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ABSTRACT

Connections are established between Hankel-norm approximation, the problem of
finding approximating subspaces in the Hilbert space #,, and stability and instability
of control systems.

1. INTRODUCTION

Over the years it has become more and more evident that operator theory
can be of great help in analyzing linear dynamical systems and in particular
control systems (see e.g. [6]. This paper aims at establishing further connec-
tions between control theory and the theory of Hankel operators. We were
motivated to do this work by results that interpreted robustness properties of
control systems from the point of view of the geometry between the graph
spaces of the plant and the controller (see e.g. [13, 1]. Let

x = Ax + Bu, x(0) = x,,
y =Cx + Du

be a finite-dimensional linear continuous-time system, which we do not
necessarily assume to be stable. By taking the Laplace transform and assum-
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ing xy = 0, we obtain the transfer function G(s) = C(sI — A)"'B + D,
which is a matrix-valued proper rational function (see e.g. [10]). In the
transform domain the linear system can be seen as acting as a multiplication
operator on the Hardy space /#,, which can be interpreted as the space of
Laplace transforms of the space L2([0, ]). Since we are dealing with multi-
variable systems, these are spaces of vector-valued functions. For conve-
nience of notation we will however often drop the corresponding indices.
With the transfer function G we will associate the graph £(G) of the
multiplication operator with symbol G, i.e. the graph of the operator M: %,
—#,; f = Gf. Clearly, if the system is not stable and therefore G has poles
in the closed right half plane, then M. will not be defined on the whole of
Z,.

In order to obtain a workable representation of the graph of M we need
to introduce coprime factorizations (see e.g. [15]). The factonzatlon G=
NM™! (G = M™'N) is a right (left) coprime factorization of G if N, M €
R¥.,, (N, M € #Z,), the space of proper real rational functions with poles
only in the open left half plane, and N, M (N, M) are right (left) coprime,
ie. there exit X,Y € ##, (X,Y € #F,) such that —XN + YM = I
(—NX + MY =1I). The factorization is called normalized if moreover N*N

+ M*M = I (NN* + MM* = I). Given a right coprime factorization G =
NM™, the graph of M can be characterized as

2(G) = [Z]%.

In what follows we will make much use of the following geometric notions
in a Hilbert space H (see e.g. [8,12,16)]). In our case the Hilbert space H
will be the space #, X #,. Let A, B C H be two closed subspaces; then it is
possible to define the minimal angle and the gap between these two spaces as
follows:

6. (A, B) = - Ku,0)|
COS min , su
e ‘.?EB Tl loll”

gap( A, B) =P, — Pyl
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where P, denotes the orthogonal projection onto the closed subspace C.
Alternatively the sine of the minimal angle can be defined by

sin omm(A, B) = ”PA"B"—l:

where the skew projection P,y is defined by P, 5:A + B > A, u + v > u,

u € A, v € B. The skew projection is well deﬁned on the Hilbert space H if

H=A+ B and A N B = J. The skew projection is bounded if and only if
0..CA, B) > 0. The following relationships hold:

cos 6,,.( A, B) = ||P,Pgll = IPgP,ll = sup dist(u, A*),
u€B, llull=1

where dist(u, A*) = inf, . ,:|lu — vll. The gap between two spaces can be
characterized as follows:

gap( A, B) = max{|B,Py. . 2, Byl

max{cos 6,;,( A, B*),cos 6,,,( B, A*)}

= max{ sup  dist(u, B), sup dist(v, A)}

u€A, |lull=1 v€B, [oll=1

If gap(A, B) < 1 then [|P, Pg.|| = ||P,. Pgll.

The central issue in the area of control theory is the stabilization of
unstable systems by a controller K. With a controller K we associate the
so-called transposed graph £7(K) of the controller, ie., if K=UV™! isa
right coprime factorization of K, then

g7(K) = [Z}ZZ

In [13] the following equivalent conditions were proved for a controller K to
stabilize the plant G.

THEOREM 1.1. Let G = NM ™ = M~'N be a right (left) coprime fac-
torization of a p X m plant G, and let K = UV™! = V"1U be a right (left)
coprime factorization of a controller K. Then the following statements are
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equivalent:

(S0) the control system (G, K) is internally stable, i.e.

(IK
G I

) € AX ,,

(S1) the function —NU + MV is invertible in BH,,,
(S2) the function — UN + VM is invertible in B%,,,
(S3) 2(G) + &7 (K) =75,

(S4) Pgr gy &(G) = [ET(RN-,

(5) B (FON* . [E7(R) > 0,

(S6) gap(£(G),[£T(K)]*) < 1.

Conditions (S1) and (S2) are the classical conditions for internal stability
of a control system (see e.g. [15]). A substantial part of this paper will be
devoted to an extension of these results to the case when the control system
has a certain number of unstable poles.

In [13] it was argued that 6, ([Z(G)]*,[£T(K)]*) is a good indicator
for how far away a control system is from instability. When designing a
controller for a given plant G it therefore appears natural to try to find the

controller that maximizes this angle, i.e. to find a controller K, such that

sup  6,([2(A)]* . [#7(K)]*)

K proper rational

Omal [2(O)]* [T (R)] )

sup  6,(£(G), £T(K)).
K stabilizing

It was shown in [13, Section 6] that such a controller does exist and that it in
fact coincides with the optimally robust controller with respect to normalized
coprime factor uncertainty as studied in [11]. This controller is characterized
through the solution of the following Nehari extension problem: K, = UV, %,
where

M* Vo
—N*

Up

U, VEQZ

Al
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Hp M*

M

_N*

Theorem 1.1 gives characterizations of stability in terms of the graph of
the system and the transposed graph of the controller. It has been shown [13]
that internal stability is equivalent to the minimal angle between the orthogo-
nal complement of the graph associated with the system and the orthogonal
complement of the transposed graph associated with the controller being
greater than zero. Therefore, if the system is unstable, there exists an
intersection between these subspaces. One of the aims of this paper is to
characterize the intersection between these two subspaces. As this subspace is
orthogonal to both the graph space associated with the system and the
transposed graph space associated with the controller, the closed-loop system
behaves as a stable system on this span of these graph spaces. This characteri-
zation enables most of the stability conditions in Theorem 1.1 to be general-
ized to unstable closed-loop systems with a finite number of poles in the open
right half plane. Also, the angles between these subspaces can be calculated
from expressions that involve the normalized coprime factors of the plant and
the controller. Finally, one further condition for closed-loop stability in terms
of the index of a Fredholm operator is briefly explored.

The notation used throughout this paper is standard in the control
literature [6]. For a matrix M € RP*™ or @P*™ MT denotes its transpose,
M* its conjugate transpose, 0, (M) its maximum singular value, o; its ith
singular value, and o,,;,(M) its minimum singular value.

The Hardy spaces # 5 and (#5)* consist of all p-vector-valued func-
tions f square-integrable on the imaginary axis with analytic continuations f,
and f, into the right and the left plane, respectively, such that
sup,.» o [ZLllf,(x + I dy < ® and sup, o JZLlfi(x + il dy < .
The Hilbert space .Zf is given by &f =# % @ (#})*, and the orthogonal
projections P, and P_ map .Zf onto #§ and (#})* respectively. The
norm of a function f € #?% is denoted [|fll;. The Hardy space # 5™
consists of all p X m essentially bounded measurable functions f on the
imaginary axis with analytic continuation f in the right half plane such that
sup, < rup L f()ll < . It is a subspace of ZP*™ of all p X m bounded
measurable functions on the imaginary axis. The %, norm is defined by
IGll = esssup,, c g Opal Gli )], The essential minimum on the imaginary
axis is defined by 7(G) == essinf, c ¢ 0, [G(iw)]. For a system G, G*
denotes its complex conjugate transposed, i.e. G(s)* = G(—5) . The space
R# % denotes the subspace of # 5 containing the real rational functions;
similar definitions apply to the other spaces. By #,, ; is meant the subset of
%, consisting of functions that can be written as the sum of a function in #,

. 1 is the Hankel operator with symbol

where G = M™!N is a normalized left coTrime factorization of G, and
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plus a proper rational function that has at most k poles in the open right half
plane. %, denotes the set of rational square inner functions in #, of
McMillan degree at most n.

The domain and range of an operator Z are denoted by 2(Z) and %(Z)
respectively. The orthogonal projection operator onto a closed space & of
Z{ is denoted by P,. Given a p X m symbol G, the multiplication operator
Mg: 2(M) »# 5 is defined by f — Gf. If G € £P*™, then the Laurent
operator Lg: 27" —.%f, the Hankel operator Ho:.# 5 — (#5)*, and the
Toeplitz operator Tg:# 5 — # % with symbol G are defined by f— Gf,
J = Py Gf, and f > By g Gf respectively.

2. GRAPHS OF LINEAR SYSTEMS AND‘INSTABILITY

The first definition generalizes the usual definition of internal stability
(see e.g. [15)) to include closed-loop systems with a finite number of poles in
the open right half plane.

DEFINITION 2.1. Given a p X m system and an m X p controller with
transfer functions G and K respectively, then the pair (G, K) is called
unstable to order k, k =0,1,..., if

- -1 -1
[I G] ! - (I - GK) —(I - GK) G c Ug’%gn:p)‘x(m+p).
K I -K(I-GK)™" (I1-KG)™! ’

It is evident that a pair (G, K) is unstable to order k only if it is also
unstable to order k — 1, and that a pair (G, K) is unstable to order zero if it
is internally stable (see e.g. [15]).

It is noted that the set A%, ; is not a linear space. However, the
following statements hold for any transfer function Z € Z.%, rand Z &
R ok ULERH o, and U+ ZE RH¥, fora.nyUEQZ’)?’ of appro-
pnate dimensions, and also UZ ERH o ;-1 if Uisaunit, ie. Ue€ AF, and
Ul e #%7,.

The following result is a generalization of well-known stability criteria (see
e.g. [15D.

PROPOSITION 2.2.  Suppose the p X m transfer function G has a r.c.f.
(N, M) and a l.c.f. (N, M), and the m X p transfer function K has a r.c.f.
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(U, V) and a l.c.f. (U, V). Then the following statements are equivalent:

(UO) The pair (G, K) is unstable to order k.
(U1) There exists a right inner-outer factorization,

MV — NU = 65,

where ® € RH P is an inner function of McMillan degree less than or
equal to k and S, € FH VP is a unit. The factors are unique up to right and
a left multiplication, respectively by a constant unitary matrix.

(U2) There exists a right inner-outer factorization

VM — UN = 0S,),

where ® € BX 7™ is an inner function of McMillan degree less than or
equal to k and S, € ¥ =™ is a unit. The factors are unique up to right
and a left multiplication, respectively, by a constant unitary matrix.

Proof. First note that by using the coprime factorizations of G and K
we obtain

P (1-¢K)”  —(-cK)a
K I ~K(I-GK)™' I1+K(I-GK)'G

- [8 (I’] + [_VU](MV— Nu) [ -N]

We now show that (U0) implies (U1). If the pair (G, K) is unstable to order
k, this implies by the above equation that [VT —UTTF(MV -— NU)" M
—Nl€ %%, . As (N, M) and (U, V) are left and right coprime, respec-
t1vely, there exist X, X Y, Y € AX¥, of appropriate d1mens1ons such that
MY — NX = I and YV — XU = I. Hence

[¥ x]([ll< ?]hl [g ?])[ ]—(MV NU)” egw;,k.

As (MV - NU) Ve R, & and(MV NU) € X, the function MV —
NU has an inner-outer factorization MV — NU = @S, such that §; is a unit
in ##, and © has McMillan degree less than or equal than k (see e.g.
[3,9, 2D. Such a factorization is unique up to right respectively left multiplica-
tion by a constant unitary matrix.
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To show that (U1) implies (U0), note that the factorization in (U1) implies
that (MV — NU)™! € %%, ; which implies by the above equation that

I GI7'_Jo o V /0 el .
[« 5] [0 2]+ [ ooty -5 "0 -l
e Q;Yg":”)x("”'p)_

The equivalence of (U0) and (U2) is proved entirely analogously. [

One of the aims of this section is to interpret the previous result from a
geometric point of view by considering the graph of the plant and the graph
of the controller. Before the main results of this section are stated, the
following technical results are proved.

LEMMA 2.3. Let & be a closed subspace of a Hilbert space #. If Z is an
invertible operator on ¥, then the space ¥ can be decomposed as

D) #=Z() & (Z*) 1(rt),
Q@ #=o+(Z*Z) Y (¥"),
Q) #=(Z*ZX¥) + 4+ .

Proof. (1): As Z is an invertible operator on %, the space Z(&) is
closed. Now note that # ©Z(¥) = [#(Z|,)]* = Ker(P,Z*|y) =
(Z*)~'a* . This therefore implies the first identity.

(2) and (3) follow immediately from the first decomposition on multiply-
ing these expressions by Z~! and Z* respectively. [ |

For compactness of notation the operator Z; will be defined. Given a
p X m transfer function G with normalized Le.f. (N, M), the operator Z; is

T T T

It has been shown in [18] that this is a positive boundedly invertible operator.
It therefore has a positive square root, denoted by ZY/%, i.e. ZY/*ZY/? = Z
(see e.g. [16]). In [18] it was also shown that

“fy

Mj*]) = [?(G)]l
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In the following lemma this orthogonal complement is further decomposed.
For ease of presentation we introduce the following notation for subspaces of
this orthogonal complement. For a p X p inner function ®and G = M™'N
is a normalized left coprime factorization of G, set

1(G,0) —T[ ]zcl(w £).

_N*

F(G,0) = T[ e ](,7;’ e 67%).

We also need a similar notation that will be used to decompose the orthogo-
nal complements of transposed graphs. For a m X m inner function © and
K = V10 a normalized left coprime factorization of K, set

I'(K,©) —T[ ]zK (exry),

FT(K,®) = T[_U-
v*

*](Z"; o @2"2")

LEMMA 2.4. Given a p X m transfer functzon G, with normalized left
coprime factorization (N, M), then the space ¥, X # 3 can be decomposed
as

#'" = 2(G) ® I(G,0) @ F(G,0)

for any inner function ® € BH,. Further, the orthogonal projection opera-
tor onto the closed subspace I(G, ®) can be written as

Pl(c,é) =T
~N*

- _ -1 -
e ]ZGITé[Té*ZGITé] TerZ& Ty _5]-

Proof. By the remark preceding the statement of the lemma and the fact
that Z, is boundedly invertible, we have that

U m=2(G) @ T[ A+ ]251/2(,7’2').
~N*



1090 J. A. SEFTON AND R. J. OBER

The orthogonal complement of the graph space of the system G can now be
further decomposed as

T[ . ]Zal/2(2"’2’) = T[ M:,*]zal/zlzgl/z((i)zg)]

+T[ ]ZGI/S[Z”’G yAelcY 44 )]

_N*

= T[ Jr. ]Zal((:‘j)?’z) -+ T[ N ](Xg <] (:)ZZ),
~N*

~N*
=1(G,0) + F(G, 0),

where the second line follows from the first decompos1t10n in Lemma 2.3.
These spaces are also orthogonal, as for any x € @%% and y € (A7 ))*,

Z'x,T =(ZZ5'x, y) = {x,y> =0.
(EA R EA

This completes the proof of the decomposition.

The previous lemma is now used to show that the operator TerZc'Te
has a bounded inverse. Let #=#}%, Z = Z;'/?, and & = @# }; then from
the third decomposition of Lemma 2.3,

~ ER
xh=17;'Ts(¥}) + (671)
Since Tge# 5 =# - and ker Tg« =# 5 © @# %, this equation implies that
X = T Z5 ' To(# D).

As the operator Tg«Zg'Tg is self-adjoint, this proves that it is bijective and
that it therefore has bounded inverse; see e.g. Rudin [14].
Therefore the operator

— - _1 -
Y= T[ i ]ZG‘Té(Té~Zc1Té) Te-Z5' T -]

—N*
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is bounded. Using the above decomposition it is straightforward to verify that
Y? =Y, YF(G,8) = {0}, YS(G) = {0}, and

YT[ ]ZG T@,x—T[ ] Z;'Tgx  forany x € #3.
_N*

This implies that Y = P, ; g,. [ |

The next proposition connects the unique right inner-outer factorizations
of §= MV NU and § = VM — UN directly to a decomposition of the
space # 5™ in terms of the graph space of the system G and the transposed
graph of the controller K. Before proving the proposition we need to state a
lemma that will also be of importance in later sections.

LEMMA 2.5 (see e.g. [12, p. 201D. Let # be a Hilbert space, and let
&, B be closed subspaces of #. Denote the orthogonal projection operator
onto the space & as P, — 4, and the orthogonal projection onto &
restricted to the subspace & as P,|B: & — «; and use analogous notation
for similar operations onto the subspace &. The following statements are
equivalent:

() clos(Pyu) =&,
(i) #= clos(#F* +v),
(iii) & Nt ={0}.

The following statements are equivalent:

() Ppv =,
(i) =B +v,
(i) IR, P,ll < 1.

The following statements are equivalent:

G) Ppv =B, ¥ NE*+={0},
i) #¥=F"* +o, ¥ =A"* +&,
(i) |P s Pgll < 1, ||Pg. Pl < 1.

PROPOSITION 2.6. Given the assumptions of Proposition 2.2:
1. Let ® € ##*P be an inner function. Then

[#(G) + £7(K)] @ F(G.0) =7 ™" (1)
if and only if
MV — NU = 65§,

for some unit $, € R PP,
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2. Let ® € B¥ 7™ be an inner function. Then
[£(G) + £7(K)] ® FT(K,B) =#}*"
if and only if
VM - UN = @8,
for some unit S, € RH¥ "
Proof. 1: Assume that S = MV — NU has the inner-outer factorization

MV — NU = ®S~0, where © € ##7*P is an inner function and §0 IS
RH#EXP is a unit. Using the expression for P g, in the previous lemma,

-1
Pic.6yZ" (K) = Tp v 1Zc ' To(ToxZc 'Ts) Té*ZEIT[M _N]T[V](Z’g)
U
= T} g 125 ' To(Ter 25 'Ts) ' Tor Z5 ' ToTs (7 })
= T( e 126 'To(Ter Z6'Ts)  (Ter 25 T6)(#'5)

=Tf . 126 Ts(# %)

=I1(G,0),

as the operator Tj, is bijective on # %. It is now possible to apply Lemma 2.5
to show that this implies that

g7(K) + [1(G, )] =#1*,
or equivalently, using the decomposition proved in Lemma 2.4.,

g7(K) + [F(G,8) e g(G)] =75
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It remains to show that the space & T(K) is orthogonal to the space
F(G,0). Let f € £7(K) and g € F(G, ®). Then

f=[¥]]x forsome x € #%,

and

g=T[W]y for some yEZ”g—(:))?;”.

_N*

Hence,
(f.g>= <[Z]xT[ 0 ]y> = <(MV - NU)x, y> ={®S,x,y) =0.
_N*

Hence £7(K) L F(G, ), and therefore
[£(G) + £7(K)] ® F(G,8) =75
To prove the converse, assume now that
[g(G) + £7(K)] @ F(G,8) =#5""
for some inner function ® € ## " ?. Therefore, by Lemma 2.4,
2(G) + £7(K) = £(G) ® I(G,8).

This decomposition implies that
N \'%
Tav-vo(#%) = T -ﬁ]([M]Z’Q + [U]l"é)
=T NlgrerT ..12:'(67?
=T sl |mF2® [w]c( 2)
~N*

=0 + 225" (67'})

- ér?,
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and therefore My, _yy(#}) = @7 %, as MV — NU € #X¥,. The operator
<075 > 77 clearly satisfies Mg«(@#% 5) = #5, and therefore

Mes Myy_yu(# §) = ©*(MV - NU)(#}) =75

This implies that S, = O*(MV ~ NU) € %, is a unit, ie., (MV -
NU)"'® € ##,. 1t has therefore been shown that MV — NU = 6§,
where §; is a unit.

2: This is proved in an analogous fashion. |

The following theorem summarizes the previous results. It gives further
necessary and sufficient conditions for a control system to be unstable to
order k. The importance of the result in our context is that the stability
properties of the control system are characterized in terms of the graph of the
plant and the transposed graph of the controller. This result generahzes the
result on stable control systems given in [13].

THEOREM 2.7. Given the assumptions of Proposition 2.2, the following
statements are equivalent:

(UO) The pair (G, K) is unstable to order k.

(U3) There exists an inner transfer function ® € ¥ 1*P of McMillan
degree less than or equal to k such that the space #'§ XX 5 can be
decomposed as

7 =[2(G) + £7(K)] ® F(G,0).

The inner function ® is unique up to right multiplication by a constant
unitary matrix.

(U4) There exists an inner transfer function ® € ¥ ™ of McMillan
degree less than or equal to k such that the space # XA s can be
decomposed as

x7'" = [2(G) + £7(K)] @ FI(K, 0).

The inner function ® is unique up to right multiplication by a constant
unitary matrix.

Furthermore,

F(G,0) = F(K, 0).
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Proof. The proof follows immediately, as (U0) is equivalent to (U1) and
(U2) by Proposition 2.2, and (U1) is equivalent to (U3), and (U2) to (U4), by
Proposition 2.6. The final claim follows by comparing the decompositions in
(U3) and (U4). ]

To complete this section it is shown that it is possible to parametrize all
controllers of a system G such that the closed-loop system is unstable to
order k. The following theorem establishes the result in the framework of
graphs of systems. As a corollary we obtain a generalization of the Kucera-
Youla parametrization of all stabilizing controllers.

The proof will use geometric ideas related to skew projections. We
therefore first have to summarize some related results. These will also be
useful in later parts of the paper.

DEFINITION 2.8. Given two closed subspaces, & and %, such that
& N = {0}, then the skew projection onto & with kernel & is defined by

Py"g:y'*'g _)-g, Pd||g:u+DHu, uE.SV, vE XB.
What will be of interest to us is the skew projection onto the graph space
of a system with kernel equal to the transposed graph space of the controller.
The next lemma expresses this projection operator in terms of Toeplitz

operators. Hence its norm is given in terms of the %, norm of an %
transfer function.

LEMMA 2.9. Suppose the p X m transfer function G has a normalized
r.c.f. and Le.f (N, M) and (N, M), respectively, and an m X p stabilizing
controller K has a normalized r.c.f. and l.c.f. (U, V) and (U, V). Then

Pyeygrcxy = T[Z]Ts-*hﬁ V]
Porkygc) = T[Z]s-_lT[M _§]
and further
"Pg’(G)llg’T(x)” = IIS‘,IIIw = T(S)_l,

. o -1
”Pg’T(K)"g((;)” = ”S 1”» = T(S) s

where S = MV — NU and S = VM — UN.
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Proof. As the controller is stabilizing, we have that

N V

-1
M U] €E R¥ .

This implies that
[z]z’;" n [Z];z’g = 2(G) N £7(K) = {0).

Hence the spaces (G), £7(K) satisfy the first condition of Definition 2.8.
It is also possible to write down a doubly coprime factorization.

praetl (RN

which implies that

5 -] [E)s]

iteo A+t o

Using this identity, one may verify that the expressions for the skew projec-
tion operators in the statement of this lemma satisfy the requirements for a
skew projection in Definition 2.8. The expressions for the norms of the
projection operators follow immediately, since

[ v

-~

s -0 V]
[ -A]

\2|

©

=18 Yo = 7(S) 7",

as the norm of a Toeplitz operator is the .2, norm of its symbol, and the
coprime factorizations are normalized. The expression for the norm of the
other skew projection is proved analogously. |
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We can now prove the theorem.

THEOREM 2.10. Let G be a p X m transfer function with r.c.f. (N, M)
and l.c.f. (N M), and let K be a stabilizing controller with r.c.f. (U, V) and
Le. f.(U,V). Let U,Veax, of appropnate dimensions be right coprime
and such that V is invertible. Let k = 1,2,... . Then the following statements
are equivalent:

1. there exists an inner function ® € R¥ VP of McMillan degree less
than or equal to k, such that

v

(z’(c) + [0 ;f’g) ® F(G,0) =75*™, (2)

9. there exists an inner function @1 € AH# PP of McMillan degree less
than or equal to k and Q € R#,, such that

- (2o Blebes o

Proof. 1t is first shown that any subspace of the form of

Vigr
ﬁ 2
in (3) satisfies the spanning condition in (2). This is proved in an almost
identical manner to the first part of the proof of Proposition 2.6. Let S v 0 )
be a right inner coprime factorization of @*(MV NU), ie. @*(MV —
NU) = S$,0*. Note that § = @*(MV — NU)®, is a unit and 0, has

McMillan degree less than or equal to k. Using the expression for the
orthogonal projection operator P, g, in Lemma 2.4, note that

Vigr
U\ 2

Tp v 126 To(Tee Z5'Ts) Tor Za Toitv— )6 (7 )
—N*

Pl(c,é)

-1 _
12c'To(Ter Zc'Ts)  TorZc 'Tos(#'%)

=T[ ;. 126'Te(# %) = 1(G, 6).
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The rest of the argument is identical to the argument in Proposition 2.6.
The reverse direction is now proved. Given the spannini condition in (2),

it is shown that ; # % must be of the form in (3). As V,\ # % satisfies (2),

—n . U -
we have by Proposition 2.6 that MV — NU = @S, for some unit S, and an

inner function ® of McMillan degree less than or equal to k. ‘Since
I = Pgr(xyzx) + Peeysmx)s the space :; # % can be decomposed using

the expressions for the skew projections in Lemma 2.9:
Vs
gl *

=|Trv Ts'-l(AN- oy T T[Z]Ts-‘(‘?ﬁ~ﬁﬁ))(z’g)

T[‘;](;?”;) = (Psrxyzer + Pecnzxr)
1]

= {Tyv)Ts65, * T[Z]Ts—lw-w))(’?’é)

= |Trv1Te,5-1s, T T[Z]Ts-x(‘;g_g‘;))(f’z’)
U

= (T v )Ts“lso(‘z/g)

6,+ [:’l] - VO-0V)sy 1§

(efee 2l

where Q = S~} (VU - W)SJ‘§ e #¥,, S=VM — UN, and §=MV -
NU. [ ]

In the following corollary the previous theorem is reinterpreted to give a
parametrization of controllers that lead to a closed-loop system that is
unstable to order k. In case of k = 0 this is nothing else but the Kucera-Youla
parametrization of all stabilizing controllers (see e.g. [15D.
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COROLLARY 2.11.  Given the assumptions in Theorem 2.10, the following
statements are equivalent:

L. The pair (G, K) is unstable to order k, and K is proper.

2. K=(U+ NQXV + MQ)™" for a Q € B¥.,,, and det(V +
MQXix) # 0.

3. K=(WV+QN) U+ QM) for a Q€ R¥,,, and det(V +
ON o) # 0.

Proof. 1= 2:1f(G, K) s unstable to order k, then given a r.c.f. U, v)
there exists an inner function ® € ## 2 of McMillan degree less than or
equal to k such that the spanning condition in (U3) is satisfied. Hence by the
previous theorem there exists a Q € ##,, and an inner function ®; of
McMillan degree less than or equal to k such that

[le- ([ [N]er) =

and 0, Q, are clearly coprime, as U,V are coprime. This implies that

= (UO, + NQXVO, + MQ,)™' = (U + NQ,O*XV + MQD®*) ! =
(U + NOXV + MQ) !, with Q = Q,0% € ##, ;. Further, if K is proper,
this implies that det(V b MQ(ix) # 0.

2= 1: Let K= (U + NOXV + MQ)™! fora Q € ##.,;, and further
let Q have a right inner coprime factorization Q = Qo(")z Then the McMil-
lan degree of @ is less than or equal to k. As 0,, Q, are right coprime,
there exist X,Y € ##,, such that X8, — YQ, = I. Therefore

JHSHE

is r.c.f. of K for

P | I VA 7
[-¥s—' x§ 1][M H
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where S = VM — UN and § = MV — NU. By the previous theorem this
implies that

v

U

satisfies the spanning condition, and therefore that the pair (G, K) is unstable
to order k by the equivalence of (U3) and (U0). Further, if det(V + MQXix)
# 0, this implies that K is proper.

1 « 3: Note that (G, K) is unstable to order K if and only if (G, KT) is
unstable to order K. The result then follows from finding all controllers that
stabilize GT to order K with a r.cf. (N7, MT) as above and taking the
transpose of each element in this set. |

24

3. GAP BETWEEN GRAPH SPACES AND CONTROL SYSTEMS

In the previous section it was shown how order-k instability of a closed-
loop system can be characterized in terms of spanning conditions of the graph
of the plant and the transposed graph of the controller. In this section we are
going to give further interpretations of these results in terms of the gap and
minimum angle between certain graph spaces. These results generalize the
results in [13], which were derived for stable closed-loop systems.

For ease of notation we define the following class of inner transfer
functions:

BP = {@ e FFLP.0%0 = L; (McMillan degree of (:)) < k}.

Therefore the class B = {U e #P*P.U*U =1 } and we define the class
= {0}. The following two technical results will be proved first.

PROPOSITION 3.1. Given the assumptions of Proposition 2.2. Assume
there exists an inner function ® € ¥ P of McMillan degree at most k
such that

[2(c) + £7(K)] ® F(G,8) =75*™ (4)

For the inner function ® € ¥ 7™ of McMillan degree at most k of (U2)
and (U4) we have

[1(G,8) + I'(K,0)] ® F(G,0) =#1*"
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Proof. First note that the decomposition in (4) implies, by Proposition
2.6, the existence of a unit §, € ##,, such that MV — NU = ©S§,. By the
equivalence of statements (U1 and (U2) this implies the existence of an

inner-outer factorization VM — UN = @S, where ® € ## ™ ™ is an inner
function of McMillan degree at most k, which is unique up to right

mXm

multiplication by a constant unitary function, and S € Z# ;™" is a unit.
Further, the following identity is also satisfied:

F(G,0) = F'(K, 0) (5)

by Theorem 2.7. Consider,
Pl (M) T
= T[(VJ](T*[Z]T[E])_IT%T(-,*(Z';).

As the operator T§:# 5 — # 1 is surjective and both the operators

T*[V]T[V]:Z”é x5 and Tg:#h->#)}

are bijective, we have that
Por )| £(G)]* = £7(K).
Lemma 2.5 and Lemma 2.4 imply that this is equivalent to
Z5m=[g(@)]" +[g"(x)]"
= [1(G.8) @ F(G, )] + [I7(K,8) @ FT(K,0)]
= [1(G,8) + I'(K,0)] @ F(G, ).

Combining this decomposition with Equation (5) gives the final result. [

LEMMA 3.2. Let G be a p X m transfer function, and let Kbe am X p
transfer function. Let ® € #% 2P be inner. Then:
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L Pgrcye Pyg, &)l ="P[?T(K»*P[s’(c)u“’75” o F(G,6)] “
. One has

|Percxy = Broen |57 © F(G. 6)|

= max{I Porcy Pocoolh | Bromaion Procen: [ 257 © F (G, 9)] [}

Proof. 1: The statement follows immediately from the decomposition in
Lemma 2.4, i.e.
Z0'" =2(G) ® I(G,0) @ F(G, 0).

2: First note that the operators

Pgr P

TE N ot g Wprm, O gt o p U™
| — Pigcay-
[£T(K)] [E(G)]

are isometries. Therefore, using the decomposition in Lemma 2.4, we have

that

|(Perxy = Poey)|[2 5™ © F(G. 0)]]
= |(Psrxy = Peorr) Poarorce. |

= ”Pg’T(x)Pz(G)ez(c,é) - PI(G,G))”

Pgr(x) P P
=l (Perix) Poccrorcc. &) ‘Pz(c,é))[ #(C) mc)}*]
| fz ot
[ Pgr
(x)
= P [P.?T(K)PQ’(G) PET(K)PI(G,@)_PI(G,@)]
| FrETaort
0 Pigrcxy Prc, 6)

= max{|| Py xy Pe(c)l. | Bromcxy: Prce, 61l

- max{"Pg,r(K)Pg(G)”, |Bisrcins Psen: [ 5™ © F(G. 6)] ||}
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u
The main instability results are now stated and proved.

THEOREM 3.3. Let G be a p X m transfer function, and let K be a
m X p transfer function. Then the following statements are equivalent:

(U0) The pair (G, K) is unstable to order k.
(U5) There exists an inner transfer function ® € BP such that

(U6) There exists an inner transfer function ® € BP such that

o F(G,0)]| < 1.

gap(#7(K), I(G,0)) < 1

(U7) There exists an inner transfer function ® € BP such that

" o F(G,0)]| < 1.

[Porcs -

Proof. (U0) = (U5): (U0) lmphes by Theorem 2.7, that there exists a
® € @7 such that the space #§ X # 5 can be decomposed:

[(G) + £7(K)] @ F(G,8) =7 ;7.
This implies by Lemma 2.4 that
~ 4
g7(K) + [1(G.®)] =#5"",

and therefore by Lemma 2.5 and Lemma 3.2 that

ptm o F(G,0)]|.

1> Pigriky P

This gives the result by Lemma 3.2.
(U5) = (U0): We are going to show that (U5) implies (U1), which is
equivalent to (U0). First note that Lemma 3.2 implies that

e F(G, (:))] “ = " P[gT(K)]*PI(G,é)"’
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and by the equivalence relationships in Lemma 2.5,
g7(K) + [1(G,8)] " = Hp*™
Therefore by the decomposition in Lemma 2.4 we have that
g7(K) + [#(C) @ F(G,0)] =#5*™.

As (N, M) are coprime, there exist X,Y € #¥, of appropriate dimensions
such that NY — MX = I. Hence

![b; —1‘7] ym —1[1\2 —I\;]([X]‘l 2) ‘E 2
2
But by the above 1dent1ty we have

ZL=Ti 5" =T _s){®7(K) +[2(G) @ F(G,8)]}

Ve [Vro o o (riear)

= Tyy-no(#}) + Zo(#} © 67)).

=Tin -#)

Note that the space #'} © @7 % has dimension equal to the McMillan
degree of ®, which is at most k. As Z has a bounded inverse, this implies
that the space Z (% %)* is a finite-dimensional space of dimension at most
k. Therefore My _ NU()? %) is a closed subspace of codimension at most k.

Let MV NU € ##,, have inner-outer factorization MV - NU = ,§,
where 0, € 27, is an inner function and S, € X, is an outer. As
Mg SW ) is closed, S, is a unit. This implies that Mg s(ZL) = Mg M;
(ﬁ?’ ) = Mg (# %). Therefore the codimension of Mg (# ’2}) is at most k, and
therefore @) has McMillan degree at most k. This proves (U5) implies (UL),
which is equlvalent to (U0).
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(U0) = (U6): (UO) implies, by Theorem 2.7, that there exists a © € B
such that the space #§ X # 3 can be decomposed:

75" =[2(G) + £7(K)] ® F(G,0) (6)
- g7(K) + [1(G,8)] ", (7)

by Lemma 2.4. Also, Equation (7) implies, by Proposition 3.1, that there
exists an inner function ® € ## 7™ of McMillan degree k such that

x5 =[1(G,0) + I"(K,0)] ® F(G,8)
= [1(G,8) + I"(K,©)] ® F'(K,0). (8)
By Theorem 2.7 we therefore have
7y =1(G,8) + [#7(K)] . (9)

The decompositions in Equations (7) and (9) imply, by the equivalence
relations in Lemma 2.5, that || Pgrxy+ Py 6yl <1 and | Pgr(xyPipcc ay- |l
< 1. These inequalities imply that

gap(#7(K), I(G,0)) < 1.

Hence (U6) holds.
(U6) = (U7): Since

gap(£7(K), I(G, ©)) = max{|| Pyrx, P1c. 6y I 1 Porey: Prc. 6yll} < 1,
(U6) implies by Lemma 3.2 that

[#5 ™ e F(G,8)]|

1> [Pgrky: Prc, 6l =||P13T<K)1*P[§(G)1*
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and
1 > ”P.?T(K)P[I(G,é)]l” > “P.?T(K)PS’(G)"‘

These two conditions imply (U7) by Lemma 3.2.
(U7) = (U5): This follows immediately from Lemma 3.2. n

In the following theorem a number of quantities that appeared earlier are
related to one another.

THEOREM 3.4. Given the assumptions of Theorem 3.3, further assume
that the pair (G, K) is stable to order k. Then

[#37 e F(C,8)]|

S E(57(K), 1(6.9)) = inf [Porc = Bicon:

inf
OcBy
= ”PyT(K)Py(G)” = “M*U + N*V”oo,

where G = NM™! and K = UV™! are normalized coprime factorizations.

Proof. We first show that

inf 1P yc eye Percxoll = I Pocey Poroxoll-
becBp [K(G,8))] (K) (G) (K)

To do this let u é%’g“"; then

inf ”P I 1Pgr ullg
beBp [I(G,8))" " &7(K)

é)ien;f “(Pg(c)y'*' Py, 6)) Por(xytt ”2

. J- 2 2
inf (1| oy Porrytlly + | e, 6 Pyl
0 Ff

N : : 1/2
) . 2
= (”Pg(c)PgT(K)Unz + inf ”PF(G,é)PgT(K)u"2) .
[CI=7 g

Let MV — NU have inner-outer factorization MV — NU = 6,5, where 6,
is an inner function and S, € X, is a unit. As the pair (G, K) is unstable
to order k, then by the equivalence of (U0) and (U1) this implies that the
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McMillan degree of @, is at most k. Now,

| Pec, 6, Percxll = I Percky Prcc. 6l

= Sllp P,Z’T(K)T M* u
ue(®, 2D —-N*
lull=1

o ) T

lleall =1

2

I

2

= 0.

ot ) e

llull=1

The final equality follows because for u € (@, #7)" we have

IIT@,TuII = sup (Tgru, x) = sup (u,@1x> = 0.

xeX} xeXh
[tx)l=1 llxfl=1
This implies that
@len';{llpl(c,é)*l’gr(x)" = PGy Por(x)ll.

where © = @, achieves the infimum.
We now show that for ® = @, we have that

”P[?T(K)il PI(G,él)“ <1.
This is the case, by Lemma 2.5, if
Pic.6,87(K) =1(G,9,).

Noting that MV — NU = ©,8§,,, it is straightforward to show that this condi-
tion is satisfied by using the expression for-the orthogonal projection operator
onto the space I(G, ®,) in Lemma 2.4.
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Now we can summarize:
_inf gap(.?T(K),I(G,(:))L)
OcBf

= I1Pgr (&) Py

_inf  max{llPgr gy Prc. 6yl | Porxy Praca. oy ) -
Sc B

We have seen that for ® = @1,

IPigr oy Prc.opll < 1.

Therefore,

_inf gap(&T(K), I(G,0)) = _inf ||Pyrx)Piyc 6y
bcBy ec @

inf [Py 632 Perexyll
bcBy [1(G.98)] (K)
= ”Pg’(c)Pg’T(K)“

e

=|IM*U + N*V|lx,

where we have used in the last identities that the factorizations are normal-
ized. That

_inf gap(€7(K), I(G, ©))
Qe FP

- é;n;{ | 2o7xy = Pioey: [#5°™ © F(G. )] |

follows from Lemma 3.2. [ ]
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4. INSTABILITY AND THE INDEX OF THE BEZOUT OPERATOR

In this section the stability of a control system will be discussed in a
slightly different framework. It will be shown that the order of instability of
the closed-loop system is equal to the index of an associated operator, which
will be called the Bezout operator. This analysis will give an alternative
outlook on the work in the previous sections and provide interesting links to a
large body of work in operator theory on the index of a Fredhom operators;
see Cordes and Labrousse [4], Douglas [5], and Nikolskii [12]. Here it is
shown that the index of a Bezout operator possesses desirable geometrical
properties.

A Fredholm operator is defined in the usual way.

DEFINITION 4.1. If Z is a linear operator on a Hilbert space H, then Z
is a Fredholm operator if and only if its range is closed and dim Ker Z and

dim Ker Z* are finite. Further, if Z is Fredholm, its index i(Z) is defined as
i(Z) = dim Ker Z — dim Ker Z*.

It is now possible to state the main result of this section.

THEOREM 4.2. Suppose the p X m transfer function G has a r.c.f.
(N, M) and a Le.f. (N, M), and the m X p transfer function K has a r.c.f.
(U, V) and a l.c.f. (U, V). Then the following statements are equivalent:

(UO) The pair (G, K) is unstable to order k.
(U8) The Bezout operator Tysyx_yxz+ is Fredholm, and its index
#(Ty» pg% _y#yi+) is less than or equal to k.

Proof. It is shown in this proof that (U1), which is equivalent to (U0), is
equivalent to (U8). (U1) = (U8): Let MV NU = 08, be an inner-outer
factorization. The assumptions imply that © is an inner function of McMillan
degree less than or equal than k and S, is a unit. First note that the Bezout
operator Ty s _y+y+ has closed range, since Tyxys_ysy+(#5) = T Tos
(#%) =27, where we have used that S, is a unit. Also, Ker Ty« s _yxyx =
(@7 5)* and Ker Ty« y+_y+y+ = {0} are both finite-dimensional. Further,
z(TV*M* pex+) = dim (@# 5)* is less than or equal to k, since the McMil-
lan degree of @ is less than or equal to k.

(U8) = (U1): Let MV — NU have a right inner-outer factorization MV
—NU= ®So, where @ is an inner function and S is outer. If the Bezout
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operator is Fredholm, then its range is closed; this implies that
clos Ty zps e s 5) = Tyupps _ys 5+ (F 5) and therefore

Z’Z’ = CIOSTV*M*—U*N'*(X,;) = TV*AZ*—U*I\;*(‘%;) = Ts’g(cyz’),

implying that S, is a unit. Also by assumption i(Tyx s _ y»+) is less than or
equal to k. This implies that k > dim Ker Ty s i _ y+ 3+ — dim Ker Tyjy_ x5y
= dim Ker Tg« — 0 = dim (@# ) * . This implies that the McMillan degree
of @ is less than or equal to k. u

5. OPTIMALLY UNSTABLE CONTROLLERS AND HANKEL-NORM
APPROXIMATION

In [13] the concept of a maximally stabilizing controller was introduced
(see also Section 1). The maximally stabilizing controller of a plant G is a
stabilizing controller that maximizes the minimal angle between the graph of
the plant and the transposed graph of the controller. Given the results in the
previous sections, it is clearly possible to generalize this idea to the present
framework. The optimal unstable controller to order k of a system G will be
defined as the controller which maximizes the minimum angle between the
graph of the system and the transposed graph of the controller, subject to the
constraint that the closed-loop system is unstable to order k. Though this
controller has little significance for design, the result is interesting in that it
gives a geometrical interpretation of Hankel-norm approximation of non-
square inner functions. For this reason the analysis is pursued in this section.

DEFINITION 5.1, Given a p X m system G, the optimal minimal angle
to order k, (0F),, is defined by

min

cos (0°Pt)k = 1nf cos @

min min

(2(6), #(K)),

where 7 = {m X p transfer functions K s.t. (G, K) is unstable to order k}.
Further, a controller achieving this infimum is called an optimal unstable
controller to order k.

The following technical lemma will be needed. Similar results appear in
Nikolskii [12], though not directly relating the McMillan degree of inner
functions to the invertibility of Toeplitz operators with all-pass symbols.
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LEMMA 52. Given two inner transfer functions 0,0, 277,
where the McMillan degree of ©, is strictly greater than that of ©,, then

1. TG*GWP) ¢zp7
2. lane % dall "@ - ®1Q"m = 1.

Proof. 1: Assume that the McMillan degree of the inner function @, is
strictly greater than that of the inner function ,. Also assume that Te*e
(#%5) =#%. It is shown that this second assumphon contradicts the first.
If Te*@(z’ )=#} then Tg Tg*@()?’ ) = Tg (Z}). Note that Tg Tgy =
W 1mp11es Py 2,,,,2,(@)1)‘?’ 2) = @2/?’ - Hence from the eqmvalence rela-
tions in Lemma 2.5 we have # 5 = (0,#7)* +0,78, implying in turn that
P(eyrg)L(@)z)?’ )t =(® Z”’)l Since the dimension of (@7 5)* is equal
to the McMillan degree of @, i =1,2, the identity Fe y,g)L((@Z)?’ t=
(@75 implies that the McMillan degree of the inner function 0, is
greater than or equal to that of the inner function ©,. This contradicts the
first assumption.

2: This is proved by showing that Tg.s(# ) # #% implies
infc gapmr 10 — QIL,° = 1. Note that Tgyel#%) + He,.e(;rfz) =
0:0,(#7?). Since 020 ,(#?%) is closed and H@*@(Z ) is finite-dimen-
smnal this identity implies that Tgyg (%) is also closed. As Ter6 (¥ 5) +H

%, then Ker Tgr, = [H(Tgs )" + {0). This fact and the relatlonshlp

* . P o a o a =
TO}‘OZTO‘{GZ + H(Gi'ez)* HOTGZ =1

imply that there exists a v_€ #, such that || Hgs vllz = 1. This implies that

|Hgso l = 1, since 1 > 16*6,|l. > | Hgs 6 Il > 1. This gives the result from
Nehari's theorem,

1=|lHgsg,ll= inf [0(0,-Ql.= inf |6, - 6,0l
QeRFEXP QeR¥LXP

PROPOSITION 5.3.  Suppose the p X m transfer function G has a normal -
ized r.c.f. (N, M) and a normalized lc.f. (N, M), and the m X p transfer
function K has a normalized r.c.f. (U,V) and @ normalized lec.f. (U, V).
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Then

_inf gap(£7(K), I(G,0))
OcBp

=it - [
= inf
Qe LY
= inf [ - [
oexmin|l V*

Proof. The proof that the first expression equals the third expression can
be split into two parts. The first is to assume that

_inf [|Pgrxy — Pyl = 1
Ve B?

and to show that this implies

inf
L ee¥ LY

%] (2ol

The second part is to assume that

inf ||Pyrexy — Pree a0l < 1
OB 2T(K) (G, ®)

and to show that under this assumption the two expressions are equal. To
prove the first part assume

_inf |Pgrgy — Py gyl =1
OcBF

then by the equivalence of (U6) and (U1) this implies that (MV - NU)™!
RH . ;. Itis first also assumed that (MV — NU) ! ¢ #.%, and it is shown

that this implies
M* Viol -
inf [—-1\7*] - [U]Q = 1.

QeXrY

«©
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Then it is assumed that (MV — NU)™! € R %, and it is shown that this
again implies the same result. Assume (MV — NU)™* & #.%; then there
exists an w, € R and a v, € ¥P, where vgo, = 1, such that oX¥(MV —
NUXiw,) = 0. For all Q € # L7 there exists an m such that [IQll. <m
almost everywhere. Note that MV — NU € &%, and therefore © — (MV
— NUXi ) is a continuous function. Hence for all & such that 1/m > &> 0
there exists & > 0 such that o, (vX(MV — NUXiw)) < ¢ for all o €lw,
- &, wy + 8[. Now

inf [
QeX LY
- 1| m*
2 f - - -
>oel;w Lot N][—N*]
= wf |1- (v -Nv)Q]..

Qex LY

Therefore o, (v*(MV — NUXi 0)Q(i®)) < me < 1 almost everywhere on
the interval w €lw, — 8, w, + 8[. Finally, almost everywhere on w €]w,
-8, w, + 8[ we have that o, (v*[I — (MV — NUXi0)QGw)) >
o, (v¥) — o (v¥(MV — NUXi w)Q(zw)) > 1 — me. Since this inequality
holds for arbltrary sma]l € > 0, this implies that || — (MV — NU)QlIg,o =]
for every Q € #,,;, as for any transfer function A € ¥, we have "A“w =
€S SUPy < 5t SUP; < &7, o1 n L(v*AXiw). Now assume (MV — NU)™!
ZZ, but(MV — N US & RX, ;- There exists an inner-outer factonzatlon
MV — NU = 0§, where $, is a unit and ® is an inner function. By the

equivalence of (U6) and (U0) the McMillan degree of @ is greater than k.

Now
) [ ] [ - |1 - (v - Nv)ol.
QEZ"’ 4 LT
Qex LY
= inf "I - ®Q"w

QexL¥
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Forall Q & #, , there exists a right inner coprime factorization Q = Q0%
where Qy € #,, and O, is an inner function of McMillan degree less than
or equal to k. Therefore for all Q € #, ;,

11— &Qlls = I - 8Qy 8} ll- = 18, ~ QI > 1
by Lemma 5.2. This completes the proof of the first part.

To prove the second part assume

o= inf gap(£7(K),I(G,0) <1.
Oc Bl

Then by the equivalence of (U6) and (U1) this implies that (MV — NU)!
€X#,; and o=|M*U+ N*V|. by Theorem 3.4. Using Q = (1 —
a2XMV — NU)™?, then

inf M* —[V
Qex LY} —-N* v

[ -~

<|| M2 ] — (- aﬁ)[g](ﬁv _ vy

| N+ )
& 5ol
0,2

As (U,V) is a normalized coprime factorization and o = |[M*U + N*V |,
this implies, by Lemma 6.2 in [13] that [(M*U + N*VXMV — NU) !, =
o(1.— o2)"1/2, Hence,

]I

< [—(1 — o) (M*U + N*V)(MV - 1\70)_1

| —(1 - 0?)(M*U + N*V)(MV ~ NU)

inf
Qex LY

o

=[o*+ o2(1 - 0'2)]1/2 =g
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5] (o]

whenever infg ¢ g/l Pgrxy — Pyc 6)ll < 1. The proof of the reverse equality
for this case is anaﬁogous to the proof of Proposition 6.3 in [13].
The final equality can be proved analogously. [

Therefore it has been established that

_inf || Pgrigy — P,(G,é)ll inf
OBy Qe;?”’x

In Definition 5.1 an optimal unstable controller to order k was defined.
That such a controller exists is shown in the following theorem. This theorem
generalizes the results for stabilizing controllers in [13, 11].

THEOREM 5.4. Suppose the p X m transfer function G has a r.c.f.
(N, M) and a lc.f. (N, M), and let o, with multiplicity r; be the ]th
singular value of the Hankel operator wztiz symbol [M —NJ*, "where o >
a,> =+ >0;> - > 0. Then

min min

cos (O ), = 1nf cos 0,..(£(G), £"(K)) = o,

where Li_ir; <k < Lj_r;, and F; = {K|K is an m X p proper rational
ﬁmctzon s.t. (iG K) is unstable to order k}. An optimal unstable controller to
order k exists, and every optimal unstable controller has a right coprime
factorization (U, V) such that

~[uler].

|5

where ® € FH TP is an inner function such that (MV — NU)®* is a unit.

= g,

Proof. By the basic properties of minimal angles between subspaces we
have

1> cos (0°P‘)k = 1nf cos 0

min min

(£(G), £7(K))

= inf NPy Parcrolls
K=Uv-led, ) (K)
U,V coprime
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where the infimum is less that one, as there exists a stabilizing controller.
Now if K € % then infg. 2, gap(.?T(K) 1(G, ®)) = ”Pg(G)Pg’T(K)" <1
If K& then infg ¢ g, gap(.?’T(K) I(G, ©)) = 1. Hence the above opti-
mization can be rephrased as

1> cos (X)), == inf 1nf ap(£7(K), I(G,®
k U, veX, g P
coprime

5]

by the previous proposition. First note the inequality

M’*
—N*

= inf inf
U, VEZm Qe”?x

1> inf inf
U,VEZ‘,, 'Qezzxkp
coprime ’

*
> inf ”[ M
[X] e.ﬂf,,_k -

The reverse inequality will now be shown, proving that the above two
expressions are in fact equal.
Let

opt
[Y]] € BH o i
achieve the infimum in the expression on the right; its existence is proved for

example in Glover [7]. Now
opt
T ( [ 27]] ) > 0;

otherwise it would be possible to construct a sequence v, € # ; oll=1

i=1,2,..., such that
m 1],

1—)00
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This would imply
~ opt - opt
(- -
—N* @ ) —N* 2

establishing a contradiction. Let
opt
[ Z:I € R¥ o, k

have a right coprime factorization

Vopt—[v opt 1
o] = [o]; o

where

V opt

[U] €ER¥, and Q' € A%, ;.
N
As
opt
'r([g] ) >0,

this implies that

([7]7) >0

and there exists an inner-outer factorization of

V]opt _ [V]opt®
], - 12,
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where (Ucp’ch) are coprime and © is inner; see for example [17,2].
Combining these factorizations,

(] - [o]. oo

opt
where [g]cp is coprime and 00y € #X, ;. Hence

[;]Z‘f,w,klﬂ ]l

|5 LT e

o0

1 *
> inf inf M” —[V]Q .
U VeZ.ocx ¥ —N* U o
coprime !

It has therefore been proved that

wimne o [ %]-e

where the fact that

>

N gy

oo

-

[g]iZ;w,le iMN] -[vle

is a standard result from Hankel-norm approximation theory [7], and further,
K = U®(V°P)"! is an optimal unstable controller to order k.

The final claim can now be proved, in a manner almost identical to the
second part of the previous proposition. Let K be an optimal unstable
controller to order k; then it has a normalized right coprime factorization
(U,V) such that o; = Py, Perx)ll = IM*V + N*Ull», and MV — NU
has an inner outer factorization MV — NU = ©S,, where ® € &% and §, is
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a unit, Let

3] -e-onfihs

be another factorization of this optimal controller. The proof is completed in
a manner identical to the second part of the previous proposition, to show

M*
—~N* a
[ |

This section has proved that it is possible to construct a controller K for a
system G that maximizes the minimum angle cos 6,,.(£(G), £7(K)) subject
to the constraint that the control system is unstable to order k. These results
give an interesting interpretation to the problem of Hankel-norm approxima-
tion of nonsquare coinner or inner transfer functions.

Given a nonsquare coinner transfer function ®, € Z¥ Ixn then there
exists a “unique” minimal degree unitary dilation of ®% such that [@% ©,]is
a square all-pass transfer function and ©, € ## 2*" . This implies that
O, must be a nonsquare inner transfer function. The result in this section
prove that the problem of finding a kth-order Hankel-norm approximation of
O} is equivalent to the problem of finding an inner function 0, € Z¥
ax(n—-1) . ) (n—Dyy PP
- that maximizes the angle cos 6,,,(0.7 ;' ~, 0,7 ;") subject to
the condition that the codimension of the closed space ®# b g 0,7
(n=1 . n .

g in %, is less than or equal to k.

g](:)* = g,.

o

REFERENCES

1 C. Foias, T. Georgiou, and M. Smith, Geometric techniques for robust stabiliza-
tion of linear time-varying systems, in Proceedings 1990 CDC, Dec. 1990.

2 T. Chen and B. Francis, Special and inner-outer factorizations of rational
matrices, SIAM |. Matrix Anal. Appl. 10:1-17 (1989).

3 C.-C. Chu, On discrete inner-outer and spectral factorizations, in Proceedings
Automatic Control Conference, Atlantic Ga., June 1988.

4 H. Cordes and J. Labrousse, The invariance of the index in the metric space of
closed operators, J. Math. and Mech., 1963, pp. 693-719.

5 R. Douglas, Banach Algebra Techniques in Operator Theory, Academic, New
York, 1972.

6 B. Francis, A course in /%, control theory, in Lecture Notes in Control and
Inform. Sci. 88, Springer-Verlag, 1987.



1120 J. A. SEFTON AND R. J. OBER

7
8
9
10
1
12
13

14
15

16
17

18

K. Glover, All optimal Hankel-norm approximations of linear multivariable
systems and their .%, error bounds, Internat. J. Control 39(6):1115-1193 (1984).
I. Gohberg and M. Krein, Introduction to the Theory of Linear Non-self-adjoint
Operators, Trans. Math. Monographs, Amer. Math. Soc., 1978.

M. Green, On inner-outer factorization, Systems Control Lett. 11:93-97 (1988).
T. Kailath, Linear Systems, Prentice-Hall, 1980.

D. McFarlane and K. Glover, Robust controller design using normalized coprime
factor plant descriptions, in Lecture Notes in Control and Inform. Sci. 110,
Springer-Verlag, 1990.

N. Nikolskii, Treatise on the Shift Operator, Grundlehren Math. Wiss., Springer-
Verlag, 1986.

R. Ober and J. Sefton, Stability of control systems and graphs of linear systems,
Systems Control Lett. 17:265-280 (1991).

W. Rudin, Real and Complex Analysis, McGraw-Hill, 3rd ed., 1986.

M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press,
1985.

J. Weidmann, Linear Operators in Hilbert Space, Springer-Verlag, 1980.

F.-B. Yeh and L.-F. Wei, Inner-outer factorizations of right invertible real
rational matrices, Systems Control Lett. 14:31-36 (1987).

S. Zhu, Robustness of Feedback Stabilization: A Topological Approach. Ph.D.
thesis, Eindhoven, The Netherlands, 1989.

Received 21 October 1992; final manuscript accepted 10 May 1993



