wim)*(win)
=n*w v +m*wu
has as McMillan degree the sum of the McMillan
degrees of l:T‘i’g and ;vuik. Therefore, the
stable poles of ¢ are given by the poles of

[::‘:] and the unstable poles are given by the
0

poles of [(w,n)* (wim)*]. Since c is allpass the
winding number is given by the difference
between the number of unstable poles and the
number of stable poles. The number of poles of

[::'l;] is equal to the McMillan degree of

ﬁk and the

Wo

number of poles of
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[(won)* (wym)*] is equal to the McMillan

degree of Yo g. Therefore the winding number of
W;

n*wyv + m*wyu is strictly positive if and only if

the McMillan degree of %9 g is strictly greater than

the McMillan degree of S} k. O

o

The following corollary shows that it is not
necessary to have coprime factorizations with
respect to W in order to be able to check for the
maximality of a controller.

Corollary 9.9. Given the assumptions of the
previous theorem, (1) let g =nm™" be any RCF
of g and k =uv™! any left coprime factorization
of k. Then k is the W-maximally stabilizing
controller of g if and only if the winding number
of n*wiv+m*wu is strictly positive. (2) If
g€ #. and ke ¥, then k is the W-maximally
stabilizing controller of g if and only if the
winding number of g*w,+w,k is strictly
positive.

Proof. (1) Different coprime factorizations are
related by the multiplication by a unit in ..
However, multiplication of ¢ by a unit in %, and
a unit in . _ does not change the winding
number of c¢. (2) If ge#H. (ke ) then

k
f (I) is a coprime factorization of g (k). Hence

the result follows from (1). O

10. FREQUENCY DOMAIN INTERPRETATION

In this section we are going to give further
interpretations of some of the quantities that
were introduced previously. The first relation-
ship that we are going to study is the connection
between the cosine of the minimal angle
between the orthogonal complement of the
graph of the plant and the orthogonal comple-
ment of the transposed graph of the controller
and the quantity @ as introduced in the
previous section.

Theorem 10.1. Let k be the W-maximally
stabilizing controller of the plant g, w=

diag (w1, wp), with ap:=gap" (%(g), [4(k)]*).
Define 0 < a- <1 by
.o 11 —g(jw)k(jw)|
1— a2 = inf - — .
€ weal+g(jo)k(jo)|

Then
1) ap=ac.
(2) ap=ac if and only if |wy(jw)k(jw)| =
Iwi(jw)g(jw)| for some w € [—, ].

Proof. We have that
(w1 + kw,k*)(gwig* +wy) (1 + |gkl)®

W1W2|1—8k|2 |1—gk|2
1
RN [(w1 + w2 [K[P)(ws + wy 1g]7)
—wywy(1 + gk|)?]
1

= [wyw, + W3 k> + w2 |g?
w1w2|1—gk|2[ 1W2 2 k| 118!

+wiw; g1 |k |* — wyw, — 2wy w, |g] K|
—ww, g |k[?]
1
" wiws |1 — gkl?
X [wy 1g]* — 2wyw, [g] k| + w; |k|]

1
- —w, k|2
W1W2 Il —gk|2 [wl |g| w2 I I]

Note that with the notation of the proof of

Lemma 9.1,  ao=gap" (%g), [9(K)]*)=
[In*wyv + m*w,u||. and
o2 = (mg + k*wy)(g*w; + wmyk)
07 (Wi + kwok*)(w, + gwig*)
Hence
1 (wi+kwk*)(gwig* + wy)
1—a3 wiws |1 — gk|?

and therefore
1 1
1-a2 1-a%2
_(w+w [kP)(ws + w1 [g%) ”(1 + gkl)?
wiw, |1 — gk|? 11— gk|?

_ r((Wl +wy [kP)(w, +wy (g1} (1 + |8k|)2)
wiw, |1 — gk|? 11— gk[®

o0

= f(m [w1 18] — w; Ikllz)
=0.
. 1 1
This shows that . a%zl mpe) and hence (1).

1 1
. . h _ £
This identity also shows that 2 1-a i

and only if wi(jo) |g(jw)l = w:(jo) k(jw)| for
some @ € [—%, ], but this implies (2). O

As a corollary to the previous theorem we can
give an interesting interpretation of a, in terms
of the mixed-sensitivity of the control system
with the maximally stabilizing controller. Recall
that the mixed-sensitivity of a control system is
defined by

k
11S] + 7] nw=|H g

1
l—gk'+ 1—-gk

oo
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1
with sensitivity function §= and com-
1—gk
P . gk
plementary sensitivity function T = 1—_3

Corollary 10.2. Assume the notation of the
previous theorem. Then

S|+ 1T} fl. =

1
V1-—a3’
with equality if and only if wi(jw)|g(jw)l=
wy(jw) |k(jw)| for some w € [—x, ].
Proof. Note that

1 1

= :

Vi-ot Vi-a5

The statements then follow from the previous
theorem. O

NS +171 |l =

We have established the importance of the
existence of an intersection between w, |g| and
w, |k|. The following theorem will give a
sufficient condition for the existence of such an
intersection in the unweighted case.

Theorem 10.3. A scalar plant g with I-NRCF
g=nm""! and the [-maximally stabilizing con-
troller k are given. Assume that both g and k are
continuous on the imaginary axis. If

1+(1-o)"?

1 =
lg(jel o

for some frequency w; € [—, =], and

1-(1- )"

j =
lg(jw2)l .

for a frequency w,€[—», =], where o0,=
|H{=)ll, then there exists a frequency wp€
[—, ] such that

lg(jwo)l = [k(je,)l-

Proof. The first step of the proof is to find an
expression for the controller, k, in terms of the
modulus and the phase of the plant g. At each
point jw on the imaginary axis we have g = re/®
for r=0 and 0,€[0, 2x[. For simplicity of
presentation we suppress the frequency depend-
ence of the expressions. The normalized coprime
factors of g are given by

MR
ml QA +r)?Le®
where 8,+ 0,=0,. If the controller, k, has
normalized coprime factors (u, v). they must

satisfy by Corollary 8.2
mv — nu = (1- 0%)'?,
m*u +n*v=0,e’*

where /% is the phase of the scaled all pass
function m*u + n*v. Solving the simultaneous
equations for u, v gives

= (—1+—];.2-)1—/2 (alrej(9'+9’) + (1 - 0'%)1/26].92)

u= (_].:];rZ)T (o'lej(er_GZ) — (1 — o%)llzre"jel)
and hence
o gyt 2 (GO = (1= ) Pre
=uy =

T (0,re®* 9 1 (1 — 03)1 %)
_je, (916"° = (1 — 0D)*"r)
=e -
(o1re”® + (1= 07)"?)
where 8=0,—0,+0,.

The theorem is now proved by finding a
condition for r =|g| = |k| at a frequency w, and
a condition for r = |g| < |k| at a frequency w,. If
both conditions are satisfied then by the
continuity of g and k the existence of a
frequency w, is guaranteed such that |g| = |k|.
To find a sufficient condition for r = |g| = |k| at
frequency ®; note that by the above charac-
terization of k

0'1+(1—0%)1,2r >|k|
logr—(1=a)™

o +(1— 0%)1/2"
lowr—(1— 021’)1/2|

o,r*=2r(1— o)? - 0, =0.

Hence, r=|g| = = |k| if

This is the case if and only if
(orr +(1— (A= 0})?)(orr — 1+ (1 - a})*?))=0.

Therefore, a sufficient condition for the exist-
ence of a frequency w; such that |g| =|k]| is the
existence of a frequency such that

‘ 12
J1+(A-d)"
(]

8|

Similarly to find a sufficient condition for the
existence of a frequency w, such that |g|=|k|
note that for all frequencies

01— (1 _ 0-%)1/2’-< |k|
or+(1—-a)? "

Hence, there exists a frequency w, such that
r=|gl=lk| if

o +2r(l— o) -0, =0.
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This is the case if and only if
(orr +(1+ (1= 0))?))(oyr — 1 —(1- 07)'?))
=0.

Therefore, a sufficient condition for the exist-
ence of a frequency w, such that r =|g| =< |k} is
the existence of a frequency such that

1--a)”
g,

The previous theorem gives a sufficient
condition to ensure a cross-over frequency w,
such that |g(jw,)| = |k(jw,)|. This condition will
be satisfied for most systems which have a high
gain at low frequencies and a small gain at high
frequencies. Given there exists a cross-over
frequency then the theorem gives an interesting
interpretation of the stability margin, €,,,,, as a
worst case weighted distance of the Nyquist
locus —gk(jw) from the instability point
(-1, 0); moreover, this worst case occurs at
the cross-over frequency.

The following example is an illustration of
a simple case when there does not exist a
cross-over frequency between the system, g, and
its maximally stabilizing controller, k. Included
within the example is a parameter A, the gain of
the system at w =0. As this is decreased to a
value less than V3 the cross-over frequency no
longer exists.

r=|g| a

Example 10.4. Consider the SISO system g =

A . .
——, A€ @R. Its normalized coprime factors are

s—1’

-l ]

ml s+Q+A)2Lls—14"

o . nj . .

A state space realization of [m] is given by

[n]_ -Vi+ A2 |1

m A IO ’
-(VIi+2+1) |1

Balancing this realization (see e.g. Francis, 1987)
the first Hankel singular value o, can be
calculated to be

1 1
o= ||H= || = V2 vV W-F 1

and therefore

_ 1A

T N+ R Vit A

A coprime factorization of the maximally
stabilizing controller is characterized as the

*
Nehari extension of [ ] But the Nehari

extension of the McMillan degree one function

*
[_”;*] has McMillan degree O (see e.g. Glover,
1984; Fuhrmann and Ober, 1991). By Theorem
8.1 we therefore have to find scalars u, v such
that mv—nu=1-07 and u’+v’=1-o02
These unique quantities are given by

w=VITA R Vs
and therefore
k= ‘71 [1+VIT 2.
This gives the expression
11~ g(je)k(jw)l _ (0*+ 1+
1+ [g(jo)k(jo)l  (@®+1)2+(1+(1+21)"%)°

® € [—», »]. Elementary calculations show that
this expression attains its infimum at w =0 if
A=V3 and at o such that V1+ @?=2A%1+
VI +2A9)~'if A=1/3. We have that

inf —g(jo)k(jo)|

V1+ A2

—~_—Z A=V3;
VIt R A=V3
A Al = V3.

VTRV D)

Hence, a, defined in Theorem 10.1 is given by

\/1+Ql+li

2 YT Y T A=V
2+ Vit A Al
ae=9 1 V3
114 ], Al =V3.
v G

It is easy to check that there is a frequency w
such that |g(jw)| = |k(je)| if and only if 1 =V/3.
This intersection point occurs at the same point
1= (kGO o pave
1+ g(jo)k(jo)| ]
therefore verified the statement of Theorem 10.1
for this example. We clearly have that for
arbitrary A, 0,= ap= a¢. Also, ap= ac if and
only if there is a frequency w,e[—%, «] such
that |g(jwo)| = |k(jwo)|, i.e. if and only A =1/3.
For A =V3 it is possible to find the modulus of
the weight on the imaginary axis by solving the
quadratic equation (1) and choosing the solution
that does not tend to zero as w— «. This gives
forall we R

as the infimum of

_(1+ 1+ )20 + (1+ 1) — Vo' + 0?3 = D)1+ 1))

wi(jo) =

A2(1+2%)
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Fi1G. 1. Nyquist plot of ¢ = n*w,v + m*w,u.

and
wjw) =1.

The weight w, is a non-rational function, varying
between w;=(1+ (1+4%)"®)/A*> at 0 =0, and
A+ D)+ 1+ 1))

4A?

decreasing to w;=

® =,

Figure 1 shows the Nyquist plot of ¢=
n*w,v + m*w,u, where the parameter A was
chosen to be A=1. Here n, m are the
normalized coprime factors of g, but for
computational simplicity we used the factoriza-
tion v=1 and u =k for the controller k. The
Nyquist plot shows that the winding number of ¢
is positive. By Corollary 9.9 this implies that k is
the maximally stabilizing controller of g with
respect to the weight W = diag(wy, w). The
coprime factor perturbations that can be
tolerated by this control system can therefore be
analysed by using Theorem 8.3.

In Fig. 2 the Nyquist plot is shown of the loop
gain —gk, where again the parameter A is chosen
to be 1. (We have changed our convention of the

(=3

05 _

a1k l‘t : ; 4

DY | S ! ,

ape N : . J

2spe SRR S -1 NN
3 . i N i |
-6 -5 -4 -3 -2 -1 0 1 2

FiG. 2. Nyquist plot of —gk (solid line); loci of

|11+ 151 dotted ines).

earlier parts of the paper and are considering
positive feedback here, in order for the Nyquist
plot to have the usual interpretations.) The

1+]|—
dotted lines show the loci of z =1L
11— (=)l
1+ |s] . .
|_1_+—s—| for different values of z. Using plots of

such loci it is possible to assess the mixed-
sensitivity of a design by finding the locus with
highest value of z that intersects with the loop
gain —gk. The above calculations show that

e 1s—
IHIS1+1T S“P1+|k| V2+ \/17%,

=—1\/%;7— em=V2(2+ 02)

This is confirmed by the plot which shows that
the locus of —gk is just outside the locus of z =

1+ s
=V2+1.
T+s |forz \/—

11. CONCLUSIONS

A geometric approach has been developed to
study robust control in the weighted gap metric.
Normalized coprime factorizations with respect
to weights have been introduced. Maximally
stabilizing controllers in the weighted gap metric
have been defined and characterized through the
solution of a weighted Nehari extension
problem.

A coprime factor perturbation model has been
introduced. An analytic expression for the
largest uncertainty ball that can be tolerated by a
W-maximally stabilizing controller was given in
terms of the first singular value of a Hankel
operator on a suitably defined weighted Hardy
space. Given a plant and an arbitrary stabilizing
controller the problem was considered under
which conditions there exists a weight W such
that the controller is the W-maximally stabilizing
controller of the plant.
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