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Abstract: It is shown that reachable completely J-positive linear systems

of finit~. order are spectrally minimal.

1 Introduction

It is well-known (see e.g. [4],[7]) that a minimal finite dimensional linear system
(A, B, G, D) is spectrally minimal, i.e.

a(A) = a(G),

where a(A) denotes the set of eigenvalues of A and a(G) denotes the set of sin-
gularities of the rational transfer function G(z) = C(zI -A)-l B + D. This fact
is one of the key relationships between the transfer function description and the
state space description of system theory. Unfortunately, for infinite dimensional

systems spectral minimality does not hold in general. The issue is very subtle and
is, for example, related to the problem that the state space isomorphism theorem
does not hold in general for infinite dimensional systems (see e.g. [4]), i.e. two
reachable and observable infinite dimensional realization of a nonrational transfer
function need not be equivalent.

The work by Fuhrmann and co-workers has been fundamental for the current
understanding of the issue of spectral minimality for infinite dimensional systems
(see [4] for an exposition). Through this work it is clear that spectral minimality
results can still be obtained if certain restrictions are imposed on the problem. In
([4],[5]) it was shown that restricting the class of transfer functions to those which
are strictly non-cyclic, spectral minimality can be established for reachable and
observable realizations of such transfer functions. This work relies very heavily
on the functional calculus for shifts restricted to invariant subspaces. Another
mathematical tool, the spectral theorem and functional calculus for self-adjoint

Spectral Minimality of J-Positive
Linear Systems of Finite Order



71

and, respectively, normal operators, provides the techniques underlying the second
set of results. In these results ([1],[2]) spectral minimality is shown for infinite
dimensional reachable and observable systems (A, B, G, D) such that A is self-
adjoint and, respectively, normal. In a paper by Feintuch ([3]) further spectral
minimality results were obtained for the case when A is compact or a spectral
operator .

In this paper we will study systems with symmetry properties in an indefinite
metric. We will examine a class of systems which we consider to be a prototype
of a more general situation, more precisely, the class of completely J-positive
systems of finite order. For these systems, our main result, cf. Theorem 5, shows
that observable and reachable realizations are also spectrally minimal.

2 Preliminaries

Let 1£ be a Hilbert space with the scalar product denoted by ( ., .) and let J be a
fixed symmetry on 1£, that is J* = J = J-1. Then one can introduce an indefinite

inner product on 1£ denoted [., .]

[x,y] = (Jx,y), x, y E 1£.

The Hilbert space 1£ endowed with such an indefinite inner product [., .] is called a
Krezn space. Most often one does not fix the positive definite inner product (there
are infinitely many and all of them produce the same strong topology) of a Kreln
space, but even though this point of view is the most natural, we will not follow
this approach since we would have to introduce too much Kreln space terminology.

A bounded operator A E £(1£) is called J -selfadjoint if J A = A* J. It is clear that
the operator A is J-selfadjoint if and only if the operator J A is selfadjoint in the
Hilbert space 1£. A J-selfadjoint operator A on 1£ is called J -positive of order n
if J An ~ 0. Similarly one defines J-negative operators of order n. A J-positive
operator of order 1 is called simply a J-positive operator.

We briefly review some of the main results on the spectral theory for J-positive
operators which will be of importance in this paper. In the following we denote
by no the Boole algebra generated by intervals Ll in IR such that its boundary
aLl does not contain the point 0. We recall now a particular case of a celebrated
theorem of H. Langer and some of its consequences, cf. [8], [9].

Theorem 1 Let A E £(1£) be a J -positive operator of order n. Then o-(A) C JR

and there exists a mapping E: no-+ £(1£) , uniquely determined with the following

properties:

(1) E(L1) is J-selfadjointfor all L1 E no.
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(2) E is a Boole algebm morphism, that is, it is additive and multiplicative.

(3) E(JR) = I.

(4) For all £1 E no such that the polynomial tn is positive (negative) on £1, the

operator E(£1) is J-positive (J-negative).

(5) For all £1 E no the operator E(£1) is in {A}" (the bicommutant of the algebra

generated by the operator A).

(6) For all £1 E no we have a(AjE(£1)1i) ~ 3.

The mapping E which is uniquely associated to the J-positive operator A of some
finite order n is called the spectral function of A. As a consequence of Theorem 1,
the spectral function has also the following properties.

Corollary 1 With the notation as in Theorem 1 let .1 E no be closed and such

that O rt .1. Then:

(a) The function E.:! defined by

EL1(A) E(L1 n A), AEno,

can be extended uniquely to a bounded measure with supp E~ ~ ~.

(b) The operator AE(~) is similar with a selfadjoint operator on a Hilbert space,
in particular it has spectral measure.

(c) EJ1. is the spectral measure of the operator AE(.:1), in particular

AE(Ll) J td E(t).

11

Corollary 1 shows that the spectral function E of a J-positive operator of some
finite order n can be regarded as a, generally unbounded, spectral measure on
JR \ {0}.

According to the general theory of a selfadjoint definitizable operator A in a Kreln
space .K: [8], [9], the non-real points in the spectrum of A as well as the real points
in the spectrum a(A) where the spectral function E is not defined, the so-called
critical points, have some additional properties. For example, an isolated point in
the spectrum of A is necessarily an eigenvalue of finite geometric multiplicity ( that
is, the maximal length of Jordan chains). Also, if a critical point is an eigenvalue
then its geometric multiplicity is finite. In particular, in the case of a J-positive
operator of order n, its only possible critical point is O and, if it is an eigenvalue,
then its geometric multiplicity is less than or equal to n + 1.
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In this paper we consider linear systems, i.e. quadruples (A, B, G, D) where A E
L:(1i) is a contraction, B E L:(U,1i), G E L:(1i,Y), and D E L:(U,Y) and 1i, U,
and Yare Hilbert spaces. Usually the spaces U, 1i, and Yare called, respectively,
the input space, the state space and the output space. Also, the operators A, B, G ,
and D are called, respectively, the main operator, the input operator, the output
operator, and the feedthrough operator.

With every linear system (A, B, G, D) there is associated its transfer function
a: p(A) -t £(U, y) as follows

G(>.) = D + C{>.I -A)-l B, ,\ E p(A). (I)

Since the main operator A is assumed contractive, the transfer function is defined
and analytic for all 1>.1 > I.

Let us assume that U = y and that on 1{; there is fixed a symmetry J ( and

hence the associated Kreln space (1{;, [., -])). A linear system (A, B, G, D) is called
completely J -symmetric if the operator A is J-selfadjoint, G = J B., and D = D..
The completely J-symmetric system is called completely J -positive of order n if
the operator A is J-positive of order n.

In [6] an extensive analysis was carried out for J-positive systems of finite order,
but the question of spectral minimality was only partially resolved. It is the topic of
this paper to establish spectral minimality for reachable and observable J-positive
systems of finite order .

The transfer function of a completely J-symmetric system is given in the following
theorem.

Theorem 2 ( [6] ) Let ( A,B ,G ,D ) be a linear system which is completely J -positive
of order n, such that U = y = cm , and consider its transfer function G as in (1).

Then, there exist a J-positive operator N E £(1£), such that N2 = AN = 0, and

a symmetric matrix valued Borel measure dv on [-1,1] \ {0} such that

J
[-1,1]\{0}

tn
G(A) = D

~d

1

).n

The measure d v has also the following two properties.

(a) tnd v(t) is a positive matrix valued finite Borel measure on [-I, I];

(b) The function

!:
(3)

). (2)

1 1 ~g(Z) = -(G( -) -D) = L.., akZ'
Z Z k?:O

1

~B*JNB+

~~B*JAk-1B+
L.., >. k

k=l
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which is analytic for Izi < 1, has its Taylor coefficients

B*JAkB, 1 ~ k ~ n -1;

a = B*JNB+ J tndll(t), k=n;
( 4

)k [-1,1]\{0}

J tkd lI(t), k ~ n + 1.
[-1,1]\{0}

The measure d II is uniquely determined by these two properties, more precisely,
if E denotes the spectralfunction of A we have dll(t) = dB*JE(t)B, and the

operator N can be chosen

N = An -J tndE(t). (5)

IR\{O}

If, in addition, =1:1 ft O"p(A) then d II( { -1,1 } ) = 0 and lim Ilak II = 0.
k-too

The matrix valued measure d II as in Theorem 2 is called the defining measure
of the system (A, B, G, D). Under the assumptions of Theorem 2 and as a conse-
quence of the representation (2) it follows that the transfer function a has analytic

continuation onto C \ supp (d II).

Let U be a Hilbert space and assume that a: {z E c Ilzi > 1} -t L:(U) is an
operator valued function which is analytic everywhere on its domain of definition
and at infinity. One can define an operator valued analytic function g: ll) -t L:(U)

by
1 1

g(z) = -(a(-) -a(00)), Izi < 1.
z z

Then g has the Taylor expansion

g(z) = L8kzk, Izi < 1.

k?:O

Associated with the function g one can consider the block-operator Hankel matrix

80 81 82 ...8k
81 82 83 ...8k+1 ...
82 83 ...

H = (6)

8k

We consider again a completely J-positive system (A, B, B* J, D) of order n, where
J is a fixed symmetry on the state space 1i, and let U denote the input/output
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space. Following the general theory we consider 0: V(O)(~ 1{) -+ {fI, the observ-

ability operator defined by

V(O) = {h E 1{1 L IIB* JAkhl12 < 00},

k?;O

oh = (B* JAkh)k?;O, h E V(O).

By duality one introduces the reach ability operator R: V(R)(~ {fI) -+ 1{

1)(R) = {(Xk)k?;O E i~ I L IIAk BXkl12 < 00},

k?;O

R((Xk)k?;O) = L Ak BXk, (Xk)k?;O E 1)(R).

k?;O

Note that the domain of R is dense in it since it contains all the sequences with

finite support.

In the following results the observability and reachability of J-positive systems of

finite order are exmanined.

Theorem 3 ([6]) If :i:l ~ O"p(A) then V(O) is dense in 1{, 0 = R* J and R =

JO*, in particular both operators 0 and R are closed.

Corollary 2 ([6]) Assume that :i:l ~ O"p(A). Then the following assertions are

equivalent:

(i) the observability operator 0 is bounded;

(ii) the reachability operator R is bounded.

Recall that a system (A, B, G, D) is called observable if the observability operator 0
is bounded and injective. The system is called reachable if the reachability operator
R is bounded and has dense range. Note that, as a consequence of Theorem 3, the
completely J-positive system (A, B, B* J, D) of order n, such that :f:l ~ O"p(A), is
observable if and only if it is reachable. The kernel of the observability operator
is characterized as follows.

Proposition 1 ([6]) Let E be the spectral function and let N be the nilpotent
operator associated with the main operator A of the completely J -positive system
(A, B, B* J, D) of order n. Then

n
ker (0) = n ker (B" JAk) n n ker (B* JE(L\)) n ker (B" IN).

k=O L1ERo
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Following N.J. Young [10], we say that a system (A, B, C, D) is parbalanced if
the corresponding observability and reachability operators 0 and, respectively, R
are bounded and the observability gramian 0*0 coincide with the reach ability

gramian RR*.

The following realization result was also established in f6J

Theorem 4 Let U be a Hilbert space and let G: {z E C 11z1 > 1} -t £(U) be an
operator valued function which is analytic on its domain and at infinity, such that
G is symmetric, that is,

G(z) = G(z)*, Izl > 1.

If the Hankel block-operator matrix in (6) defines a bounded operator in e~ then
there exists a Krezn state space K with a specified fundamental symmetry J on K
such that G is realized by a completely J -symmetric linear system (A, B, B* J, D)
which is observable, reachable and parbalanced.

If, in addition, for some n ;::: 0 and alll A I > 1 the function G has the representation

n 1 1 1 J tn G(A) = D + L ::\"kSk-1 + ~r + F (::\"=-t)d v(t),

k=1 [-1,1]\{0}

where {Sk}~:~ is a family of bounded selfadjoint operators on U, D E £(U), D =
D*, r E £(U), r;::: 0, and v is a hermitian £(U)-valued measure on [-1,1] \ {0}
such that tnd v(t) is a finite and positive measure, then the realization (A, B, C, D)
constructed above is completely J -positive of order n.

3 Spectral Minimality

So far we have considered the transfer function of a discrete-time system (A,B,C,D)
as a function defined outside the closed disk in the complex plane with center 0
and radius larger than IIAJI. In order to study the question of spectral minimality
one needs to extend this definition. It is clear that the transfer function can be de-
fined as an analytic function on the resolvent set of A. Let now G be the maximal

analytic continuation of this function. The set of singularities u( G) of G are then
defined to be the complement of the points of analyticity of G. Clearly u(G) is a
closed set. The system (A, B, C, D) is called spectrally minimal if u( G) = u(A).

Proposition 2 Let (A;, B;, C;) be a discrete-time system with bounded system op-
erators and state space 1l; such that the corresponding observability (reachability)
operator 0; (~) is bounded i = 1,2. Assume that u(A1) nu(A2) = 0. Also assume
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that the resolvent sets of Al and A2 have only one component. Then the system

{A, E, C) given by

( Al 0 ) ( El ) ( )A = 0 A2 ' E = E2 ' C = C1 C2 ,

with state space 1£ := 1£1 E91£2 is observable (reachable) if and only if the systems
{Al, El, C1) and (A2, E2, C2) are obervable (reachable).

Proof: Let 1£i be the state space of the system {Ai, Ei, Ci), i = 1,2. Then
1£ = 1£1 E91£2 is the state space of {A, E, C) and 0 : 1£ -+ l~, x = {XI, X2) I--t

01Xl +02x2 is the observability operator of {A, E, C). Clearly 0 is bounded if and
onty if 01 and O2 are bounded. Moreover the injectivity of 0 implies injectivity
of 01 and O2. Therefore the observability of {A, E, C) implies the observability of
{A1, E1, C1) and {A2, E2, C2).

Now assume that {A1, E1, C1) and {A2, E2, C2) are observable but that (A, E,C)
is not observable. Then there exists x = {XI, X2) E 1£ = 1£1 E9 1£2 such that
0 = ox = 01xl + 02x2. Let Gi be the transfer function of the discrete-time

system (Ai, Xi, Ci). Note that for jzl > IIAill, i = 1,2,

00 1
Gi{z) = Ci{zI -Ai)-IXi = L ;;;+lCiA?Xi.

n=O

Since {C1A~Xl)n~1 = 01xl = -02x2 = -{C2A2x2)n~O' we have that G1{Z) =

-G2{Z), IzJ > max{IIA1II, IIA211}. Since by assumption the resolvent sets of A1
and A2 only have one component, this implies that G1 = -G2 and 0"{G1) =
a{ -G2) = a{G2).

Clearly O"(Gi) ~ O"(Ai), i = 1,2. Since by assumption a{Al) n a{A2) = 0 we have
that 0"{G1) n a{G2) = 0. As a(G1) = a{Gv, this implies that 0"{G1) = 0"{G2) = 0.
Hence G1 and G2 are analytic on C. But limlsl-+oo JIGi{s)1I = 0, i = 1,2. Hence
G1 = G2 = 0 on C. Therefore 01xl = -02x2 = 0. By the injectivity of 01 and O2
we have that xI = 0, X2 = 0 and hence x = (XI, X2) = 0. Therefore 0 is injective

and hence (A, E, C) is observable.

The statements concerning reachability follow by duality. .

We can now determine the spectral minimality of a reachable and observable com-
pletely J-positive realization of finite order. The part of the proof which deals
with the non-zero spectrum is inspired by the proof of the spectral minimality for
continuous-time symmetric systems with bounded operators in {[1]).

Theorem 5 Let (A, E, E* J, D) be a completely J -positive realization of finite or-
der of the transfer function G such that the reachability operator R has dense
range. Then the system is spectrally minimal, i.e. a(A) = O"{G).
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Proof: Note that the regions of analyticity of G and the resolvent of A have only
one connected component. By the earlier remarks we have that a(G) ~ a(A). We
therefore need to consider the reverse set inclusion.

Let Ll be a compact real interval which does not contain 0. Then either Ll C
( -00,0) or Ll C (0, +00). To make a choice, assume that Ll C (0, +00).

From the construction of the spectral function A of a J-positive operator of finite
order as in [9] we have

E(Ll) = lim lim -
2 1. 1 (zI- A)~ld z, (7)

0-+06-+0 1[1 C6
A.

where Llo = [a -£:, b + £:], assuming that Ll = [a, b], C~. is a rectangle symmetric

with respect to the real axis constructed around the interval Llo from which we
remove two segments of length 2<5 around the points of coordinates ( -£: + a, 0) and

(b +£:,0).

Let us assume now that G has analytic continuation in a neighbourhood of Ll.
Then, from (7) and taking into account that the system (A, B, B* J, D) is a real-
ization of G, applying the Cauchy formula we get

B* JE(Ll)B = limlim -21.1 (G(z) -D)dz = 0.
0-+06-+0 1[1 C6

A.

Taking into account of Theorem 1 it follows that E(Ll)1£ is a uniformly positive
subspace of 1£ and hence, for arbitrary u in the input/output space U we have

0 = (B* JE(Ll)Bu, u} = [E(Ll)Bu, E(Ll)Bu] ?: aIIE(Ll)BuI12,

for some a > 0. Then E(Ll)B = 0 follows and since the spectral function E

commutes with the main operator A we obtain

0 = Ak E(Ll)B = E(Ll)Ak B, k ?: 0.

From here we obtain that E(Ll)IR(R) = 0 and since it is assumed that the reacha-
bility operator R has dense range, it follows that E(Ll) = 0 and hence Llna(A) = 0.

We have therefore shown that a(A) \ {0} ~ a(G) and hence that a(A) \ {0} =

a(G) \ {0}.

Now we need to clarify the role of the point 0. If 0 E a(G) then the proof is
completed. Now assume that 0 't a(G). Since a(G) is closed this implies that
there exists a £: > 0 such that [-£:,£:] n a(G) = 0. If 0 't a(A) the proof is also

completed. It therefore remains to exclude the case that 0 E a(A). To do this
assume that 0 E a(A). Note that since a(A) \ {0} = a(G) \ {0}, we have that 0
is an isolated spectral point of A as by assumption [-£:,£:] na(G) = 0. But by [9]
this implies that 0 is an eigenvalue of A.
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Now consider .1r :=] -00, ~6[U]6, 00[ and .10 = [-6,6]. Let

(Ar, Er, or, D) := (E(.1r)AE(.1r), E(.1r)E, aE(.1r), D),

(Ao, Eo, 00,0) := (E(.1o)AE(.1o), E(.1o)E, aE(.1o), 0)
and define the corresponding state spaces Hr = E(.1r)H and Ho = E(.1o)H. Let
Gr and GO be the corresponding transfer functions. Note that since 0 E ap(A) the
system (Ao, Eo, 00,0) is not the zero system.

We have that the system (A, E, a, D) is the sum of these two systems. Since
(A, E, a, D) is reachable and observable and the spectra of Ar and Ao are disjoint
these two systems are also reachable and observable by the previous Proposition.
Also note that a(Ar) = a(G) n .1r and a(Ao) = ap(Ao) = {0}, where ap(Ao)

denotes the point spectrum of Ao.

Since Hr is a uniformly positive subspace the system (Ar, Er, or, D) is completely
J-symmetric with J = I. By the spectral minimality result of the first part of the
proof (or the spectral minimality result for self-adjoint systems in [1]) it follows

that
a(Gr) = a(Ar) = a(G) n .1r.

Since G = Gr + GO and the sets of singularities of the two functions Gr and Go

are disjoint, we have that

a(G) = a(Gr) U a(Go) = (a(G) n .1r) U u(GO)= a(G) U a(Go).

Since a(G) n {0} = 0 and a(Go) = {0}, this implies that a(Go) = 0.

On the other hand Ao is a nilpotent operator of finite order, more precisely, A~+l =

0, cf. [8], [9]. But then for z # 0,

00 N
Go(z) = ao(zI -AO)-l Eo = }: ;braoA~Eo = }: ;braoA~Eo.

n=O n=O

Therefore Go is a rational function. Since the system (Ao, Eo, 00,0) is minimal
this implies that this system is finite dimensional. By the spectral minimality of
minimal finite dimensional systems we have that

{0} = a(Ao) = a(Go).

This is a contradiction to a(Go) = 0. Hence 0 ~ a(A) if 0 ~ a(G) and therefore
a(A) = a(G). .
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