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Abstract

The question of the stabilization by state feedback of an infinite-dimensional continuous-time system is discussed. Systems
are introduced for which no state feedback exists such that the closed-loop system is exponentially stable. But it is shown
that a state feedback exists such that the closed-loop system is asymptotically stable. © 1998 Elsevier Science B.V. All

rights reserved.

Keywords. Infinite dimensional linear system; Stabilization; State feedback; Asymptotic stability; Exponential stability;

Blaschke product

1. Introduction

In this paper we will consider the stabilization of
an infinite-dimensional continuous-time system

%(t) = Ax(t) + Bu(?), (1a)
W(t) = Cx(t) + Du(z), (1b)

where x(¢)€X with X a separable Hilbert space,
u(t)e U, y(t)€ Y and where we assume that U and
Y are finite-dimensional spaces. For the purpose of
the discussion of this paper it is possible to make the
otherwise very restrictive assumption that the system
operators 4, B and C are bounded. We will refer to
this system by referring to the quadruple of system
operators (4,B,C,D). We call Eq. (1a) the input
system and refer to it by the pair (4, B). The pair of
operators (4, C) stands for the output system (1b).
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Two stability notions are of importance in our con-
text. The system (4, B, C, D) or the operator 4 is called
exponentially stable if there exist constants M >0 and
wo >0 such that

”etAH <M6_m0

for 1 >0. It is called asymptotically stable if for each
xeX

e“x—0

as t — oo. For a system which is not stable the clas-
sical state feedback stabilization problem is to find a
state feedback K : U — X such that 4 — BK is sta-
ble. The notion of stability which — to the best of my
knowledge — is always used in the discussion of the
stabilization of infinite-dimensional systems is that of
exponential stability, i.e. a state feedback is sought
such that the closed-loop system is exponentially sta-
ble (see e.g. [1]). The purpose of this paper is to
present systems which cannot be exponentially stabi-
lized, i.e. no bounded state feedback operator K ex-
ists such that the closed-loop system, i.e. 4 — BK is
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exponentially stable. But, we will show that it is nev-
ertheless possible to find a bounded state feedback
such that the closed-loop system is asymptotically sta-
ble. In fact, the systems that we consider are such
that the spectrum a(4) of 4 is contained in the closed
right half-plane. The “asymptotically stabilizing” state
feedback is so constructed to shift the spectrum to the
closed left half-plane. Based on the results presented
here one could argue that it might be worthwhile to
seek an “asymptotically stabilizing” state feedback
when exponential stabilization is not possible.

We denote by o(7") the spectrum of the operator 7.
If T is an operator on a Hilbert space the symbol 7*
stands for its adjoint.

2. The results

First, a result is presented which shows that if a
system satisfies a number of properties then it cannot
be exponentially stabilized but it can be asymptotically
stabilized.

Theorem 2.1. Let (4,B,C,D) be a continuous-time

infinite-dimensional system with finite-dimensional

input space, such that

1. A4,B are bounded operators.

2. A* is asymptotically anti-stable, i.e. for each
xEX, lim_oo e ™ x=0.

3. there exists a bounded and boundedly invertible P
such that

AP + PA™ = BB*.

Then

1. there exists no bounded operator K : X — U such
that A — BK is exponentially stable.

2. A — BB*P~! is asymptotically stable.

Proof. (1) Since 4* is asymptotically anti-stable,
ie. —A* is asymptotically stable, we have that
a(4*) C {s € C|Real(s)=0} (see e.g. ([5], Theorem
1.13, p. 109)). Since 4 is a bounded operator on
an infinite-dimensional space the spectrum of 4 has
an accumulation point in the closed right half-plane.
By Weyl’s theorem (see e.g. ([3], p. 96)) the accu-
mulation point p of the spectrum cannot be shifted
by a compact perturbation of 4. Note that for any
bounded K : X — U the operator BK is compact since
U is finite dimensional. Therefore, there exists no
bounded K such that 6(4 — BK) does not contain the
accumulation point of a(4).

For an operator 4 to be exponentially stable it is
necessary that sup{Real(1)| 1€ a(4)} <0 (see e.g.
([5], Corollary 1.5, p. 105)). This implies that no
state feedback exists such that 4 — BK is exponentially
stable.

(2) As

AP + PA* = BB*
we have that
A—BB*P ' =—p4*pP!.

Since A* is asymptotically anti-stable, —A4* is asymp-
totically stable. As P is bounded with bounded in-
verse P~! we have that —PA*P~! is asymptotically
stable and therefore, 4 — BB*P~! is asymptotically
stable. [

Having proved the general result we now need to
show the existence of a system with the required prop-
erties. We will need the following well-known lemma.
For the sake of completeness we will give the short
proof. Let (4, C) be an output system with bounded
operators 4 and C. Then the operator

0: X — L*([0,00]),

x = (Cex)=0

is called the observability operator of (4,C) (see
e.g. [2]).

Lemma 2.1. Let (4,B,C,D) be a continuous-time
system with bounded operators A and C. More-
over, assume that the observability operator O
is bounded and that A is asymptotically stable,
ie. lim;_ . e“x=0, for each x€X. Then with
P:=0%0,

A*P+ PA=—-C*C.

Proof. For x, y € X we have with P = 0*( that

((A*P+PA)x,y)
= (Ox, 0Ax) + (0Ax, Oy)

:/ <CetAx,Ce’AAy>+<CetAAx,CetAy> dt
0
~d “ 4
:/ a(Ce x,Cey) dr
0
= lim (Ce"x,Ce'y)|j=— (Cx,Cy)

T— 00

=—(C*"Cx,y),
which implies the result. [
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Theorem 2.2. There exists a continuous-time input

system (A,B) with one-dimensional input space U

and bounded operators A and B such that

1. A* is asymptotically anti-stable, i.e. lim_, . e~
=0 for eachxeX.

2. there exists a bounded operator P with bounded
inverse such that

tAx

AP + PA* = BB*.

Proof. Let Bl be an infinite Blaschke product which
is analytic in the open right half-plane and whose ze-
ros are contained in a bounded set. Such a Blaschke
product can easily be constructed, take e.g.

- l_ﬁ% _ﬁn
BI(s) :— ]i[l |1 —ﬁ5|j+E’

with B,:=1/(n+1)*, n=1,2,..., is a well defined
Blaschke product since Y .- Real(B,)/(1 + |Ba]*)
<oo (see e.g. ([4], p- 132)). Note that a Blaschke
product Bl with the above properties is analytic at co
and hence lim;_,~ ;e r Bls(4) exists, which shows
that the general assumption on transfer functions of
[6] is satisfied. Let now (4, Bs, Cs, D) be the re-
stricted shift realization of Bl ([2,6]). This realization
is spectrally minimal, i.e. a(4s) = o(Bly), since Bl is
non-cyclic [2, 6]. Here a(Bl) is the set of singular-
ities of Bl;, i.e. the complement of the maximal set
of analyticity of Bl. As Bl; is analytic at infinity we
have that 4, is bounded and hence also Bs and C are
bounded (Lemma 8.1 in [6]). Since (4, Bs, Cs, Ds) is
the left shift realization it is output normal, i.e. the
observability operator ¢ is bounded and P := 0* (0 =1
[6]. By the Lemma, we therefore, have that

A*P + PA;=—C*Cs.

As Ay is the generator of the left shift semi-
group we have that 4, is asymptotically stable, i.e.
lim,_, o e”sx =0 for each x € X.

Consider now the “anti-stable” transfer function
Bl,, i.e. the transfer function which is analytic in the
open left half-plane, given by

Bly(s) = (Bly(—5))",

As for s € C, Real(s) <0,

s € C, Real(s)<0.

Bly(s) = (Bls(_f))* =(Cs(—sI — As)_lBs + Ds)*
= —Bi(sI +4*)7'Cr + D!

we have that
(AsBa CaD) ::(_A:9Cs*a _B:’D:)

is a realization of Bl, such that 4 and B are bounded,
A is asymptotically anti-stable, i.e. e 74 x =ex — 0
as t — oo for each x € X. We also have that

AP + PA* — BB* =(—A)P + P(—A*)* — C*Cs=0.

Hence the input system (4, B) has the required prop-
erties. [

In the proof of the previous theorem an example was
constructed of a system that satisfies the conditions
of Theorem 2.1 using known results of the realiza-
tion theory of Blaschke products [6]. In fact, we have
constructed a realization of an “anti-stable” Blaschke
product Bl, which has all its roots in the open right
half-plane. The input system (4, B) is such that the
spectrum (A4 ) of A equals the complement of the max-
imal set of analyticity of Bl,. As shown, this system
cannot be exponentially stabilized. But, we find a state
feedback such that the closed loop system 4 — BK is
asymptotically stable. In fact, the state feedback shifts
the infinite spectrum of 4 to the closed left half-plane.

As has been pointed out correctly by a reviewer
of this paper state feedback for infinite-dimensional
systems has practical problems. The results presented
here should therefore not be taken to necessarily im-
ply a prescription for performing an actual control de-
sign. But, it is hoped that the results are of interest
to those who use state-space methods for the analy-
sis and design of infinite-dimensional control systems
where state feedback does play an important role as
part of an overall strategy which may also include the
design of an observer.
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