SIAM J. CONTROL AND OPTIMIZATION (© 1993 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 1321-1339, September 1993 013

ASYMPTOTIC STABILITY OF INFINITE-DIMENSIONAL
DISCRETE-TIME BALANCED REALIZATIONS*

RAIMUND OBER! AND YUANYIN Wu#

Abstract. The question of power and asymptotic stability of infinite-dimensional discrete-time
state space systems is investigated. It is shown that every balanced realization is asymptotically
stable. Conditions are given for balanced, input normal, or output normal realizations to be asymp-
totically and/or power stable.
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1. Introduction. Balanced realizations for finite-dimensional systems have re-
ceived a great deal of attention. They were introduced as a means of performing model
reduction in an easy fashion [7] and have subsequently been used in H* control the-
ory, for example, to evaluate the Hankel norm of a linear system [4], [5]. Recently, they
have been used to study parametrization problems of certain sets of linear systems
[9].

The elegant results obtained for finite-dimensional balanced systems aroused in-
terest in the problem of the extension of the notion of a balanced realization to
infinite-dimensional systems. Glover, Curtain, and Partington [5] derived continuous-
time balanced realizations for a class of systems with nuclear Hankel operators. Young
(13] developed a very general realization theory for infinite discrete-time systems. Sim-
ilar results were obtained in the continuous-time case by Ober and Montgomery-Smith
[10].

One of the fundamental problems in systems theory is the question of stability
of the system. In this paper, we will address this problem in the case of infinite-
dimensional balanced realizations and the closely related input and output normal
realizations. We show that every balanced realization is asymptotically stable. In
general, input normal and output normal realizations do not have the same stabil-
ity properties as balanced realizations, but we can also give necessary and sufficient
conditions for them to be asymptotically and/or power stable. The result is that an
input normal or output normal realization is power stable if and only if its transfer
function is rational and proper with poles inside the open unit disk, whereas the power
stability of a parbalanced realization is more complicated to characterize in terms of
the properties of the transfer function. v

The approach we take in the proofs of the results is to relate balanced realizations
and, in particular, the input and output normal realizations to restricted shift realiza-
tions. We start in §2 with the restricted and *-restricted shift realizations and study
their connections with Hankel operators, shift operators, and the Douglas-Shapiro-
Shields factorizations of analytical functions. In §3, using these connections and the
spectral theory of shift operators, we are able to give the above-mentioned necessary
and sufficient conditions for the asymptotic and power stability of the output normal
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and input normal realizations. Young [13] established the existence of parbalanced re-
alization for any function G € TLDY'Y. In §4 we prove that parbalanced realizations
are always asymptotically stable. We also give examples that show the difficulty to
analyze the power stability of a parbalanced realization in connection with its trans-
fer function. A concluding remark is given on how to restrict ourselves to a slightly
smaller class of discrete-time transfer functions and linear systems so that we can
transpose all our results to the continuous-time case using a bilinear mapping (see

(10]).

The following symbols are used:

D the open unit disk,

oD the unit circle,

D, the exterior of (D) UD,

D)U;’Y defined in §2,

G+ (2) (1/2)[G(1/2) — G(0)), z € D for G € TLDYY,

Hyg the Hankel operator with symbol K,

HZy vy (D) {F | F:D — L(U,Y) analytic and bounded on D},

HZ (D) {f| f:D > Y analytic on D and
supocr<1 fy " IIf(re)|2dt < oo},

J L§(8D) — L3 (8D), (Jf)(2) = f(=71),

K(z) (K(2))",

LU,Y) {A| A:U - Y a bounded operator},

L% (0D) {f | f: 8D — Y square integrable on 4D},

LZvy)(0D) {F|F:8D — L(U,Y) measurable and essentially bounded
on 9D},

P, the orthogonal projection of L% (D) onto HE (D),

Px the orthogonal projection of HZ (D) onto X C HZ (D),

S the forward shift: (Sf)(2) = zf(z) for f € HE (D),

S* the backward shift: (S*f)(2) = 271[f(2) — f(0)] for f € HZ(D),

S(Q) Px S| x, the compression of S to X,
where X = HZ(D) © (QHZ (D)),

S(Q)* 5*| n2 (pyo(@H2 (b)), the restriction of S* to H{(D) © (QHE (D)),

o(A) the spectrum of an operator A,

op(A) the point spectrum of an operator A,

o(Q) the spectrum of an inner function Q@ € Hy°(D) (see §3),

os(G) the set of points in C where G has no analytic continuation
(see Theorem 3.14),

TLDYY defined in §3,

XvY closed linear span of subsets X and Y of a Hilbert space,

(F,G)L =1y F and G are weakly left coprime (see §2),

(F) G)R =1y

F and G are weakly right coprime (see §2).
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2. Hankel operators and shift realizations for discrete-time systems.
Our results will be based on the analysis of restricted shift realizations whereby the
shift realizations can be analyzed in terms of Hankel operators related to the transfer
functions. Here we give a brief summary of some results on Hankel operators and the
restricted shift realizations of discrete-time transfer functions. We start with some
basic definitions.

Let U, X, and Y be separable Hilbert spaces. The linear systems considered in
this paper are of the following form:

Tg4+1 = Azy + Buy,

o L D, J R0

where ux € U, zx € X, and yx € Y. The system operators are assumed to be such
that A is a contraction on X, B € L(U,X), C € L(X,Y), and D € L(U,Y). This
system will be denoted by (A, B,C, D) and the set of all such systems DSJ{’Y. Unless
otherwise stated, the spaces U, X, and Y are assumed to be infinite-dimensional.
For (A, B,C,D) € DY, the function G(z) = C(2I — A)~'B + D is called the
transfer function of (A, B,C, D) and (A, B,C, D) is called a realization of G. The
observability operator O : D(O) — HZ(D) of the system (A, B, C, D) is defined as

(02)(2) = ) _(CA*z)*

k>0

for z € D(0) := {z € X | 3 ;50(CA*z)2F € HZ}. If D(O) = X, O is bounded and
Ker(O) = {0}, then the system (A, B,C, D) is said to be observable. The dual system
of (4, B,C, D) is defined to be (A*,C*, B*, D*), which is, in fact, a realization of the
transfer function G(2) := (G(2))*. The system (4, B, C, D) is said to be reachable
if its dual system is observable, and the reachability operator R of (A, B,C,D) is
defined to be the adjoint of the observability operator of the dual system. In fact,
(A, B,C, D) is reachable if and only if the range of R : HZ(D) — X is dense in X,
and in this case

R (Z ukzk) =" A*Buy, (Z ug2* € Hg) :

k>0 k>0 k>0

Note that we define the observability operator O to have range in HZ (D) instead
of I3. Accordingly the domain of the reachability operator R is in HZ(D) instead of
13,. The definitions adapted here are found to be more convenient in our context.

We write LD%’Y for the class of reachable and observable systems with state space
X. The set of L(U,Y)-valued transfer functions that have reachable and observable
realizations is denoted by TLDV'Y. Note that (4,B,C,D) € LDYY if and only
if (A*,C*,B*,D*) € LD)};’U. Correspondingly, G € TLDYY if and only if G €
TLDYY, where G(z) = (G(2))*, (z € D).

For an observable and reachable system (A, B, C, D) with observability operator
O and reachability operator R, the observability gramian is defined to be M := O*O :
X — X, and the reachability gramian is W := RR* : X — X. If M = W, then the
system is said to be parbalanced.

Let G bein TLDY"Y; i.e., G has a reachable and observable realization (A,B,C,D) e
LDK,’Y for some state space X. Let R be the reachability operator and @ the ob-
servability operator of the realization. Hence the operator OR : H? (D) — HZ (D) is
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bounded. By the fact that
G*(2) =27 G(z') - G(x)] = C(I - zA)"'B =) CA"Bz", z€D,

n>0
it can be verified that, for any polynomial f(2) = Y p_o ux2*, ux € U,
ORf = P,G1Jf,

where (Jg)(2) = g(2~!) for any g € H3 (D). In this way P,G1J : H}(D) — HZ (D)
defines a bounded operator. It is called the Hankel operator with symbol G+ and is
denoted by Hg. . \

Conversely, let G be a L(U,Y)-valued function, analytic on D, and at infinity
such that the Hankel operator Hg. = P,G*J : HZ(D) — H%(D) is defined for every
polynomial f(z) = Y p_, ukz*, (ux € U) and can be extended to a bounded operator.
Then G has reachable and observable realizations. In fact, G has the restricted shift
realization, which was first introduced by Fuhrmann [2] and Helton [6] (see also [13]).

THEOREM 2.1. Let G be a L(U,Y)-valued function analytic on D, and at infinity
suchthat Hg. : H3(D) — HZ (D) defines a bounded operator. Then G has a state
space realization (A, B, C, D) with state space X, i.e., for z € D,

G(z) =C(zI - A)"'B+D,

which is given in the following way:
The state space X is given by

X =rtangeHg. C Hy (D).

The state propagation operator A: X — X, the input operator B: U — X, the
output operator C : X — Y and the feedthrough operator D : U — Y are given by
the following, for f € X and u € U:

(4N = () = 1210,

(Bu)(z) := G*(2)u,
Cf = £(0),
Du := G(o0)u,

where S is the (forward) shift operator: (Sf)(z) = zf(z), f € H:(D). The realization
(A, B,C, D) is called the restricted shift realization of the transfer function G.
he following proposition shows that the restricted shift realization is reachable
and observable.
PROPOSITION 2.2 (see [3] or [13]). Assume the notation of Theorem 2.1. Then the
system (A, B,C, D) is in LD%’Y; i.e., it is observable and reachable. The observability
operator O and reachability operator R of (A, B,C, D) are, respectively, given by

O=Ix:X > Hi(D) and R=Hg.:HZ(D) - X.

Therefore the class TLDY:Y of transfer functions can be characterized as the set of
L(U,Y)-valued functions analytic on D, and at infinity such that the Hankel operator
Hg. is bounded. For such transfer functions, the restricted shift realization exists.
We emphasize these points by the following corollary.

COROLLARY 2.3. The following statements are equivalent:
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1. G is in TLDYY, i.e. G has a reachable and observable realization in some
state space X

2. G has the restricted shift realization that is reachable and observable;

3. G is analytic on D, and at infinity such that the Hankel operator Hg. is
bounded.

Note that, if G+ € H® 2w,y (D), then G € TLDYY, since, in this case, Hg. is
bounded.

As a next step, we construct another realization, which is the dual realization of
the restricted shift realization. Let G be in TLDY'Y. Then G(2) = (G(2))", (2 € De)
is in TLDY'Y. Moreover , if (4, B,C, D) is the restricted shift realization of G, then
the dual system (A*,C*, B*, D*) is a realization of G, called the *-restricted shift
realization of G.

A concrete representation of the *-restricted shift realization can be obtained.

THEOREM 2.4. Let G be in TLDYY ., The state space representation (As, B.,C,, D,)
of the *-restricted shift realization is given by the following:

The state space X, is X, = rangeHs., where

G*(2) = (G*(2)".
The operators A., B,,C,, and D, are defined as
A. = Px,Sx,,

B,u = Px,u, (ueU)

= (He: H0), (f€X.),
D, = G(w0),

where Px, is the orthogonal projection of HE (D) onto X., and the space U is consid-
ered as the subspace {u+ 0z + 022 +02% + ---| u € U} of HZ(D).

The system (A*,C*, B*, D*) is observable and reachable. The reachability and
observability operators R. and O, are, respectively, given by

R.=Px,: Hj(D) > X, and O.=Hj, |x, = Hg:|x..

_Proof. Replacing G by G in Theorem 2. 1, we obtain the restricted shift realization
of G, and the dual of this realization is the *-restricted shift realization stated in the
theorem. Here we just verify the formula for the output operator C,, which is the
adjoint of the input operator B of the restricted shift realization of G. Hence C, = B*.
So by Theorem 2.1 we have

Cly=By=G'yeX., yevy.
From this, we obtain that, for f € X, C H3(D) and y € Y,

(C f, y)Y = <fa *y)H?](D)

1 27 ) ~ .
=5 [ (), GHe v
-Lr 0 (&) 1), put

=G [ (64e) 1eat, v
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Hence, using a change of variable z = e~*, we have

2r - .
Cf =5 [ (6He") riear
= 55 oo FCH@) @)z

Y [ Al
= 2m aDzG (2)f(Z)dz.

Note that the last integral is the zeroth Fourier coefficient of G (z) f(Z), which is the
same as the zeroth Fourier coefficient of P, G (2)f(z) = Hg. f. This is (Hg. £)(0),
since Hg. f € HZ (D). 1]

From these results, we see that the state space for the restricted shift realization is
given as the closed range of the Hankel operator whose symbol is the transfer function
mapped to the unit disk. The state propagation operator is just the backward shift
restricted to the state space. For the *-restricted shift realization, the state space is
also the closed range of a Hankel operator, while the state propagation operator is
the forward shift compressed to this state space. It is well known and readily verified
that the closure of the range of a Hankel operator Hg is the orthogonal complement
of a right invariant subspace of HZ (D) [3], [8]. A vector-valued version of Beurling’s
theorem (see, e.g., [3, Thm. 12.22, p. 186]) asserts that a right invariant space in

HZ (D) can only be either the trivial space {0} or QHZ (D), where Q € H® ) (D) is

such that ||Q||c < 1 and Q(e*) is for almost every t € [0,2r) a partial isometry with
a fixed nonzero initial space. Such a function Q is called a rigid function. A rigid
function Q is called inner if Q(e**) is a unitary operator for almost all ¢ € [0, 2rr).

This discussion leads to the cyclicity of functions defined as follows (see [3]).

DEFINITION 2.1. Let G € TLDY'Y. Then G+ is called

1. cyclic if (rangeHg. )t = {0},

2. noncyclic if (rangeHg. )* = QHZ (D) for some rigid function Q € HZy, (D),

3. strictly noncyclic if (rangeHg. )t = QHZ(D) for some inner function Q €
Hgy(D)

It should be noted that the inner function Q in statement 3 of the above definition
is unique up to right multiplication by a constant unitary operator on Y. Also, if G+
is scalar, then G+ is noncyclic if and only if it is strictly noncyclic. It is important
to have characterizations for matrix-valued functions to be strictly noncyclic. To this
end, we introduce some definitions. Let K be in HZ £w.y)(D). The function K defined
on D, with values in L(U,Y') is called a meromorphic pseudocontinuation of bounded
type of K if K is of bounded type, i.e.,

-3

where F is a £(U,Y')-valued function and  is a scalar-valued function, both bounded
and analytic in De, K and K have the same strong radial limits on D.

Let h e H (U y)(]D) and F; € Hc(z Y)(D) We say that F; and F, are left weakly
coprime and write

z €D,

(F,F)L=1Iy
if F1HZ(D) Vv F2H%(D) = HZ(D), where V stands for the closed linear span.
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Analogously, we say that K; € HZy vy (D)and K, € HZy, 2) (D) are weakly right
coprime and write (K, K3)g = Iy if K, and K, are weakly left coprime.
Using these notations, we have the following theorem ([3, Thm. 3.5, p. 254]).
THEOREM 2.5. For K € HZ‘(’U,Y) (D) with U and Y finite-dimensional, the fol-
lowing statements are equivalent:
1. K is strictly noncyclic,
2. On 9D the function K can be factored as

K = Q1(2F1)" = (2F2)*Qa.

Q1 and Q3 are inner functions in 2 (D) and HZy, (D), respectively. The functions
Fi and F; are in Hgy (,1(D) and in Hzly v)(D), respectively, and the coprimeness
conditions (@1, F1)r = Iy, (Q2, F2)L = Iy hold. Here Q, (respectively, Q2) is unique
up to right (resepctively, left) multiplication by a constant unitary operator,

3. K has a meromorphic pseudocontinuation of bounded type on D..

If statement 2 holds, then Q1 H3, (D) = (rangeHk)' and Q2 H7 (D) = (rangeHz)t.

We will call the factorization of K in the theorem the Douglas-Shapiro—Shields
factorization. In fact, this is the generalization due to Fuhrmann [3] of the result on
scalar functions of Douglas, Shapiro, and Shields [1].

By Theorem 2.5, we immediately have the following corollary.

COROLLARY 2.6. In the notation of the theorem with U andY finite-dimensional,
K 1s strictly noncyclic if and only if K is strictly noncyclic. a

From Theorems 2.1, 2.4, 2.5, and Definition 2.1, we see that the state space of a
restricted shift realization of a transfer function G is the orthogonal complement of
an invariant subspace, which is characterized by a rigid function Q. The state propa-
gation operator A is the backward shift S* restricted to the state space (QHZ (D))+,
ie, A= SRQ H2 (D)) which we will denote by S(Q)*. One of the important points in
our context is that the function Q can be determined from the transfer function G, if
G is strictly noncyclic.

For the *-restricted shift realization, the state space can be determined in a sim-
ilar way to the derivation of the restricted shift realization. In this case, the state
propagation operator is the forward shift operator S compressed to the orthogonal
complement of an invariant subspace that is determined by a rigid function Q,, i.e.,
P(Q_Hz D)+ SI(Q.H;‘}(D))JH which we denote by S(Q*)

We summarize these results in the following proposition.

PROPOSITION 2.7. Let G be in TLDV"Y with U and Y finite-dimensional and let
(A,B,C,D) € LDY(’Y be its restricted shift realization and (A., B.,C.,D,) € LD%’_Y
its *-restricted shift realization. Then

1. If G* is cyclic we have that (a) A = S* and X = HZ(D), and (b) A, = S
and X, = HE(D);

2. If G+ is noncyclic, we have that (a) A = S(Q)*, where Q € HZy (D) is a
rigid function such that

X = rangeHg. = (QHE(D))*.
IfGt isin HZ vy (D) and is strictly noncyclic with factorization G+ = Qy(2F1)*,
where Q1 € HE(y,(D) is inner and Fy € HZly 1y(D) such that (Q1, Fi)r = Iy, then

Q = Q1W1 for some unitary operator V; onY, and (b) A, = Px, Six, = S(Q.), where
Q. € Hzly (D) s a rigid function such that

X = ra,ngeHc;u = (Q*H[2J(D))-L
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IfGt isin HZy yvy(D) and is strictly noncyclic and G* has a factorization G+ =
Q2(2F2)*, where Q, € Hz‘zu) (D) is inner and Fp € HZ°U,Y) (D) such that (Q2, F2)r =
Iy, then Q. = Q2V2 for some unitary operator V3 on U.

Proof. The proposition follows from Theorems 2.1, 2.4, 2.5, and Definition 2.1.
0

3. Stability and spectral minimality of input normal and output normal
realizations. In this section, we discuss the stability and questions of spectral mini-
mality of input normal and output normal realizations using the results on restricted
and *-restricted shift realizations studied in §2.

The following definition recalls the notion of an input normal and output normal
system as defined by Moore [7] for finite-dimensional state space realizations. The def-
initions in the infinite-dimensional case are natural extensions of the finite-dimensional
notions (see, e.g., [13)).

DEFINITION 3.1. Let (4, B,C, D) be in LDYY. Then the system is

1. output normalif M =1,

2. input normal if W = I,

3. parbalanced if M =W,

4. balanced if M = W and there is an orthonormal basis of the state space with
respect to which M (and hence W) has a diagonal matrix representation.

From our results on the restricted and the *-restricted shift realization we imme-
diately have examples for input and output normal realizations.

PROPOSITION 3.1. Let G € TLDYY. Then the restricted shift realization is
output normal whereas the *-restricted shift realization is input normal.

Proof. The proof follows from Proposition 2.2 and Theorem 2.4 0

Next, we quote a result that establishes a reachable output-normal realization of
a transfer function is unitarily equivalent to its restricted shift realization

Two systems (A, By,Cy,D;) € D%ly and (Ap, By, Co,D2) € D%’:’ are called
equivalent (unitarily equivalent) if there exists a bounded and boundedly invertible
operator (a unitary operator) V mapping the state space X; onto the state space X3,
such that

(A1, B1,C1,Dy) = (V71A,V,V™1B,,C,V, Dy).

In this case, V is called an equivalence (unitary) transformation.

THEOREM 3.2 (see [13]). Let (A1, B1,C1,D1) € LDYY and (Ag, Bs,C2,D3) €
LD%”Y be two output normal realizations of a transfer function in TLDYY. Then
(A1, B1,Ch1, Dy) and (A2, B2, Ca, D3) are unitarily equivalent.

By a duality argument, we have as a corollary that the same result holds for
input normal realizations; i.e., an input normal realization is unitarily equivalent to
the *-restricted shift realization.

COROLLARY 3.3. Let (A1, B1,C1,D1) € LD and (Az, By,Cs,D2) € LD be
two input normal realizations of a transfer function in TLDY"Y . Then (A, By, Ch, D,)
and (Agz, B2, Cs, D;) are unitarily equivalent.

We now turn to the study of stability. We introduce a classification of contractions
according to their stability properties [12], which will simplify our notation.

DEFINITION 3.2. Let T be a contraction on the Hilbert space H. Then

1. TeCp. iflimy, , (o T"h =0, for all h € H,
2. TeCygiflim, ,oo(T*)"h =0, for all h € H,
3. TeC. iflimy, 0o T*h#0,forall h€ H, h #0,
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4. TeC,y iflimp,oo(T*)"h #0, for all h € H, h # 0.
We further set Cij =Ci. N C.J', t,7=0,1.
Now we define the two notions of stability we will consider in the remainder of
the paper.
DEFINITION 3.3. A discrete time system (4, B,C, D) € Dﬁ’y or the state prop-
agation operator A is called
1. asymptotically stable if for every z € X,

Az -0 as k — oo,

i.e., if A is of class Cy.,
2. power stable if r < 1, where

r := inf{7| there is M; > 0 such that ||A*|| < M7,k > 0}.

The number r is called the degree of power stability.

It is easy to see that stability and observability, as well as reachability properties
of discrete time systems, are preserved under equivalence transformations, whereas
input and output normality are preserved under unitary equivalence. Moreover, two
equivalent power stable systems have the same degree of power stability.

Therefore, by Theorem 3.2 and its corollary, we can establish all stability and
other important results concerning input normal and output normal realizations by
restricting ourselves to *-restricted and restricted shift realizations. Henceforth, when
we prove statements about input normal or output normal reachable and observable
realizations, we must only prove them in the case of restricted or *-restricted realiza-
tion.

From Proposition 2.7, we can see that the study of stability and spectral properties
of the restricted and *-restricted realizations reduces to the study of the operators
S(Q)* and S(Q.), where @ and Q. are rigid functions. We will need the following
lemma (see [8, Cor., p. 43)).

LEMMA 3.4. LetQe H ) (D) be a rigid function. Denote by Px the projection
on X := (QH}(D))L. Then, for f € H (D), limn_oo | PxS™fI|* = | fII2 — Q" FI|2.

The following theorem shows that an output normal realization of a transfer
function in TLDYY is always asymptotically stable.

THEOREM 3.5. Let G € TLDYY and let (A,B,C, D) be an output normal
reachable realization of G. Then

1. A€ Cy; i.e., A is asymptotically stable,
2. A € Cyo if G+ is strictly noncyclic,
3. A€ Cy if G* is cyclic.

Proof. By Proposition 3.1, we can assume without loss of generality that (4,B,C, D)
is the restricted shift realization.

1. The state propagation operator A of the restricted shift realization is the
restriction of the backward shift to a subspace of HZ (D). The backward shift S* is
such that for every zo € HZ (D),

(8*)*zo >0, ask — oo.

This immediately implies statement 1.

2. This follows from Proposition 2.7 and Lemma, 3.4.

3. If G+ is cyclic, then A is the backward shift S* on the space HZ (D), and
therefore A € Cp;. O
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In the case of input normal realizations, the situation is, however, such that we
cannot, in general, expect that the realization is asymptotically stable, since the state
propagation operator of the *-restricted shift realization is the forward shift operator,
compressed to a subspace of H (D). The forward shift on H, 2 (D) is not asymptotically
stable. The following corollary states that, at least for an important class of transfer
functions, input normal realizations are asymptotically stable.

COROLLARY 3.6. Let G € TLDYY and let (A, B,C,D) be an input normal
observable realization of G. Then

1. AeC,y,
2. AeCy if C:r'J' is strictly noncyclic,
3. A€ Cyo if G+ is cyclic.

Proof. Let (A, B,C, D) be the *-restricted realization of G. Recall that by defi-
nition (A4, B,C, D) is the dual system of the restricted shift realization of G. Hence
the result follows by duality from Theorem 3.5 0

We now proceed to power stability. The following result gives a characterization
of power stability (see, e.g., Przyluski [11]).

PROPOSITION 3.7. Let T be a contraction. Then the spectral radius r(T') of T,
i.e.,

r(T) = sup{|A| | A € o(T)},
is given by
r(T) = inf{0 < 7 < 1 | there exists My > 0 such that ||T*|| < Mx7*,k > 0}.

Hence, if T is power-stable, then the degree of power stability equals the spectral radius.
Proof. The proof follows from an application of the well-known formula

sup{]A| | A€ o(T)} = lim [T~ O

To establish whether the output normal and input normal realizations are power-
stable, it is therefore important to determine the spectral radius of its state prop-
agation operator. To this end, we must introduce Cp contractions, which play an
important role in the theory of contractive operators. Cp contractions are defined
via the H*® calculus for contractions and are a special class of completely nonunitary
contractions (see [12]). Specifically, a contraction T on a Hilbert space H is completely
nonunitary if there is no subspace V C H such that TV =V and T'|y is unitary. For
such T', the operator u(T) := lim r<i u(rT) is a well-defined bounded operator for any

u € H*™ and satisfies ||u(T)|| < ||u|| g In particular, u(T) is a contraction if u is an
inner function.

A completely nonunitary contraction is a Cg contraction if there exists an inner
function m such that m(T") = 0. The least common divisor of all such inner functions
is called the minimal function mr of T. For the minimal function mz, we also have
that mp(T) = 0. Therefore the minimal function of a Co contraction can be seen to
be a generalization of the minimal polynomials for matrices.

As in the case of matrices, the spectrum of Cj operators is given by the “zeros”
of the minimal function in the following sense. We define the spectrum o(Q) of an
inner function Q € Hg{y,(D) to be

(134 tvll=1
60 |E~-A|<8 yEY

a(Q)={Aeﬁ| bm inf inf Q@) = }
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Then we have the following proposition (see [8, p. 75]),
PRroPOSITION 3.8. If T is a Cy operator, then

U(T) =a(mr) and 0p(T) =oc(mr)ND.

Now we use these results to analyze the spectrum of the operators S(Q) and
S(Q)*. First the following proposition [8, p. 73] shows when S (Q) is a Cyp contraction.

ProposITION 3.9. If dim(U) < oo and Q € Hzyy, (D) is a rigid function, then
the determinant d = det(Q) is such that d(S(Q)) = 0. Therefore, when Q is an inner
function and U has finite dimension, the operator §(Q) is a Co contraction.

In fact, $(Q) and S(Q)* are both Co contractions when Q is inner and U is finite
dimensional, as shown by the following result (see [3, Thm, 13.2, p. 191] or 8, p. 75]).

PROPOSITION 3.10. For a given inner function Q € HZ‘EU) (D), the operators
S(Q) and S(Q)* are unitarily equivalent.

More precisely, S(Q) = 74 18(Q)*rq, where the unitary operator Tq is given by

TQ: L% (8D) — L%]((?D)
f - e 1QJf.

One of the important results in the theory of the backward shift operator S(Q)*
restricted to an invariant subspace is that its spectrum can be completely characterized
by the associated inner function Q. Note that, if o is a set of complex numbers, then
o* is used to denote the set of the complex conjugates of the elements in o.

THEOREM 3.11 (see [8, p. 75]). The following statements hold:

1. (a) Let S* be the backward shift on H3 (D). Then

o8 =D, op(S") =D,
(b) Let S be the forward shift on Hy (D). Then
o(S) =D, 0,(S) =0;

2. Let Q be an inner function in HP (D) with Y finite dimensional. Then

(a)
a(S(Q)") = 0(Q)" = o(ms(q)),

7p(S(Q)") = o(S(Q)*) ND = {X € D| KerQ(3)" # {0}},
(b)
0(S(Q)) = 0(Q) = o(ms(Q))

0p(5(Q)) = a(S(Q)) ND = {A € D| KerQ(}) # {0}}-

The next result shows that we must only be concerned with inner functions if we
are interested in the case when the spectral radius of the restricted backward shift is
less than 1 (see [3, p. 194]).

THEOREM 3.12. Let U be finite-dimensional and Q a rigid function that is not
inner. Then op(S(Q)*) is equal to the open unit disk D.
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In terms of the restricted and *-restricted shift realizations, Theorems 3.11 and
3.12 can be translated into the following result.

PROPOSITION 3.13. Let (A, B, C, D) and (A, Bs,C., Dy) be, respectively, the
restricted and *-restricted shift realizations of a transfer function G € TLDYY where
U and Y have finite dimensions.

1. If G* is cyclic, then 0(A) =D, 0,(A) = D and 0(A.) =D, and 0,(A) = 0.

2. If G is noncyclic but not strictly noncyclic, then o(A) = D, o(A.) =D.

3. IfGt is in HZy vy (D) and is strictly noncyclic with factorization G+ =
Q1(zF)* and G+ = Q2(2F2)*, where Q1 € Hz‘zy)(D) and Q3 € HE?U) (D) are inner,
and where Q; and F, € HZ‘(’Y,U)(]D) are right weakly coprime, and Q2 and F, €
HZw v (D) are also right weakly coprime, then

o(A) =0o(Q1)" = a(ma),

op(4) = a(Q1)* ND = {X € D| KerQ:1())* # {0}}
and

o(A,) = 0(Q2) = a(ma,),

0p(A2) = 0(Q2) ND = {A € D| KerQz(}) # {0}}.

Proof. The proposition follows from Theorems 3.11 and 3.12 and Propo-
sition 2.7. 1]

A very important property of finite-dimensional systems is that the eigenvalues
of the state propagation matrix correspond exactly to the poles of the transfer func-
tion. For infinite-dimensional systems, it is desirable to have the analogous property.
This was shown to be true for strictly noncyclic transfer functions by Fuhrmann ([3,
Chap. III]).

DEFINITION 3.4. Let G € TLDYY be such that G+ has a meromorphic pseudo-
continuation of bounded type on D.. Then we extend the definition of G onto D,
to be this unique meromorphic pseudocontinuation and hence define G on . The
set 0,(G) is defined to be the set of points z such that the extended G cannot be
analytically continued to z.

A realization (4, B,C, D) € LD%’Y of G is said to be spectrally minimal if 0(A) =
0s(G).

We note that a more general definition of spectral minimality can be made for
a larger class of transfer functions (see [3]). However, the definition suffices for our
discussion here. It turns out that, if G € TLDY'Y is strictly noncyclic, then both the
restricted and *-restricted shift realizations are spectrally minimal.

THEOREM 3.14. Let G be in TLDY-Y, where U and Y have finite dimensions. If
G* is in HYy, (D) and is strictly noncyclic, then

1. Every output normal realization (A, B, C, D) is spectrally minimal, i.e.,

a(4) = 0,(G),

2. Every input normal realization (A., B,,Cy, D.) is spectrally minimal.
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Proof. 1. See, [3, Thm. 4.11, p. 267] for the case of the restricted shift realization.

2. Without loss of generality, we assume (A, B,C, D) is the *-restricted shift
realization of G.

Recall from Corollary 2.6 that G is strictly noncyclic if and only if G is strictly
noncyclic. By statement 1 and the construction of the *-restricted shift realization,
we have that o(A2) = 0,(G). Since

05(G) = (0,(G))” = 7(A)" = o(A.),

we have the spectral minimality of the *-restricted shift realization. o

We now show that an input normal or output normal system is power-stable if
and only if it is finite-dimensional.

THEOREM 3.15. Let G be in TLDYY such that Gt € HZyy)(D) and let U
and Y be finite-dimensional. Then an output normal (respectively, input normal)
realization of G is power-stable if and only if G is rational.

Proof. Let G be rational. Since G* € HZ‘(’U,),)(D), there is a number 0 < 7 < 1

such that the poles of G are contained in the set {\ : |A| < r}. Being rational, G+
has a meromorphic pseudocontinuation of bounded type and hence by Theorem 2.5
is strictly noncyclic. Theorem 3.14 then implies that the propagation operator of any
output normal (respectively, input normal) realization of G has spectral radius less
than 1. Now Proposition 3.7 shows that it is power-stable.

Conversely, assume that an output normal realization of G is power stable. Then
the restricted shift realization is power stable. Let A be its propagation operator. We
have by Proposition 3.7 that r(A), the spectral radius of A, is less than 1. By Propo-
sition 3.13, this implies that G is strictly noncyclic. Then, by Theorem 3.14, any
output normal realization of G is spectrally minimal, and hence G can be analytically
continued across D. Being strictly noncyclic, G+ has a meromorphic pseudocon-
tinuation on D, and thus G has a meromorphic pseudocontinuation on D. Since
a meromorphic pseudocontinuation is unique, the pseudocontinuation is an analytic
continuation. Thus G is a meromorphic function on the extended complex plane.
Hence it is rational.

If an input normal realization is assumed to be power-stable, a similar argument
will also show that G is rational. 0

4. Balanced realizations. This section is devoted to the study of the stability
properties of balanced realizations with infinite-dimensional state space.

Balanced realizations of finite-dimensional systems have played an important role
in model reduction and Hankel norm approximation of linear systems [7], [4]. In finite
dimensions, it is straightforward to construct a balanced realization from input normal
or output normal realizations. In infinite dimensions, it is not trivial to guarantee that
this can be done, since the state space transformation that is involved, in general, has
an unbounded inverse. That this is nevertheless possible was shown by Young [13].
Note that, in the following theorem, the subscripts o and i signify output normal and
input normal realizations, respectively.

THEOREM 4.1. Let G € TLDYY. Let (Ao, Bo,Co,D,) be the restricted shift
realization of G with state space X, = TangeHg. and let (A;, By, Cy, D;) be the *-
restricted realization with state space X; = rangeHs, . Set

W, = Hg.LHE;_L IX,, M; = HC.,‘J-HE','J.IXP
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1. There erist parbalanced realizations (Apy, Bp1,Ch1, Dp1) € ng(’oy and (Ap2,
By, Ch2, Dy2) € DY of G that satisfy

Wg/4Ab1 = Ao 3/4’ 3/4Bb1 = Bo,

Cn  =CW,*, Dw =D,
and

Apg M} =M.}/4Ai, By =M:/4Bi,

Cb2M:/4 =Cj, Dy2 =D;.

2. All parbalanced realizations of G are unitarily equivalent.

3. If G € TLDYY is continuous on OD with values in the set of compact oper-
ators, then there exists a balanced realization whose state space is equal to the closure
of the range of the Hankel operator with symbol G1. The gramian has a matriz repre-
sentation with respect to a basis such that its diagonal entries are the singular values
of the Hankel operator with symbol G+.

Proof. Statements 2 and 3 and the existence of the first parbalanced realization
of statement 1 can be found in [13]. The second realization of statement 1 can be
obtained by taking the dual of the parbalanced realization of G constructed by the
method of the first realization. 0

We have the following proposition concerning the transformation from the re-
stricted (*-restricted) shift realization to the parbalanced realization in Theorem 4.1.

PROPOSITION 4.2. In the notation of Theorem 4.1, the operators W32 and W,}/ 4
are bounded positive definite with dense ranges in X,; the operators .M,1 /% and M,1 /4
are bounded positive definite with dense ranges in X;.

Proof. Clearly, W, is a bounded positive definite operator on X,. Similarly, M;
is a positive definite operator on X;. Since

WA(W,/%)* = Hg  Hg,

and Hg. HE,, X, is dense in X, 3/2 has dense range in X,. Hence so does 3/4.

Similarly, /\/l,1 /2 and .M,1 /4 also have dense ranges. ]
Combining Theorem 4.1 and Proposition 4.2, we have, in the terminology of [12],
that Ap; is a quasi-affine transform of A, and A; a quasi-affine transform of Apy.
Theorem 4.1 has some by-products that may be of interest in their own right.
First, since two parbalanced realizations are unitarily equivalent, their state spaces
must be unitarily equivalent.
COROLLARY 4.3. The spaces Hg. (H?) and Hgo (HZ) are unitarily equivalent,
with a unitary transformation given by

V =W;Y4Hg  M{Y* . Hgi (HZ) — Hg. (HZ).

Before stating the second consequence of Theorem 4.1, we quote from [3, p. 248]
the following result regarding the closedness of the range of a Hankel operator.
PROPOSITION 4.4. Let K € Hyy; (D) withU and Y finite-dimensional. Then

Hy (HE(D)) is closed in HE (D) if and only if there are functions Q € HZy (D),
F e HZ‘(’Y,U)(]DJ), P e Hz‘zy)(ID), and P, € HE‘EU,Y)(ID) such that, for almost all
z € 8D,

K(2) = Q(2)(2F(2))*, P, (2)Q(2) + Pa(2)F(2) = Iy
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and Q is inner. Note that the last equality means that Q and F are strongly right
coprime [3].

We have the following characterization of when the state space transformation in
Theorem 4.1 that maps an input normal (respectively, output normal) realization to
a (par-) balanced realization is an equivalence transformation.

PROPOSITION 4.5. Let G € TLDY'Y. A parbalanced realization is equivalent to
an output normal (or input normal) realization if and only if Hg. has closed range.

Proof. If Hp. has closed range, then W, in Theorem 4.1 has bounded inverse
and W, /4 is an equivalence transformation from the restricted shift realization to a
parbalanced realization.

Conversely, if T is an equivalence transformation from a parbalanced realization
to the restricted shift realization, then it will follow that TT*TT* = W,. Hence W,
has bounded inverse. Since W, = HgiH,, Hg: must have closed range. Note
that Hg: has closed range if and only if Hs. has closed range. This completes
the proof. |

In fact, the state space isomorphism theorem holds when Hg. has closed range.

COROLLARY 4.6. Let G € TLDYY. Then all reachable and observable realiza-
tions of G are equivalent if and only if Hgy has closed range.

Proof. If all reachable and observable realizations of G are equivalent, then, in
particular, the output normal and the parbalanced realizations are equivalent. By
Proposition 4.5, Hg. has closed range.

Conversely, assume that Hg. has closed range. Let (A,B,C,D) € LD%’Y be a
reachable and observable realization of G with state space X. We show that it is
equivalent to an output normal realization. Then, by Theorem 3.2, this shows that
all reachable and observable realizations of G are equivalent.

Let @ and R be, respectively, the observability and reachability operators of (A,
B, C, D). 1t is easily verified that Hg. = OR : HZ(D) — H}(D) (see the beginning
of § 2). Hence OR(HZ(D)) is closed in HZ(D). By reachability, R(HZ (D)) C X is
dense in X. Thus

O(X) C OR(HE(D)) = OR(H} (D)) € O(X).

It follows that O(X) = OR(HZ (D)), and hence O(X) is closed in H (D). Since
by observability O is injective, the operator O : X — O(X) has bounded inverse.
Consequently, the operator O*O : X — X has bounded inverse on X. Now let
V = (0*0)~1/2, then V is bounded and is boundedly invertible. It is routine to
verify that the realization (V' AV, V1B, CV, D), which is equivalent to (4, B, C, D),
is output normal. 8]

The main result in this section is that all parbalanced realizations are asymptot-
ically stable. We need two lemmas in the proof.

LEMMA 4.7 (see [3, p. 124]). Let A: Hy — H and B : Hy, — H be two linear
operators from Hilbert spaces Hy and Ha, respectively, into a Hilbert space H. Then
AA* < BB* if and only if there exists a contraction V : Hy — Hj such that A= BV.
Moreover, AA* = BB* if and only if V is a partial isometry with final space equal to
range(B").

LEMMA 4.8. Let G € TLDYY. Let (A,B,C,D) be a realization of G and let
(A*,C*,B*,D*) be its dual system. Then (A,B,C, D) is a parbalanced realization of
G if and only if (A*,C*, B*, D*) is a parbalanced realization of G.

THEOREM 4.9. Let G € TLDYY and let (A, By, Cy, Dp) be a parbalanced real-
ization of G. Then Ay € Cop.
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Proof. Here we use the notation and result of Theorem 4.1 and first prove that
Ay, is asymptotically stable. Note that A3 = Px,S|x, and X; C ker(Hp,). It is
easy to verify that

HgiA; = Hg, S|x, = §*|x, Hg.|x, = AcHg.|x,-
Hence we have

(AW,oAjx, x) = (A HgLH . Az, )
= (HgL Ay, HE L Ajz)
= (Aonp-'L', AoHaJ.x>
<(Hg.z, H;. x)
= (Woz, ),

ie., A,W,A% < W,. Thus by Lemma 4.7 there exists a contraction V on X, such
that

AW = Wiizy,
and hence for any positive integer n
AZWI2 = W12y,

Let z be any element in W;/ 2X,,, ie,r= w,}/ 2, for some z € X. Then the element

y= Wi/*z € X, is such that y=W, 1/4%. The above equality applied to y yields

AW A = W2y,

Since the right-hand side of the last equality is in Wy / ’X,, the operator W, /4 can
be applied to both sides to lead to

Wy V4 ATW 4 = Wi/tyny,

Now, noting that W/* is selfadjoint and, from Theorem 4.1, Afz = W, Y 4A:,'W3/ ‘z,
we have that

1ARzl® = (A=, Ap)
= (W, VA AT W A, Wy VA AT W Az
— —1/4 gnyayl/4 1/4yn
- (Wo Aowo ‘T’wo v y)
= WAW A ARW 4z, Vmy)
= (AW, 4z, V™)

-0

as A}z — 0 for any z and ||[V"y|| < |ly||-

We thus have proved || A}, z|| — 0 for any z € 2/2X,. Let z € X, and € > 0.
Since WA/2X,, is dense in X,, there exists £ € Wy/2X, such that |z — z|| < e/2.
Choosing N such that |A},z|| < €¢/2 whenever n > N and using the fact that Ay, is
a contraction, we obtain, for n > N

48121l < 1451 (z — 2)]| + | A5y 2zl < AR llllz — zll +€/2 < /2 +€/2 =
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This shows that A, is asymptotically stable. Since, by statement 2 of Theo-
rem 4.1, all observable and reachable parbalanced realizations are unitarily equivalent,
Ay must be asymptotically stable. Hence any parbalanced realization of any transfer
function in TLDYY is asymptotically stable. Since by Lemma 4.8 (A}, Cy, By, Dy)
is a parbalanced realization of the transfer function G € TLDY'Y, we can apply this
statement to (A4;,Cy, B, D) to get the asymptotic stability of A;. Therefore we
have proved that A, € Cyo. O

We discuss the spectral properties of a parbalanced realization and relate these
properties to the characterization of power-stability of parbalanced realizations.

PRrOPOSITION 4.10. Let (A, By, Cy, Dy), (Ai, Bi,Ci, D;), and (Ao, Bo, Co, D,)
be, respectively, a parbalanced, an input normal and an output normal realization of
G € TLDYY with U and Y finite-dimensional. If G+ is in HE‘ZU,Y) and is strictly
noncyclic, then Ay, A;, A, are all Cy operators. Moreover, they have the same minimal
function.

Proof. By Theorem 3.5, Corollary 3.6, and Theorem 4.9, the assumption in the
proposition implies that A;, 4,, and A, are all in Cgo. Hence they are all completely
nonunitary (see [12] or [8]). Furthermore, as noted after Proposition 4.2, A is a
quasi-affine transform of 4, and A; a quasi-affine transform of A. The result now
follows from Proposition 3.13 and [12, Prop. 4.6, p. 125], which shows the following:
For two completely nonunitary operators A and B on a Hilbert space H, if there is a
bounded injective operator C on H with dense range in H such that AC = CB (i.e.,
B is a quasi-affine transform of A), then A is a Cp operator if and only if B is, and
in this case they both have the same minimal function. 0

For the spectrum of the state propagation operators, we obtain the following
result.

COROLLARY 4.11. Under the assumption of Proposition 4.10, we have

o(Ap) = 0(Ai) = 0(A,) and 0p(Ap) = 0p(Ai) = 0p(As).

Proof. The proof is an immediate consequence of Propositions 4.10 and 3.8. a

For the question of the spectral minimality, we have the same result as for input
normal and output normal realizations in the case of finite-dimensional U and Y.

COROLLARY 4.12. Under the assumption of Proposition 4.10, the systems (A,
By, Gy, Cy), (Aiy B;, Ci, D;), and (A,, Bo,C,, D,) are spectrally minimal, i.e.,

05(G) = 0(Ap) = 0(A;) = 0(A,).

Proof. Combining Theorems 3.14 with 3.2, we have that
0:(G) = 0(A;i) = 0(4A,).

Corollary 4.11 now implies the result. o

The criteria for power-stability are also identical to those in the input normal and
output normal case if G* is strictly noncyclic.

COROLLARY 4.13. Let (A3, By, Cs, D) be a parbalanced realization of G € TLDYY
with U and Y finite-dimensional. Assume that Gt is in HZly v (D) and is strictly
noncyclic. Then Ay is power-stable if and only if G is rational.

Proof. The proof follows from Corollary 4.11 and Theorem 3.15. o

This corollary shows that a parbalanced realization of G € TLDYY, with G+
nonrational and strictly noncyclic, cannot be power-stable. When G+ is not strictly
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noncyclic the situation is complicated. Here we give an example of a power-stable
parbalanced realization of a cyclic function with I, as its state space.

Ezample. Let S and S* be the right and left shifts on the space l;. Let A =
$(I+8+8*). Clearly, ||A] < £. Define B: C — I, as

B(A)=(Aa0,01"')T1 AeC
and C:l, - Cas
Clar)ez1 =21,  (Tk)kx1 € Lo

We take D to be zero. We have ||B|| = 1 and ||C|| = 1. Now consider e; = (6;;);>1,
where §;; is the Kronecker delta. Then {e;};>; forms a basis of I;. With respect to
this basis, we have the following matrix representations of A, B, and C:

0

=
-0 O
-0 O O

, and C=[1 00 0 -]

Y| s
T OO e
* O bk i

o

]
OO O =

We show that (A, B,C, D) is an observable and reachable system. Let @ and R be,
respectively, the observability and reachability operators. For = (zx)ik>0 € 12, we
have

102(? = (CA* z)ez02*|* = Y ICA*|” < D IIAIP* |l=)1® < Y (2)* ||zl

k>0 k>0 k>0

Hence O is bounded. Let z = (zx)k>0 € I? be such that Ox = 0, i.e., CA*z = 0
for k = 0,1,-.-. Then it follows that £; = CA% = 0, and hence zo = 0 because
0 = CAz = (z1 + z2)/5, and so on. So we have x = 0. This shows that the
system is observable. Note that R = (O*. Hence the system is reachable. It is
obviously parbalanced. Also, the transfer function g(z) = C(2I — A)™1B is such that
gt € H* due to the fact that ]| A|| < 1. Since this is a power-stable realization, by
Corollary 4.13, g must be cyclic. Thus there exists a cyclic transfer function that has
power-stable parbalanced realizations.

5. Concluding remarks. We have shown the asymptotic stability of parbalanced
realizations and have given conditions for an input normal or output normal realization
to be asymptotically stable. An input normal or output normal realization cannot be
power-stable unless the transfer function is rational. This is also true for parbalanced
realizations when the transfer functions are assumed to be strictly noncyclic. If the
transfer function is cyclic, the problem of finding a full characterization for power
stability of parbalanced realizations remains open.

Concluding the paper, we point out that the results here can be translated to
continuous-time systems by the bilinear mapping defined in [10]. However, to use that
mapping, we restrict the discrete-time transfer functions to be admissible. A function
G is said to be an admissible discrete-time transfer function if G is in TLDY"Y and
the limit
G(\)

A<~1, A—=—1
AER
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exists in the norm topology. Correspondingly, the discrete-time linear systems (A, B,
C, D) must be admissible, also; that is, in addition to A being contractive, B, C, and
D being bounded, the limit

im C(\ +A)"'B
A—1, A>1
AER

must exist in the norm topology and —1 ¢ o,(A). It can be easily verified that the
restricted and *-restricted shift realizations of admissible transfer functions are ad-
missible systems. Moreover, the dual system of an admissible system is admissible,
and any reachable and observable parbalanced realization of an admissible transfer
function is an admissible system. Since the class of admissible transfer functions (lin-
ear systems) is smaller than the class of transfer functions (linear systems) considered
in this paper, all the results of this paper are also valid for the smaller class.
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