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Abstract

The question of the stabilization by state feedback of an in�nite-dimensional continuous-time system is discussed. Systems
are introduced for which no state feedback exists such that the closed-loop system is exponentially stable. But it is shown
that a state feedback exists such that the closed-loop system is asymptotically stable. c© 1998 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In this paper we will consider the stabilization of
an in�nite-dimensional continuous-time system

ẋ(t)=Ax(t) + Bu(t); (1a)

y(t)=Cx(t) + Du(t); (1b)

where x(t)∈X with X a separable Hilbert space,
u(t)∈U; y(t)∈Y and where we assume that U and
Y are �nite-dimensional spaces. For the purpose of
the discussion of this paper it is possible to make the
otherwise very restrictive assumption that the system
operators A, B and C are bounded. We will refer to
this system by referring to the quadruple of system
operators (A; B; C; D). We call Eq. (1a) the input
system and refer to it by the pair (A; B). The pair of
operators (A; C) stands for the output system (1b).
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Two stability notions are of importance in our con-
text. The system (A; B; C; D) or the operator A is called
exponentially stable if there exist constantsM¿0 and
!0¿0 such that

‖etA‖6Me−t!0
for t¿0. It is called asymptotically stable if for each
x∈X
etAx→ 0

as t→∞. For a system which is not stable the clas-
sical state feedback stabilization problem is to �nd a
state feedback K :U→X such that A − BK is sta-
ble. The notion of stability which – to the best of my
knowledge – is always used in the discussion of the
stabilization of in�nite-dimensional systems is that of
exponential stability, i.e. a state feedback is sought
such that the closed-loop system is exponentially sta-
ble (see e.g. [1]). The purpose of this paper is to
present systems which cannot be exponentially stabi-
lized, i.e. no bounded state feedback operator K ex-
ists such that the closed-loop system, i.e. A − BK is
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exponentially stable. But, we will show that it is nev-
ertheless possible to �nd a bounded state feedback
such that the closed-loop system is asymptotically sta-
ble. In fact, the systems that we consider are such
that the spectrum �(A) of A is contained in the closed
right half-plane. The “asymptotically stabilizing” state
feedback is so constructed to shift the spectrum to the
closed left half-plane. Based on the results presented
here one could argue that it might be worthwhile to
seek an “asymptotically stabilizing” state feedback
when exponential stabilization is not possible.
We denote by �(T ) the spectrum of the operator T .

If T is an operator on a Hilbert space the symbol T∗

stands for its adjoint.

2. The results

First, a result is presented which shows that if a
system satis�es a number of properties then it cannot
be exponentially stabilized but it can be asymptotically
stabilized.

Theorem 2.1. Let (A; B; C; D) be a continuous-time
in�nite-dimensional system with �nite-dimensional
input space, such that
1. A; B are bounded operators.
2. A∗ is asymptotically anti-stable, i.e. for each
x∈X , limt→∞ e−tA

∗
x=0.

3. there exists a bounded and boundedly invertible P
such that

AP + PA∗=BB∗:

Then
1. there exists no bounded operator K :X →U such
that A− BK is exponentially stable.

2. A− BB∗P−1 is asymptotically stable.

Proof. (1) Since A∗ is asymptotically anti-stable,
i.e. −A∗ is asymptotically stable, we have that
�(A∗)⊆{s∈C |Real(s)¿0} (see e.g. ([5], Theorem
1.13, p. 109)). Since A is a bounded operator on
an in�nite-dimensional space the spectrum of A has
an accumulation point in the closed right half-plane.
By Weyl’s theorem (see e.g. ([3], p. 96)) the accu-
mulation point p of the spectrum cannot be shifted
by a compact perturbation of A. Note that for any
bounded K :X →U the operator BK is compact since
U is �nite dimensional. Therefore, there exists no
bounded K such that �(A− BK) does not contain the
accumulation point of �(A).

For an operator Ã to be exponentially stable it is
necessary that sup{Real(�) | �∈ �(Ã )}¡0 (see e.g.
([5], Corollary 1.5, p. 105)). This implies that no
state feedback exists such that A−BK is exponentially
stable.
(2) As

AP + PA∗=BB∗

we have that

A− BB∗P−1 =−PA∗P−1:

Since A∗ is asymptotically anti-stable, −A∗ is asymp-
totically stable. As P is bounded with bounded in-
verse P−1 we have that −PA∗P−1 is asymptotically
stable and therefore, A − BB∗P−1 is asymptotically
stable.

Having proved the general result we now need to
show the existence of a system with the required prop-
erties. We will need the following well-known lemma.
For the sake of completeness we will give the short
proof. Let (A; C) be an output system with bounded
operators A and C. Then the operator

O :X → L2([0;∞[);
x 7→ (CetAx)t¿0

is called the observability operator of (A; C) (see
e.g. [2]).

Lemma 2.1. Let (A; B; C; D) be a continuous-time
system with bounded operators A and C. More-
over, assume that the observability operator O
is bounded and that A is asymptotically stable,
i.e. limt→∞ etAx=0, for each x∈X . Then with
P :=O∗O,

A∗P + PA=−C∗C:

Proof. For x; y∈X we have with P=O∗O that

〈(A∗P + PA)x; y〉
= 〈Ox;OAx〉+ 〈OAx;Oy〉

=
∫ ∞

0

〈
CetAx; CetAAy

〉
+
〈
CetAAx; CetAy

〉
dt

=
∫ ∞

0

d
dt

〈
CetAx; CetAy

〉
dt

= lim
�→∞

〈
CetAx; CetAy

〉 |�0 =−〈Cx; Cy〉
=−〈C∗Cx; y〉 ;

which implies the result.
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Theorem 2.2. There exists a continuous-time input
system (A; B) with one-dimensional input space U
and bounded operators A and B such that
1. A∗ is asymptotically anti-stable, i.e. lim→∞ e−tA

∗
x

=0 for each x∈X .
2. there exists a bounded operator P with bounded
inverse such that

AP + PA∗=BB∗:

Proof. Let Bls be an in�nite Blaschke product which
is analytic in the open right half-plane and whose ze-
ros are contained in a bounded set. Such a Blaschke
product can easily be constructed, take e.g.

Bl(s) :=
∞∏
n=1

|1− �2n|
1− �2n

s− �n
s+ �n

;

with �n := 1=(n+ 1)2, n=1; 2; : : : ; is a well de�ned
Blaschke product since

∑∞
n= 1 Real(�n)=(1 + |�n|2)

¡∞ (see e.g. ([4], p. 132)). Note that a Blaschke
product Bls with the above properties is analytic at∞
and hence lim�→∞; �∈R Bls(�) exists, which shows
that the general assumption on transfer functions of
[6] is satis�ed. Let now (As; Bs; Cs; Ds) be the re-
stricted shift realization of Bls ([2,6]). This realization
is spectrally minimal, i.e. �(As)= �(Bls), since Bls is
non-cyclic [2, 6]. Here �(Bls) is the set of singular-
ities of Bls, i.e. the complement of the maximal set
of analyticity of Bls. As Bls is analytic at in�nity we
have that As is bounded and hence also Bs and Cs are
bounded (Lemma 8.1 in [6]). Since (As; Bs; Cs; Ds) is
the left shift realization it is output normal, i.e. the
observability operator O is bounded and P :=O∗O= I
[6]. By the Lemma, we therefore, have that

A∗s P + PAs =−C∗
s Cs:

As As is the generator of the left shift semi-
group we have that As is asymptotically stable, i.e.
limt→∞ etAsx=0 for each x∈X .
Consider now the “anti-stable” transfer function

Bla, i.e. the transfer function which is analytic in the
open left half-plane, given by

Bla(s)= (Bls(− �s))∗; s∈C; Real(s)¡0:
As for s∈C; Real(s)¡0,

Bla(s) = (Bls(− �s))∗=(Cs(− �sI − As)−1Bs + Ds)∗
= −B∗s (sI + A∗s )−1C∗

s + D
∗
s

we have that

(A; B; C; D) := (−A∗s ; C∗
s ;−B∗s ; D∗

s )

is a realization of Bla such that A and B are bounded,
A is asymptotically anti-stable, i.e. e−tA

∗
x=etAsx → 0

as t→∞ for each x∈X . We also have that
AP + PA∗ − BB∗=(−A∗s )P + P(−A∗s )∗ − C∗

s Cs=0:

Hence the input system (A; B) has the required prop-
erties.

In the proof of the previous theorem an example was
constructed of a system that satis�es the conditions
of Theorem 2.1 using known results of the realiza-
tion theory of Blaschke products [6]. In fact, we have
constructed a realization of an “anti-stable” Blaschke
product Bla which has all its roots in the open right
half-plane. The input system (A; B) is such that the
spectrum �(A) of A equals the complement of the max-
imal set of analyticity of Bla. As shown, this system
cannot be exponentially stabilized. But, we �nd a state
feedback such that the closed loop system A− BK is
asymptotically stable. In fact, the state feedback shifts
the in�nite spectrum of A to the closed left half-plane.
As has been pointed out correctly by a reviewer

of this paper state feedback for in�nite-dimensional
systems has practical problems. The results presented
here should therefore not be taken to necessarily im-
ply a prescription for performing an actual control de-
sign. But, it is hoped that the results are of interest
to those who use state-space methods for the analy-
sis and design of in�nite-dimensional control systems
where state feedback does play an important role as
part of an overall strategy which may also include the
design of an observer.
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