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Abstract

A new approach is presented for the realization of
continuous-time finite dimensional linear systems. Us-
ing standard results on Laplace transforms our results
are also used to present a new derivation of Fuhrmann’s
shift realization for rational matrix functions.

1 Introduction

In the theory of linear dynamical systems the connec-
tion between internal state space description and exter-
nal input-output description is of central importance.
Here the realization problem, i.e the determination of a
state-space system from knowledge of the input-ouput
map, is the difficult part. For finite dimensional sys-
tems this problem has been solved for a long time in the
fundamental work by Kalman (see e.g. [10]). The field
of contributions to realization theory is vast. In this
brief introduction it is therefore impossible to try to
adequately review all the important contributions that
were made. We therefore concentrate on the aspects
of the theory that are of importance for this particu-
lar paper. Realization theory for infinite dimensional
systems was studied by several authors in the seventies
(see e.g. [1],[4], [8],[7],[2]) where the theory of shifts
on invariant subspaces played a particularly important
role. In all these contributions assumptions had to be
made on the stability of the system that is being con-
sidered. Another important step was done in the work
by Fuhrmann in ([5]). Motivated by the powerful re-
sults for infinite dimensional he examined finite dimen-
sional systems from the point of view of shift realiza-
tions. Through the introduction of his polynomial and
rational models he managed to bridge the gap between
the approaches built on shift realizations and Kalman’s
module theoretic approach. At the same time he was
able to remove the stability assumption that was nec-
essary in the infinite dimensional context. In common
with Kalman’s work his work essentially concentrated
on discrete-time systems. These results can of course
be applied to the finite dimensional continuous-time
realization problem. But it often appears artificial to
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determine a state space realization of a continuous-time
system by what are essentially techniques motivated by
and typically used for the study of discrete-time sys-
tems. We therefore tried to develop a setup that stays
within the realm of continuous-time systems and does
not require advanced mathematical methods such as
for example the work by Yamamoto ([14],[15]) which
is mainly devoted to infinite dimensional systems. In
fact the approach to the realization problem presented
in this paper was developed by the author as part of a
graduate course on linear system theory which mainly
focusses on finite dimensional continuous-time systems.
Another objective of this paper is to try to clearly ex-
plain the role that Hankel type maps play in the deriva-
tion of realizations for finite dimensional continuous-
time systems.

The paper has a tutorial character in that we try to
present the complete development of the approach.
Our approach is equally valid for systems with coef-
ficients in the real or complex numbers. We denote by
K the field of scalars which could either be the real field
or the complex field.

A continuous-time time-invariant linear n-dimensional
state space system is as usual given in the following way
by a state space X, which is a n dimensional Euclidean
space over the field K, and by a quadruple of linear
transformations A : X - X, B: K™ > X,C: X -
K?. DK™ — KP,

#(t) = Az(t)+Bu(t), z(to)=z0, (1)
y(t) Cz(t) + Duf(t), )

I

t > ty, t € R. If a basis is given in the state space X,
then we can identify X with K™ and we can think of
the transformations A, B and C to be given in matrix
form. We will also often refer to a system by referring
to its quadruple of transformations (A, B, C, D).

If the input u is piecewise continuous, the solution to
the set of differential equations is given by

t
z(t) = / et~ ABy(r)dr + () A,
to

and the output is given as a function of the input in
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the following way,

¢
Cet=")ABy(r)dr

to
+Celt=t) A, 4 Du(t), (3)

y(t) =

t > 0. If we assume that the initial conditions are zero,
then this convolution map (3) completely describes the
input-output behavior of the state space system. This
leads us to the second definition of a system which we
will consider, i.e a definition through convolution maps.

Let C(R) be the set of continuous KP-valued functions
on R and let PC(R) be the set of piecewise continuous
functions on & and let PC,.(R) be the subset of PC(R)
of piecewise continuous functions on R that are zero for
t small enough.

Definition 1.1 Let M(t) € KP*™, t > 0, be a contin-
uous function and let D € KP*™. Then the map

I0up : PC(R) = POR);  urry,
where y(t) = f_t_oo M@t — tyu(r)dr + Du(t), t € R,
is called the input-output map with symbol M and
feedthrough term D. :

To avoid convergence problems we have restricted the
inputs to be zero for large enough negative time. If
(4,B,C,D) is a state space system, then the input-
output map IO p with symbol M (t) = Ce!AB,t > 0,
is called the input-output map associated with the state
space system. It is easily seen that two state space
systems that are related by a state space transforma-
tion have the same associated input-output map. A
formulation of the realization problem is to determine
conditions under which an input-output map is in fact
the input-output map of a state space system.

In order to show that this input-output map is well de-
fined with range in PC(R), we show in the next Propo-
sition that if D = 0 then the range of IO p isin C(R).

Proposition 1.1 Let M be a continuous function on
R,. Then for the input-output map IOp p with D = 0,

range(I0m,p) C C(R).

In the following section we introduce the observability,
reachability and Hankel maps and discuss their con-
nections. In the subsequent section we derive the time
domain realization result in terms of a shift realization
where the state-space is the range of the Hankel map.
Using the Laplace transform as a state space transfor-
mation in the final section Fuhrmann’s shift realization
of a rational function is rederived from the continuous-
time realization result.

Due to the space constraints of these proceedings, no
proofs can be given. They will be published elsewhere.

1.1 Notation

Denote by K the real field £ or the complex field C.
Ry ={AeRA2>20} Ro={Ae€RANLO0}. Bya
Euclidean space we mean a finite dimensional vector
space over K = R or K = C, with inner product <
,+ >. The inner product is understood to be linear
in the first component and anti-linear in the second
component. C(I) stands for the set of (vector/matrix-
valued) continuous functions on the interval I C R,
which can be unbounded. PC(I) stands for the set of
piecewise continuous (vector-valued) functions on the
interval I C ®. If I is a bounded interval, f isin PC(I)
if f has at most a finite number of discontinuities on
and at each point p in I the left and right limits of f
exist and are finite. If I is infinite, f is in PC(I) if for
each bounded interval Iy C I, the restriction of f to I
is in PC(Iy). PCt(I) denotes the subset of truncated
functions of PCy,.(I). A function f € PC(I) is called
truncated if there exists t; € R, s.t. f(t) = 0fort < ¢;.
The constant ty depends on f. o(T") denotes the set of
eigenvalues of the linear map T. ker(T) stands for the
kernel of the linear map 7" and range(T) stands for the
range of the linear map T". The rank of the linear map
T is denoted by rank(T'). T'|y denotes the restriction of
the map T to the subspace V. ||a|| stands for the norm
of the map or vector a. A L B denotes that the set A
is orthogonal to the set B. The characteristic function
X is defined by xa(z) = 1if z € A and xa(z) = 0 if
x € A.

2 Reachability, observability and Hankel maps

Central notions in systems theory are those of the
reachability and observability of a system. We give
definitions of these notions which are suitable to our
way of studying linear systems. The observability map
© is defined as the map which maps the state of the
system at time zero to the output of the system for
positive time if no input is applied to the system. A
system is then called observable if no non-zero state is
mapped to the zero output. The reachability map maps
a given input function in PCy,.(R.) applied from time
—oo to time 0, to the state that is reached at time zero
if this input is applied. A system is called reachable if
all states can be reached in this way.

Definition 2.1 Let (4,B,C,D) be a linear system
with state space X, then

1. the map

O: X >CRy); =+ (CetAz)tzg,
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is called the observability map of the system. The
system is called observable if Oz = 0 implies that
z =0, i.e if ker(O) = {0}.

2. the map
0
R:PCyp(R_) =2 X; urr / e 4 Bu(r)dr,

is called the reachability map of the system. Here
PCy.(R_) is the set of truncated piecewise con-
tinuous K™ -valued functions on the negative real
line, i.e. those functions which are zero for t
small enough. The system is called reachable if
range(R) = X.

A state space system is called minimal if it is both ob-
servable and reachable.

In order to avoid possible problems with the conver-
gence of the integral in the definition of the reachabil-
ity map for systems, the inputs have been restricted to
the class of truncated piecewise continuous functions
on R_, i.e. to functions in PCy,.(R_).

Clearly O and R are linear maps. Since the domain
of O and the range space of R is the n-dimensional
state space X, the rank of O and R is at most n. An
n-dimensional linear system is therefore observable if
and only if the observability map O has rank n. It is
reachable if and only the reachability map has rank n.

The following proposition shows that our notion of
reachability leads to the usual reachability criterion
(see e.g. [9]). By duality the same also applies to the
observability criterion.

Proposition 2.1
An n-dimensional system (A, B,C, D) is reachable if
and only if

rank[ B AB A’B A™1B ] =n,
Moreover, range(R) = span{A¥BK™ | k > 0}.
An important map in our study of linear systems is the
so-called Hankel map. The Hankel map that is asso-
ciated with a system maps ‘past’ inputs of the system

into ‘future’ outputs. Before clarifying this point fur-
ther, we will define what we mean by a Hankel map.

Definition 2.2 Let M(t) € KPX™ ¢ > 0, be a contin-
uous function. Then the map

Hpr i PCyr(R-) = C(R4);

0
u(y = y()= [ M( =y,
is called the Hankel map with symbol M.

The Hankel map Hys is related to the input-output
map [0y p as follows. If D = 0 and u € PC,.(R) is
such that u(t) = 0 for t > 0, then

(Ha (w))(t) = (100, (w))(2),

for t > 0. Hence the Hankel map maps those inputs
of an input-output map with D = 0, that are zero for
positive time, to the outputs of the system for posi-
tive time. That the range of the Hankel map is con-
tained in C(R;) is a consequence of Proposition 1.1.
The definition of the Hankel map therefore follows the
same philosophy that underlies the use of Hankel oper-
ators in the realization theory of stable continuous-time
(infinite-dimensional) systems (see e.g. [6]). What is
important from our point of view is that with this defi-
nition of the Hankel map no stability assumptions have
to be made on the systems that are being studied.

The particular application of Hankel maps that we
have in mind is when the symbol M of the Hankel
map is in fact the impulse response of a linear system
(4,B,C,D), i.e. M(t) = Ce*4B, t > 0. This Hankel
map is called the Hankel map associated with the linear
system.

In the following proposition we show that if the symbol
of the Hankel map is the impulse response of a system
then the reachability and observability maps of the sys-
tem introduce a factorization of the Hankel map.

Proposition 2.2 Let (4,B,C,D) be a linear system
and let M(t) := Cet4B, t > 0. Let O be the observabil-
ity map and let R be the reachability map of the system
(A, B,C, D), then the Hankel map Hpy with symbol M
can be factored as

Hy = OR.

In the following proposition we are going to show that
the Hankel map of a minimal n-dimensional system has
rank n.

Proposition 2.3 Let (4, B,C, D) be a n-dimensional
system. Let M(t) :== Ce!AB, t > 0. Then

1. the Hankel map with symbol M has at most rank
n.

2. the Hankel map has rank n if and only if
(4, B,C, D) is minimal.

The range of the Hankel map associated with a system
can be described easily in terms of the system maps.
This is of importance in particular in connection with
our approach to realization theory.
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Corollary 2.1 Assume that (A, B,C, D) is a minimal
system. With the notation of the previous proposition
we have

range(Hu) = {(Ce*z)i50 | z € X}

where X is the state-space of the system. Moreover
each f € range(Hp) is infinitely often continuously
differentiable.

3 Realization theory

In the introductory section we discussed two represen-
tations for linear systems. One representation was in
terms of state space models, the other representation
was in terms of input-output maps. We immediately
saw that a state space model gave rise in a natural way
to an input-output map. In this section we are go-
ing to further clarify the connection between these two
types of system representations. More precisely we are
going to study the realization problem, i.e. we are go-
ing to establish necessary and sufficient conditions for
an input-output map to be the input-output map of a
state space system. The conditions will be in terms of
a finite rank assumption on the Hankel map associated
with the input-output map. If a realization exists we
are going to construct the left shift realization.

Before proving this realization theorem we will need to
establish that the Hankel map intertwines the left shift
and prove a number of other preliminary results. The
left shift is defined as follows.

Definition 3.1 Fort > 0, the map

L : C(Ry) = C(RL);

(f(T))'rZO - (Ltf) = (f(T + t))TZO)

is called the left shift (with increment t) on C(R..).
Similarly, for t > 0, the map

Ly : PCir(R-) = PCy(R_);

(f(M))r<o = Lef = (Lef(7))r<o0
_ [ fr+t), 7+t<0,
‘{ "o riis0 TS0

is called the left shift (with increment t) on PCy, (R_).

Note that there is a slight abuse of notation in that we
use the same letter to denote the left shift both on the
space C(®.) and on the space PCy,(R_).

In the following proposition we are going to show that
the Hankel map intertwines the left shift.

Proposition 3.1 Let Hy be a Hankel map. Then for
each t > 0,
HMLt = LtHM

The following corollary shows that the range and kernel
of a Hankel map are invariant under the left shift. This
is an important property and will be crucial for the
realization theory presented later.

Corollary 3.1 Under the assumptions of the previous
proposition we have,

1. range(Hu) is invariant under Ly, i.e. for each
t 2 0, Ly(range(Hu)) C range(Hu).

2. ker(Hu) is invariant under Ly, i.e. for eacht >
0, Ly(ker(Har)) C ker(Hu).

The following well-known proposition states that a con-
tinuous semigroup of operators on a finite dimensional
Euclidean space can be written as the exponential func-
tion of a linear map.

Proposition 3.2 Let X be o finite-dimensional Eu-
clidean space and let T(t) : X — X, t > 0 be
e semigroup of linear maps on X, ie. T(0) =
T(t+s) =T(t)T(s), for t,s >0, and ||T(t) = I|| = 0
as t = 0+. Then there exists a umque linear map
A: X = X such that

ad tlc
- A J Ak
Tt)=¢€ —kzok!A,

fort > 0.

Let IOx,p be an input-output map with symbol M.
We need to show that if the Hankel map Hj, has finite
rank then Mwuy is in the range of Hj, for each ug € K™,

Lemma 3.1 Let g1,92,...,9n be a basis of an n-
dimensional subspace of the space of vector-vaelued
functions C(R.). Then there exist distinct points
tist2,...,tn € Ry such that the matriz

g1(t1)  g2(t1) ... gn(t1)
_| = (t2) g2(t2) ... gn(t2)
gi(tn) @altn) .o gn(tn)

has zero kernel. The left inverse F of G, i.e. FG =1,
is such that if f € C(R;) is a linear combination of
91,92,---,9n, ie

f= a(l)gl +a(2)92 N, a(")gn
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for some oV, a®, ..., a™ € K then
a(:) f(t)
a(:) - f(f‘z)
ol (ta)
Moreover the subspace spanned by gi,99,...,9n 18

closed under pointwise convergence.

Lemma 3.2 Let Hy be o Hankel map of finite rank
n. Then Mug € range(Hyy) for all ug € K™.

We are now in a position to prove the realization the-
orem.

Theorem 3.1 Let Hys be a Hankel map of finite rank
n. Then there exists a minimal n-dimensional state
space system (A, B,C, D) such that

M(t) = Cet4B, t>0.
Such a system is given by
X :=range(Hn) C C(R4),
B:K™ > X; ur Bu:= Mu,
C:X—-K? zw— Cz:=z(0),
A: X - X,
is such that for t > 0,

4 X > X; zm Lex.

The map D : K™ — KP is linear and arbitrary. The
state space X has an arbitrary Euclidean structure.

The realization (A4, B, C, D) introduced in the previous
theorem is called the (left) shift realization. For differ-
ent approaches to obtain the left-shift realization for
infinite-dimensional continuous-time systems see e.g.

((8],(13)).

In Section 1 it was shown that each state space sys-
tem gives rise to an input-output system. The follow-
ing Corollary states that an input-output system is the
input-output system of a state space system if and only
if the associated Hankel map has finite rank.

Corollary 3.2 Let M be a KP*™-valued function on
[0,00[. Then, the following two statements are equiva-
lent,

1. the input-output map with kernel function M is
the input-output map of a state space system.

2. the Hankel map Hpyy has finite rank.

In the following corollary we show that for the left shift
realization the reachability and observability maps can
be derived. It turns out that the observability map
is the identity map on the state space, whereas the
reachability map is the Hankel map with symbol M
whose range is restricted to the state space.

Corollary 3.3 We use the notation of the previous
theorem. Then the observability map O of the system
(4, B,C, D) is given by

O0: X >CRy); ez,
and the reachability map R of the system is

R:PCy(R-) = X; uw Hpyu.

As an immediate consequence of the above realization
result we have that the functions in the range of the
Hankel map H s are infinitely often differentiable.

Corollary 3.4 Let Hy : PCir(R-) = C(Ry) be a
finite rank Hankel map. Then

1. each f € range(Hpr) is infinitely often continu-
ously differentiable.

2. M is infinitely often continuously differentiable.

3. if (A, B,C, D) is the left shift realization of M we
have for f € range(Har),

Af = f'.

4 Transfer functions

We can now consider the realization problem for ratio-
nal functions. Using the realization result of the pre-
vious section we are going to derive Fuhrmann’s shift
realization for rational models ([5]). The main tool to
achieve this will be a state space transformation which
is obtained by applying the Laplace transform to the
elements in the state space of the left shift realization.
Following the tutorial style of this paper we will recall
without proof some facts on Laplace transforms which
are important for our development. As general refer-
ences to these results on Laplace transforms see e.g.

([11],(12},3]).

Let £ be the set of piecewise continuous functions f :
R4 — K™ such that f(t)e~* — 0 as t — oo for some
a € R. A function f € £ is said to be in the set £, if
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ft)e™® — 0ast — oo forall b > a. For f € &, the
(one-sided) Laplace transform of f is given by

€n@= [ iera

for all s € C with Re(s) > a. Clearly the Laplace
transform could be defined on a larger class of func-
tions, but the presently chosen setup will be sufficient
for our purposes.

In the following Proposition some standard results are
being stated concerning the Laplace transform of the
impulse response of a system.

Proposition 4.1 Let (A, B,C,D) be a minimal sys-
tem and let M(t) ;= Ce!AB,t > 0. Then

1. M €&,, where a = max{Re(\) | A € 0(A)}.

2. (CM)(s) = C(sI—-A)™1B, for all s € C, Re(s) >
a.

3. LM is a rational matriz function which has no
poles in the half plane {s € C | Re(s) > a}.

We can now prove the realization result for rational
functions, i.e that each proper rational function can
be written as the transfer function of a linear system.
An important aspect of the result is that the particu-
lar realization, which is derived, is the transfer domain
equivalent of the left shift realization. The following re-
sult is nothing else but Fuhrmann’s shift realization for
rational models ([5]) stated and proved in our frame-
work.

Theorem 4.1 Let G be a proper rational matriz func-
tion. Then there exists a state space X and a minimal
system (A4, B, C, D) such that

G(s)=C(sI - A)'B+D, seC\o(4),

which is defined as follows: for a strictly proper rational
function f let (F(£))(s) := sf(s) — lim;00 8f(s), s €
C. Let Gp(s) := G(8)—G(00), s € C. The state space X
is defined to be the linear span of the spaces F*(G,K™),
k=0,1,2,.... The system maps are defined as,

B:K™ = X;u~ Gpu,
C:X = KPiz— lim sa(s),
8= OO
A:X - X,z Az,
where

(A:i)(s) = sz(s) — 81_1_)1{.10 se(s), seC.

D = G().
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