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An introduction to the shift realization for finite dimensional continuous time systems

RAIMUND J. OBERY}

A new approach is presented for the realization of continuous-time finite dimensional linear systems. Using standard
results on Laplace transforms our results are also used to present a new derivation of Fuhrmann’s shift realization for

rational matrix functions.

1. Introduction

In the theory of linear dynamical systems the con-
nection between internal state space description and
external input—output description is of central import-
ance. Here the realization problem, i.e. the determina-
tion of a state-space system from knowledge of the
input—output map, is the difficult part. For finite dimen-
sional systems this problem has been solved for a long
time in the fundamental work by Kalman (see, e.g.
Kalman et al. 1960). The field of contributions to reali-
zation theory is vast. In this brief inroduction it is there-
fore impossible to try to adequately review all the
important contributions that were made. We therefore
concentrate on the aspects of the theory that are of
importance for this particular paper. Realization theory
for infinite dimensional systems was studied by several
authors in the 1970s (see e.g. Baras and Brockett 1973,
Fuhrmann 1975, Dewilde 1976, Helton 1976 a, b) where
the theory of shifts on invariant subspaces played a par-
ticularly important role. In all these contributions
assumptions had to be made on the stability of the
system that is being considered. Another important
step was done in the work by Fuhrmann (1976).
Motivated by the powerful results for infinite dimen-
sional he examined finite dimensional systems from the
point of view of shift realizations. Through the intro-
duction of his polynomial and rational models he man-
aged to bridge the gap between the approaches built on
shift realizations and Kalman’s module theoretic
approach. At the same time he was able to remove the
stability assumption that was necessary in the infinite
dimensional context. In common with Kalman’s work
his work essentially concentrated on discrete-time
systems. These results can of course be applied to the
finite dimensional continuous-time realization problem.
But it often appears artificial to determine a state space
realization of a continuous-time system by what are
essentially techniques motivated by and typically used
for the study of discrete-time systems, e.g. the use of
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discrete-time shifts. In this paper an approach is devel-
oped that stays within the realm of continuous-time
systems and does not rquire advanced mathematical
methods such as, for example, the work by Yamamoto
(1981, 1982), which is mainly devoted to infinite dimen-
sional systems. In fact the approach to the realization
problem presented in this paper was developed by the
author as part of a graduate course on linear system
theory which mainly focuses on finite dimensional con-
tinuous-time systems. Another objective of this paper is
to try to clearly explain the role that Hankel type maps
play in the derivation of realizations for finite dimen-
sional continuous-time systems.

The paper has some tutorial character in that we try
to present the complete development of the approach. In
the appendix we will therefore also give the proofs for
some known results formulated to fit our framework.
Our approach is equally valid for systems with coeffi-
cients in the real or complex numbers. We denote by K
the field of scalars which could either be the real field or
the complex field.

A (continuous-line) time-invariant linear n-dimen-
sional state space system is as usual given in the follow-
ing way by a state space X, which is an n dimensional
Euclidean space over the field K, and by a quadruple of
linear transformations A4:X —X, B:K" - X,
C: X - K, D: K" — I, such that

() = Ax(1) + Bu(r),  x(to) = %o (1)
y(#) = Cx(1) + Du(2) 2

t > ty,t € R If a basis is given in the state space X we
can identify X with IK” and we can think of the trans-
formations 4, B and C to be given in matrix form. We
will also often refer to a system by referring to its quad-
ruple of transformations (4, B, C, D).

If the input u is piecewise continuous, the solution to
the set of differential equations is given by

!
x() = J =74 Buy(r) dr + el 0Mx,
f
and the output is given as a function of the input in the
following way
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t
W) = J C =D By(r) dr + Ce~®4x, 4 Du(r),

to

t>t (3)

If we assume that the initial conditions are zero, then
this convolution map (3) completely describes the input—
output behaviour of the state space system. This leads us
to the second definition of a system which we will con-
sider, i.e. a definition through convolution maps.

Let C(R) be the set of continuous K?-valued func-
tions on R and let PC(R) be the set of piecewise con-
tinuous functions on R and let PC,(R) be the subset of
PC(R) of piecewise continuous functions on R that are
zero for ¢ ‘negative enough’, i.e. for each f € PC,(R)
there exists £, such that £ () = 0 for ¢ < t,.

Definition 1: Let M(z) € K?*™, ¢t > 0, be a continuous
function and let D € &*™. Then the map

10y p: PC,(R) - PC(R); u—y

where y(f) = fioo M(t —m)u(t)dr + Du(t), teR, is
called the input—output map with symbol M and feed-
through term D.

To avoid convergence problems we have restricted
the inputs to be zero for large enough negative time. If
(4, B, C, D) is a state space system, then the input—out-
put map IOy p with symbol M(f) = Ce"'B, t >0, is
called the input—output map associated with the state
space system. It is easily seen that two state space
systems that are related by a state space transformation
have the same associated input—output map. A formula-
tion of the realization problem is to determine con-
ditions under which an input—output map is in fact the
input—output map of a state space system.

In order to show that this input—output map is well
defined with range in PC(IR), we show in the next prop-
osition that if D = 0 then the range of 10, is in C(R).
A proof is given in the appendix.

Proposition 1: Let M be a continuous function on R,.
Then for the input—output map IOy p with D =0

range(I0yp) € C(R)

The realization problem has been posed in a number
of different, though equivalent, formulations. From our
point of view there are essentially two classes of formu-
lations that are of importance. One is a time domain
formulation and the other is a frequency domain
formulation. In the time domain formulation the
question is asked whether a certain input-output
description is the input—output description of a linear
finite dimensional system. In the frequency domain
formulation the question is asked whether given a
proper rational function G, can it be written as the

transfer function of a linear system (4, B,C, D), i.e. is
G(s)=C(sI - A)"'B+D,seC?

In the following section we introduce the new defini-
tions of observability, reachability and Hankel maps
and discuss their connections. The observability and
reachability maps are used to define the reachability
and observability of a system. In the subsequent section
the time domain realization problem is solved using a
left shift realization. The construction heavily relies on
properties of the range of the Hankel map since this
range space serves as the state space of the realization.
In the final section we will use the Laplace transform as
a state space transformation to derive a solution for the
frequency domain realization problem from the solution
to the time domain problem. This in fact provides a
novel approach to derive Fuhrmann’s shift realization
(Fuhrmann 1976) for rational transfer functions.

1.1. Notation

Denote by K the real field R or the complex field C.
R, ={AeRX>0}. R_.={AeRA<0}. By a
Euclidean space we mean a finite dimensional vector
space over K = R or i = C, with inner product (-,-}.
The inner product is understood to be linear in the first
component and anti-linear in the second component.
C(I) stands for the set of (vector/matrix-valued) contin-
uous functions on the interval I C R, which can be
unbounded. PC(I) stands for the set of piecewise con-
tinuous (vector-valued) functions on the interval 7 C R.
If I is a bounded interval, f is in PC(I) if f has at most
a finite number of discontinuities on I and at each point
p in I the left and right limits of f exist and are finite. If
I is infinite, f is in PC(I) if for each bounded interval
I, C I, the restriction of f to I is in PC(ly). PC,(I)
denotes the subset of truncated functions of PC,(I). A
function f € PC(I) is called truncated if there exists
tr € R, s.t. f(t) =0 for t < t;. The constant ¢, depends
on f. o(T) denotes the set of eigenvalues of the linear
map 7. ker(T) stands for the kernel of the linear map T
and range(T) stands for the range of the linear map T.
The rank of the linear map 7 is denoted by rank(T). T|,
denotes the restriction of the map T to the subspace V.
|la|| stands for the norm of the map or vector a. A L B
denotes that the set A is orthogonal to the set B. The
characteristic function x, is defined by x,(x) =1 if
x€Aand x(x)=0if x & 4.

2. Reachability, observability and Hankel maps

Central notions in systems theory are those of the
reachability and observability of a system. We give defi-
nitions of these notions which are suitable to our way of
studying linear systems. The observability map O is
defined as the map which maps the state of the system
at time zero to the output of the system for positive time
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if no input is applied to the system. A system is then
called observable if no non-zero state is mapped to the
zero output. The reachability map maps a given input
function in PC,(R_) to the state that is reached at time
zero if this input is applied from time —oo to time 0. A
system is called reachable if all states in the state space
can be reached in this way.

Definition 2: Let (4,B,C,D) be a linear system with
state space X, then

(1) the map

C:X - CR,);  x=(Cex)
is called the observability map of the system. The
system is called observable if Ox = 0 implies that
x =0, i.e. if ker(O) = {0}.

(2) the map

R: PC,(R_) > X; uv—>r e ™ Bu(r)dr
-0

is called the reachability map of the system. The
system is called reachable if range (R) = X.

A state space system is called minimal if it is both
observable and reachable.

In order to avoid possible problems with the conver-
gence of the integral in the definition of the reachability
map for systems, the inputs have been restricted to the
class of truncated piecewise continuous functions on R_,
i.e. to functions in PC, (R_).

Clearly O and R are linear maps. Since the domain
of O and the range space of R is the n-dimensional state
space X, the rank of O and R is at most #. An n-dimen-
sional linear system is therefore observable if and only if
the observability map O has rank ». It is reachable if and
only if the reachability map has rank n.

The following proposition shows that our notion of
reachability leads to the usual reachability criterion (see
e.g. Kailath 1980). By duality the same also applies to
the observability criterion.

Proposition 2: An n-dimensional system (A, B, C,D) is
reachable if and only if

rank[B AB A’B A" 'Bl=n
Moreover, range (R) = span{ A*BIK™ | k > 0}.

Proof: First recall that there exist continuous func-
tions ag(?),...,0,—1(t), t > 0, such that

e = i(l [k Ak = i (4,1 >0

=0 k=0

Let x L range ([B AB A*B --
u € PC,(R_)

- A™'B)). Since then for

0
—00

n—1 0
xl Z AkBJ op(—ru(r)dr = J e ™ Bu(r)dr
k=0 —o0

=Ru

we have that x .l range(R) and hence range(R) C
range (B AB A°B --- A""'B)).
Let now xlrange(R). Hence (x,jf e_TA‘Bx

u(t)dr) =0 for allu € PC,(R_). Set u(r) := B ™ x x
Xj-1,01(7), for 7 < 0. Then u € PC,(R_) and

0= <x, r CTABB* e_TA*XX[_l,()] (T) dT>

= r |1B* ™ x|? dr
-1

Hence B*e ™ x = 0, for —1 < 7 < 0. Taking the kth
derivative of this function and evaluating it at 0 we
have for k>0, that B* (A*)kx =0, and therefore for
up € K", 0= (x,4*Buy), which implies that
x Lrange([B AB A’B --- A"'B]). Hence

range (B AB A’B A""'B]) C range (R)

Together with the previous inclusion this implies
equality of the sets. Therefore

n=rank([B AB A*B --- A"'B))

if and only if rank (R) = n which is the case if and only
if the system is reachable.

By a standard application of the Cayley Hamilton
theorem we have moreover that

range (R) = span {A* BIK™ | k > 0} O

An important map in our study of linear systems is
the so-called Hankel map. The Hankel map that is as-
sociated with a system maps ‘past’ inputs of the system
into ‘future’ outputs. Before clarifying this point further,
we will define what we mean by a Hankel map.

Definition 3: Let M(r) € K™, t > 0, be a continuous
function. Then the map

Hy : PC,(R.) — C(R,);

w0y = [ MCrutr)ar
is called the Hankel map with symbol M.

The Hankel map Hj, is related to the input—output
map 10y, p as follows. Let D = 0 and let u € PC,(R) be
an input function defined for negative time. We can
extend this function to a function u, defined on the
whole time axis by requiring it to be zero for positive
time, i.e. u,(¢) = u(z) for t <0 and u,(f) =0 for ¢t > 0.
Then

-2

-y
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[Hy (w)](2) = [1041,p()](2)

for ¢ > 0. Hence the Hankel map maps those inputs of
an input-output map with D = 0, that are zero for posi-
tive time, to the outputs of the system for positive time.
That the range of the Hankel map is contained in C(R,)
is therefore a consequence of Proposition 1. The defini-
tion of the Hankel map follows the same philosophy
that underlies the use of Hankel operators in the realiza-
tion theory of stable continuous-time (infinite-dimen-
sional) systems (see e.g. Fuhrmann 1981). What is
important from our point of view is that with this defi-
nition of the Hankel map no stability assumptions have
to be made on the systems that are being studied.

The particular application of Hankel maps that we
have in mind is when the symbol M of the Hankel map
is in fact the impulse response of a linear system
(4,B,C,D), ie. M(t)=Ce“B, t>0. This Hankel
map is called the Hankel map associated with the linear
system.

In the following proposition we show that if the
symbol of the Hankel map is the impulse response of
a system then the reachability and observability maps of
the system introduce a factorization of the Hankel map.

Proposition 3: Let (4, B,C,D) be a linear system and
let M(t):=Ce"B, t>0. Let O be the observability
map and let R be the reachability map of the system
(4,B,C,D), then the Hankel map Hy with symbol M
can be factored as

HM=0R

Proof: The proof is a simple verification. O

In the following proposition we are going to show
that the Hankel map of a minimal n-dimensional system
has rank n.

Proposition 4: Let (A,B,C,D) be an n-dimensional
system. Let M(t) :== CeAB, t > 0. Then

(1) the Hankel map with symbol M has at most rank
n.

(2) the Hankel map has rank n if and only if
(4, B, C, D) is minimal.

Proof:
(1) By Proposition 3 we have that

Since @ has as its domain the n-dimensional
state space X and R maps into X we have that

rank (Hyg) < min (rank (O),rank (R)) <n

(2) Now assume that (4, B, C, D) is minimal. Since
range (R) = X which is an n-dimensional space

we have that rank (R) = n. Since the domain of
O is X we therefore have that rank (Hys) = n if
rank (O) = n. But this is the case since the system
is observable.

Now assume that rank (H) =n, but that
(4,B,C,D) is not minimal. Then either
rank (O) or rank (R) is strictly less than n. But
this shows that

rank (Hys) < min (rank (O),rank (R)) <n

which is a contradiction. 0

The range of the Hankel map associated with a
system can be described easily in terms of the system
maps. As a consequence we have that all functions in
the range of such a Hankel map are infinitely often
continuously differentiable. This is of importance in par-
ticular in connection with our approach to realization
theory.

Corollary 1: Assume that (A,B,C,D) is a reachable
system. With the notation of the previous proposition we

have 4
range (Hy) = {(Ce"'x) ;50| x € X}

where X is the state-space of the system. Moreover each
f € range (Hy,) is infinitely often continuously differenti-
able.

Proof: The result follows since
range (Hy) = range (OR) = {Ox|x € X}
= {(Ce"x),5 | x € X}

This representation implies that each function in
range (H,,) is infinitely often continuously differenti-
able. O

3. The time domain realization problem

In the introductory section we discussed two repre-
sentations for linear systems. One representation was in
terms of state space models, the other representation
was in terms of input—output maps. We immediately
saw that a state space model gave rise in a natural
way to an input—output map. In this section we are
going to study the time domain realization problem,
i.e. we are going to establish necessary and sufficient
conditions for an input-output map to be the input-
output map of a state space system. This problem is of
course the same as asking under which conditions can a
function M in C(R,) be written as the impulse response
of a linear system (4,B,C,D), i.e. M(t) = Ce"B for
t > 0. It follows from the results in the previous section
that a necessary condition is that the Hankel map Hj, is
of finite rank. We will show that this condition is also
sufficient.
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Before discussing the approach to the construction
of the realization we need to introduce the left shift since
it plays a crucial role in what follows.

Definition 4: For ¢t > 0, the map
L:CRy) —» CRy);  [f (N]no(Lef ) = [f(T+ )50

is called the left shift (with increment t) on C(R.).
Similarly, for ¢ > 0, the map

L,: PC,,(R_) — PCtr(R_)
[‘f(T)]TSO — Ltf — [Ltf(T)]st‘:' .

flr+19), 74+:<0,
- 0, 74+1>0,

7<0

is called the left shift (with increment f) on PC,(R_).

Note that there is a slight abuse of notation in that
we use the same letter to denote the left shift both on the
space C(R,) and on the space PC,(R_).

Our approach to the time domain realization prob-
lem of a function M € C(R,) is as follows. Analogously
to the derivation of the left shift realization in the dis-
crete-time and infinite-dimensional case (Fuhrman 1981)
the state space X is chosen to be the range of the Hankel
map H,,, ie. X = range (H,y)

The input map B: K" — X is then defined as the map
multiplying a constant vector # € K™ by the symbol M,
i.e. for u € K™ we set

Bu := Mu

Clearly Bu is in C(R,) for each u € K" since M is
assumed to be continuous. But it is not immediately
clear that B as defined here maps into the state space,
i.e. into the range of H,,. That this is indeed the case is
established in Lemma 1. The readout map C is defined
by the point evaluation

Cx = x(0)

for x € X. Since X is a finite dimensional subspace of
the space of continuous function C(R_ ) no questions of
boundedness of this map arise. The other key element in
the construction of the realization is the left-shift semi-
group (L,),»o- We have for 1 > 0 and u € K" that

CL,Bu = CL,Mu = (L,Mu)(0) = M(t)u

This simple computation shows that the realization
problem is solved if we can find a linear map A4 acting
on the state space X such that ¢! = (L) x for ¢ > 0. For
this to be true the left shift L, has to leave the state space
invariant, i.e. the range of the Hankel map H,,. This is
established in Corollary 2. The remaining question
whether a semigroup of linear maps on a finite dimen-
sional space can be the representation as the exponential
- of a linear map is addressed in Proposition 6.

The key step in showing that the left shift leaves the
range of the Hankel map invariant, is given in the fol-
lowing result. There it is shown that the Hankel map
intertwines the left shift.

Proposition 5: Let Hy be a Hankel map. Then for
eacht>0
HyL, = LHy

Proof: In order to prove the statement, let

u € PCy,(R_). Then for t > 0

ki) = [ M- 9(Eas)as

=r M(1 — s)u(t +s) ds

where we set u(r) := 0 for r > 0. But this last integral is
equal to

Jt_m M(t+t—r)u(r)dr= JO M(T+t—r)u(r)dr

-0

On the other hand, for 7 > 0

(L Hpu)(1) = (L, (foo M(- — s)u(s) ds) ) (1)

=J;M(r+t—s)u(s)ds

which shows that Hy L, = L H,,. O

The following corollary shows that the range and
kernel of a Hankel map are invariant under the left
shift. This is an important property and will be crucial
for the realization theory presented later.

Corollary 2: Under the assumptions of the previous
proposition we have

(1) range (Hyy) is invariant under L,, ie. for each
t >0, L, (range (Hy)) C range (Hy).
(2) ker (Hyy) is invariant under L,, i.e. for each t > 0,
L, (ker (Hyp)) C ker (Hy).
Proof:

(1) Let y € range(Hy;), i.e. y = Hpu, for some
ue€ PC,(R_). Then for t >0, L,y = L Hyu=
Hy L,u, and hence L,y € range (Hy).

(2) Let u € ker (Hyg). Then for all t > 0
HML,u = L,HMu = L‘O =0
i.e. Lu € ker (Hyy). : O

The following proposition states the well-known
result that a continuous semigroup of operators on a
finite dimensional Euclidean space can be written as

v



Shift realization for continuous time systems 337

the exponential function of a linear map. For the sake of
completeness of the presentation a proof of this propo-
sition is given in the appendix.

Proposition 6: Let X be a finite-dimensional Fuclidean
space and let T(t) : X — X, t > 0 be a semigroup of lin-
ear maps on X, ie. T(0)=1, T(t+s)=T()T(s), for
t,s>0,and ||T(t) —I|| — 0 as t — 0+. Then there ex-
ists a unique linear map A : X — X such that

T(1)=e" = Z%Ak
k=0""

for t > 0.

In order to show that the input map B as discussed
above is well-defined we need to show that M, is in the
range of the finite rank Hankel map H,, for each
#y € IK™. To prove this result we will first need to estab-
lish the following lemma whose rather technical proof is
given in the appendix.

Lemma 1: Let g1,g2,...,8, be a basis of an n-
dimensional subspace of the space of vector-valued
Sfunctions C(R,). Then there exist distinct points
ti,ta,. .., t, € Ry such that the matrix

g1(t) &) gn(t1)
_ g1(t)) g(t) gn(t2)
81 (tn) g2(tn) gn(tn)

has zero kernel. The left inverse F of G, i.e. FG=1, is
such that if fe C(R,) is a linear combination of

gl?g27 .. ’gn; i-e~
f=aVg +aPg +--- +alyg,
for some a(l)va(Z)a v ,a(n) € K then

oV f(t)
o® f(®)
: Fl .

o f(}n)

Moreover the subspace of C(R,) spanned by
£1,82,---,&n is closed under pointwise convergence.

We can now prove the following lemma which guar-
antees that the map B is well defined, i.e. maps into the
state space. In the single-input case this result also
admits another interpretation. The symbol M of the
Hankel map or the input—output map is also sometimes
called the ‘impulse response’ of the system which is often
heuristically introduced as being the output of the
system if its input is a pulse or delta function at time
0. In fact in the proof of the lemma we construct a
sequence of inputs that ‘approximate’ the delta function.

The corresponding outputs then converge pointwise to
the impulse response. With the help of the previous
lemma we then conclude that the impulse response is
in fact an element of the range of the Hankel map.
The impulse response therefore lies in the state space
of the realization that we are constructing.

Lemma 2: Let Hy be a Hankel map of finite rank n.
Then Muy € range (Hyy) for all uy € K™,

Proof: Since range (Hy) is an n-dimensional subspace
of C(R,) it is closed under pointwise convergence by
Lemma 1.

In order to show that Muy € range (Hj¢) for uy € K™
we now construct a sequence of functions u;, € PC,(R_)
such that y, = Hjsu; converges pointwise to Mu,. Since
range (Hy;) is closed under pointwise convergence we
therefore have that Mu, is in range (H,s). Define for

7<0and k>1
kuy, 027> —-1/k
() = { 0, r<-1/k
Let #5 > 0. Then by the continuity of M
Jim. | (B )} (10) — M (1)t

|

= jim|["_ 40 - k- motr) b — et

= lim
k—oo

r [kM(to — T)uo — kM(to)u()] dr
~1/k

)

< lim k J" 1Mty — TYuo — M{to)uol] dr
“1/k

. 1
< - — —
< klg{)lo kk rer[l—lfl/)l(z,O] || M(tg — T)ug — M (2g)upl|

= 1i1(r)1 | M (1o — T)ug — M (to)u|
70,

=0
This implies the result as range (H,s) is closed under
pointwise convergence. O

We are now in a position to prove the first realiza-
tion theorem.

Theorem 1: Let M € C(R,) such that Hy is a Hankel
map of finite rank n. Then there exists a minimal n-di-
mensional state space system (A, B, C, D) such that

M(t)=Ce“B, >0
Such a system is given by
X :=range (Hys) C C(Ry)

B: K" — X; ur> Bu := Mu

C: X - K,

x> Cx := x(0)
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and A: X — X, is such that for t > 0

el X - X; x— L,x

The map D: K" — WK is linear and arbitrary. The state
space X has an arbitrary Euclidean structure.

Proof: We need to show that the maps 4, B and C
are well defined. Since X C C(R,), the evaluation of
an element of X at zero is defined and hence the map
C is well defined. By Lemma 2 we have that the func-
tion Mu is in X for all u € IK" which shows that B is
well defined. Corollary 2 shows that X = range (Hy)
is invariant under L, ¢ > 0. It is easily verified that
(Lt),o is such that L,(0) =1, L,Lg = Ly, for t,5 > 0.
Let g1,82,...,8,. € C(R,) be a basis of X. Let
t,t,...,t, € R, be the distinct points as in Lemma 1
and let G and F be the corresponding matrices. We
now define an inner product structure on X by defin-
ing the Euclidean inner product on the coordinates of
each f € X with respect to the basis g1,g7,...,84, i.€.
for f, heX let a=(aM,a?,...,0™)’ c K" and
B=(B",59,...,8M7 ¢ K" be such that

f=aVg +a%, +---+alg,

h= g + %, + -+ 5",
Then we define

<f7 h)X = Za(')EG)— = <aa :6)
i=1

We now show that lim, o, |[Lf —=f|| =0 for each
f € X. This is the case since

tl_lgi \L.Sf ‘f ”

((Ltf)(tl) f()
(Lef )(82) f(&) H
= lim {|F -F
t—0+ : :
\ (LS ) (t) no
/f(t1+l) f(t)
fl+1) f(t)
= lim ||F - F
t—0+ .
\st+0/  \s0)
f(n) £(t)\
_ ”f 1) | _ | 1 ‘ o
£t 1))

Since X is finite dimensional the fact that
lim, gy |L,f —f]| =0 for each f € X implies that
lim,_o4 ||Lyx — I|| = 0. Hence all the conditions of
Proposition 6 are satisfied and therefore there exists a
linear map A: X — X such that for all 1 > 0

Ly = o'
Hence we have established that the maps 4, B and C are
well-defined.

It is easy to see that (4, B, C, D) is in fact a realiza-
tion of M, i.e. that M(t) = Ce"B, t > 0. Let u € K".
Then fort >0

Ce'Bu = Ce""Mu = CL,Mu = (L,Mu)(0) = M(t)u

which shows the claim. It remains to show that
(4,B,C,D) is a minimal system. Since (4,B,C,D) is
an n-dimensional system, Proposition 4 implies that
(4, B,C, D) is minimal since Hy, has rank n. Clearly,
the result is independent of the particular Euclidean
structure that is put on the state space X. O

The realization (4, B, C,D) introduced in the pre-
vious theorem is called the (left) shift realization. For
different approaches to obtain the left-shift realization
for infinite-dimensional continuous-time systems (see,
e.g. Helton 1976, Salamon 1989).

In § 1 it was shown that each state space system gives
rise to an input-output system. The following corollary
states that an input—output system is the input—output
system of a state space system if and only if the associ-
ated Hankel map has finite rank.

Corollary 3: Let M € C(R.). Then, the following two
statements are equivalent,

(1) the input-output map with kernel function M is
the input—output map of a state space system.

(2) the Hankel map Hy, has finite rank.

In the following corollary we show that for the left
shift realization the reachability and observability maps
can be derived. It turns out that the observability map is
the identity map on the state space, whereas the reach-
ability map is the Hankel map with symbol M whose
range is restricted to the state space.

Corollary 4: We use the notation of the previous the-
orem. Then the observability map O of the system
(4, B,C, D) is given by

0: X - C(R,); XX
and the reachability map R of the system is

R:PC,(R_) — X; ‘ur Hyu

Proof: Let x € X, then for ¢t >0
(Ox)(1) = Ce"x = CLx = (Lx)(0) = x(t + 0) = x(¢)
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which shows that Ox = x. Let u € PC,(R_), then for
t>0

0

(Ru)(2) = ( e~ ™ Bu(r) d¢> (£)

—00

J—00

- (0 L_.Bu(7) d'r) (1)

= ( ’ L_,M(-yu(r) dT) )

J—00

0
Lo M(t — Tu(r) dr = (Hyu) (1)

which shows that Ru = Hyu, for u € PC,(R_). O

As an immediate consequence of the above realiza-
tion result we have that the functions in the range of the
Hankel map H,, are infinitely often continuously differ-
entiable. Therefore the state space of the left shift reali-
zation is a space of infinitely often continuously
differentiable functions. In fact the 4 map acts on the
state space as a differentation operator.

Corollary 5: Let Hy: PC,(R_) — C(Ry) be a finite
rank Hankel map. Then
(1) each f € range (Hy) is infinitely often continu-
ously differentiable.
(2) M is infinitely often continuously differentiable.
(3) if (4, B, C, D) is the left shift realization of M we
have for [ € range (Hyy)

Af =f'

Proof:
(1) The result follows from realization theorem and
Corollary 1.
(2) This follows from (1) and Lemma 2.

(3) On X we have that L, = ¢'4, ¢ > 0. Therefore for
feX,andt >0

tlim L[ 4+7) = 7(0] = lim IS )0 S ()

lim (€470 - £ (9]
= lim 2 [(&™ - 1)/1()

= (4f)()

Since f is infinitely often continuously differentiable,
the right derivative equals the derivative of f and
hence f' = Af € X. ' O

4. The frequency domain realization problem

Having studied the realization problem in its time
domain formulation in the previous section, we now
consider the realization problem for rational functions.
In fact we will show how Fuhrmann’s shift realization
for rational models (Fuhrmann 1976) can be derived
from the shift realization that was studied in the pre-
vious section. The main tool to achieve this will be a
state space transformation which is obtained by apply-
ing the Laplace transform to the elements in the state
space of the left shift realization. Following the tutorial
style of this paper we will recall without proof some
facts on Laplace transforms which are important for
our development. As general references to these results
on Laplace transforms see, e.g. LePage (1961), Doetsch
(1974) and Korner (1988).

Let £ be the set of piecewise continuous functions
f:R, — K™ such that f(f)e™ —0 as t— oo for
some a € R. A function f € £ is said to be in the set
£, if f(1)e™® — 0 as t — oo for all b > a. For f €&,
the (one-sided) Laplace transform of f is given by

wn®=fﬂmmm

for all s € C with Re(s) > a. Clearly the Laplace trans-
form could be defined on a larger class of functions, but
the presently chosen setup will be sufficient for our pur-
poses.

In the following proposition some standard results
are being stated concerning the Laplace transform of the
impulse response of a system. The most important fact
from our point of view is that the transfer function of a
system, ie. the Laplace transform of its impulse
response is a proper rational (matrix-valued) function.
Recall that a rational function G is called proper if the
limit G(oo) of G at infinity is finite.

The frequency domain realization problem is, there-
fore, given a proper rational function G, to find a (mini-
mal) system (A4, B, C, D) such that G is that the transfer
function of the system, i.e. G(s) = C(sI — 4)"'B+ D,
seC.

Proposition 7: Let (A4,B,C,D) be a minimal system
and let M(t) :== Ce'4B, t > 0. Then

(1) M € E,, where a = max {Re(\)| X € o(A4)}.

) (CM)(s)=C(sI —A)"'B, for all seC,
Re(s) > a.

(3) LM is a proper rational matrix function which has
no poles in the half plane {s € C| Re(s) > a}.

In the next theorem a number of well-known proper-
ties of the one-sided Laplace transform are collected. In
stating the results we use the following convention for
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the limit of a Laplace transform (£ f )(s) as the indepen-
dent variable s converges to infinity

B (E1)(0) = lim (EF)+5)

X—+00
for some y € R. The limit is independent of the choice
of y.
Theorem 2: Let f € £,.
(1) (Linearity) If A, p€C, fe€&, g€& and

c>a,c>b, then \f+ug €&, and for all s € C
with Re(s) > c

[£OV + ug)l(s) = MLS)(s) + p(Le)(s)

(2) (Differentiation) Assume that [ is continuously
differentiable on 10,00[, and f' € E,, where we
have set f'(0):=lim,_ o, f'(¢). Set f(0+):=
lim,_o, f(t). Then for s € C, such that Re(s) > a

(Lf')s) = (LS )s) - f (0+)

(3) (Initial Value Theorem) Assume that f is con-
tinuously differentiable on 10,00 and f' €&,
where we have set f'(0) := lim,_,o, f'(f). Then

£(0+) = lim £(5) = lim 5(££ )(s)

(4) (Final Value Theorem) Let f € £, and assume
that f is continuously differentiable on 0, 00|
and f' € €, for some a <0, where we have set
f1(0) :=lim,_o, f'(t). Then lim,_ ., f(t) exists
and

lim f(z) = lim s(Cf)(s)

= x>1(;g}0(x + iy WLS)(x +iy)
y-—)

(5) (Injectivity) Let f €&, If (Lf)(s) =0 for all
s € C, Re(s) > a, then f(t) =0 for t > 0.

In the following well-known lemma we are going to
give a realization of a strictly proper rational function,
which is generally not minimal. A proper rational func-
tion G is called strictly proper if G(oo) = 0.

Lemma 3: Let H(s) be a p x m strictly proper rational
Sunction. Write H(s) = P(s)/q(s), where

P(S) =Pn_1S"_1 +P,,_2Sn_2+“'+P1S+Po
4s) ="+ @u 18" @5+ o

with P, e K™, q; € K, i=0,1,...,n— 1. Then

Om Im Om Om
Om 0m Im Om Om
A=
Om Im 0m
0m 0m Im
k'—qOIm —qum _qn—2Im -qn—llm)
(O
0,
B=
0,
L
C=(Py P ... Ppy Pp,y)

are such that for s € C\o(A)

H(s)=C(sI—A)™'B

Proof: This identity is easily verified. O

The result of the previous lemma is of course a rea-
lization result, in that for a given strictly proper rational
function a state space realization is constructed. One of
the less satisfactory aspects of this realization is that it is
not minimal if G is matrix-valued. A minimal realization
can of course always be obtained from a non-minimal
one, but then the structure of the realization will become
obscured. Fuhrmann’s shift realization in terms of
rational models (Fuhrmann 1976) provides a minimal
realization also for matrix-valued proper rational
functions. In the following theorem we state this realiza-
tion result in our language. While the result itself is of
course not new, we believe that its proof is new and
provides insights that are interesting in their own
right. The strategy for the proof is as follows. We first
obtain a symbol M whose Laplace transform is the
rational function G for which we seek a realization.
We then use the left shift realization (4, B,C,D) for
M using Theorem 1. This realization is also a realization
of G. Fuhrmann’s shift realization is then obtained from
the time domain realization by applying a state space
transformation which is the Laplace transform restricted
to the state space of (4, B, C, D). We therefore see that
Fuhrmann’s shift realization is nothing else but the fre-
quency domain version of the time domain shift realiza-
tion of Theorem 1.
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Theorem 3: Let G be a proper rational matrix func-
tion. Then there exists a state space X and a minimal
system (A, B, C, D) such that

G(s)=C(sI—A)'B+D, seC\o(4)

which is defined as follows. For a strictly proper rational
Sunction f let [F(f)](s) := sf(s) — lim,_,, 5 (s), s € C.
Let G,(s) := G(s) — G(c0), s € C. The state space X is
defined to be the linear span of the spaces Fk(Gle'”),
k=0,1,2,.... The system maps are defined as

B: K" - X; ur Gyu
C: X — K, x+— lim sx(s)
=0
A:X - X; x+— Ax,

where (Ax)(s) = (Fx)(s) = sx(s) — lim,_,, sx(s),s € C
D = G(x)

Proof: First note that by Lemma 3 there exists a
system (4, By, C;, Dy) such that

G(s) = C,(sI — 4;)"'By +D;,  s€C\o(4,)

Now consider the Hankel map H, with M(z) =
Ci e B, t > 0. Clearly M is continuous and H,, is of
finite rank. By the realization result of Theorem 1 we
can therefore write

M(t) =(C, CtAsz, t>0

where (4,,B,,C,,D,), D, =Dy, is the minimal left
shift realization of M. We now apply the Laplace trans-
form to this realization. The state space X, of the left
shift realization is X, = range (H,;), whose dimension
equals rank (Hys). By Corollary 1, X; = range (Hy;) =
{(C1¢"2x) 59| x € X;}. Hence by Proposition 7
each function in X, is in &, where a=
max {Re(A)| A € 0(4,)} and therefore admits a
Laplace transform. Let

X:={Lf|f € Xp}

The linearity and the injectivity of the Laplace trans-
form as established in Theorem 2 shows that the
Laplace transform induces a state space transformation
Ly, : X — X. Now define

(A7B, C’ D) = (‘CIX;AZLFXIZ, £X2B2’ C2£|_X12’D2)
Clearly (4, B, C, D) is minimal. Let u, € K", then
Buo = L:(Bzuo) = E(Muo) = Gpuo

Let x € X, and let f € X, be the unique element such
that £Lf = x. Then for s € C, Re(s) > a

(4x)(s) = (£|X2A2£|_X12x)(s) = (Lix,421)(s)
= (L, f)(s) = s(LS)(5) - tl_i{g f(®

= sx(s) — sllglo sx(s)
by Corollary 5 and Theorem 2
Cx = Coligx = Cof =f(0) = lim s(£f)(s) = lim sx(s)
=00 00

Since by Theorem 1 and Proposition 2, X, =
range (Hyy) = span { AXB,IK™ k > 0}, we have that

X = L(X,) = span {4*G,K™) |k > 0}
= span {Fk(Gle"’) |k > 0} O

5. Conclusions

A novel approach was presented to the time domain
realization problem. Central to the derivation is the
newly introduced notion of a Hankel map which is a
generalization of the notion of a Hankel operator on
L? spaces. This generalization allowed us to consider
also unstable systems. The realization that was obtained
is the left shift realization which has been extensively
studied in the infinite dimensional continuous-time
situation with the additional stability assumptions.

Using the Laplace transform as a state space trans-
formation, Fuhrmann’s rational model for a transfer
function was derived from the continuous-time time
domain shift realization.
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Appendix

Proof of Proposition 1: Let M be a continuous
function on R; and set M(r) =0 for r<0. Let
u € PC,(R). We need to show that y =IOy p(u) is
a continuous function on R, ie. for 4 € R and ¢ > 0
there exists 6 >0 such that if |f —1#] <6 then
l¥(t1) —y(2)|| <e. Let 1, € R be an arbitrary point
such that |t — 5| <1. Set fy :=max{f,} and
tm:=min{t;,2}. Since u¢€ PC,(R) there exists
T €R such that T <min{#,%} and u(r)=0 for
t<T.Now
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lly() = y(m)ll

’ J:o M(t, — Tu(r)dr

- J'_m M(t, — Tyu(r) dr
|

J —00

J'M [M(t, — 1) — M(ty — T)Ju(7) d7

—00

iy

IA

1M (23 — 7) = M(ty — 7)|| lu(7)| d7

= [ 1Mty = Dl )} a7

by

+ rm M (13 — 7) — M (8, — 7)|| lu()|| d7
T

< ( sup IIM(IM—T)H)( sup ||u(T)||)(tM—tm)

TE€[tmytu] TE[tm:tu]

+( sup ||M(ty —7) — M(tm — T)ll) J;m llu()ll d7

TE[T tm)

< KKty ~ |+ K3 sup [[M(t; —7) - M(t, —7)|

T€[T )
where
K; :=1+ sup ||M(7)]|
T€[0,1]

K;:=14+ sup
Tely—-1,0n+1]

llw()ll

N
K =1 +J |le(7)]| d7

T
Note that M is continuous on [0,00[ and hence
0 < K; < oo. As u is piecewise continuous and hence
bounded, we have that 0 < K, K3 < co. The function
M is continuous on the compact interval [0,7; + 1 — T
and is hence uniformly continuous on this interval.
Therefore for € > 0 there exists 6 > 0 such that

1M(ry) — M(m)|| < 2573

fOI' all T, T2 (S [O,tl + 1-— T] Wlth |T1 —T2| < 5 If t2 iS
chosen such that Lo

[~ €
-t <b:= mm{&m’l}
then for 7 € [T, min {#,, 1,}]

(la—7)— (-7 =t -] <6< 6

and 4 -1,

Ip—TE [O,max{tl,tz} — T] (- [0,[1 +
1 — T]. Hence ’

£
2K;

for all 7 € [T, min {¢, #,}]. With such a choice of #, we
therefore have by the above inequalities that

ly(t1) — y()|l < K1 K|ty — 23]
+K; sup [|M(y —7)—M(t, —7)|

T€[T )

1Mt =) — M(5, - 7)|| <

<Erioc
2727

Hence y is a continuous function on R. gd

A slightly different proof of a related result concern-
ing the convolution of two integrable functions can be
found in Appendix C of Koérner (1988).

The proof of Proposition 6 is a minor adaption of
the proof given in Rudin (1991) showing that the gen-
erator of a norm continuous semigroup is bounded.
Another proof of this proposition is given in Bellman
(1995), Theorem 4, page 173.

Proof of Proposition 6: Note that p — [f T(s)ds de-
fines a continuously differentiable function on [0, oo
which has a continuous right derivative at 0 given by
lim, o (1/p) [§ T(s)ds = I. Hence for p small enough

|

This implies that (1/p) [y T(s)ds is invertible and there-
fore fj T(s)ds is invertible. Now for 4 > 0

s -0 roa=1 ([ re+nas- [ 10)

<1

1 —%j: T(s)ds

0

1 p+h h
=—(J T(s)ds—j T(s)ds)
h\J, 0
and therefore

s -1= ([ 10 a1 T0w)

X (j: T(s) ds) B

Letting # — 07 in the above identity shows that
(1/R){(T (k) — I] converges in norm to A:[T(p) —1I]
(e T(s)ds)™.

It remains to show that T'(¢) = e*4, for ¢ > 0. We will
show that given 7 >0, we have that T(t) =e“ for
0<t<T. Let T>0 be fixed. Since ¢t — ||T(¢)|| and
t — ||e|| are continuous there is a constant C such
that ||T(s)|| le"|| < C for 0 <s,t < T. Given € >0 it
follows since

4
A= tim TO=T_ =1
t—0t t - t—0+ t

1
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that there exists a § > 0 such that

1 hA €
- - & — <
h||T(h) “<TC for0<h<$é

Let 0 < ¢t < T and choose n > 1 such that ¢t/n < 6. From
the semigroup property and the above inequality it then
follows that

T () — &) = || T(n %) _ Mt/na

n—1

35

k=0

TQn—mé)éWW‘

- T((n —k-1) 1) el+1)i/md
n

n—1 t
<Eo-s)
=0 n
< |l ( % ) _ elt/mAl| jeliima
€ t
<Cn—-<
S TE

Since € > 0 was arbitrary T(f) =e for 0 <t < T.

To show that A is unique, assume that 4, is such
that e =e for ¢>0. Then differentiating this
identity and evaluating at ¢ = 0, it follows that

A=A =4 =4 O

Proof of Lemma 1: We first show inductively that
there exist #,,...,t, € Ry such that G has zero
kernel. Let

G() =) &) - g

t > 0. Since g,82,...,8, are independent there exists
t; € R, such that the dimension of ker (G,) is less than
or equal to n— 1, where G; := G,(#;). This is the case
since otherwise there exists a non-zero vector
ooy oy -+ )" € K" such that

Gi(Da = a18)(t) + caga(t) + - + anga(t) =0

for ¢ > 0, which is a contradiction to the linear indepen-
dence of gy,...,g,. If the dimension of ker (G,) is zero
then G has zero kernel for t,...,t, chosen arbitrarily
and the existence of the required points #,,1,,...,¢, is
established.

Now assume that there are k distinct points
t,...,t; € R, 1 <k < n, such that the kernel of

gi(t1) g(t) gn(t1)

g1(t2) &(t) gn(t2)
Gk ==

gi1(t) (k) gn(t)

has dimension less than or equal to n — k. If the kernel
of G, is zero, define G by adding rows to G, for arbitrary
values of t;,1,...,2,. Then G also has zero kernel and
the claim is established. We therefore assume that the
kernel of G, is not zero, Now let

(1) &(n) &n(t1)

gi(t) &) gn(12)
gk+1(t) = :

a1(te) &(t) &n(te)

gt &) ... &
for ¢ > 0. Clearly for each ¢ > 0 we have that

dim (ker (Giy41(2))) > dim (ker (Gy))-
But if
dim (ker (Gy41(2))) = dim (ker (Gy))
for each ¢ > 0, then
ker (Gi41(2)) = ker (G)

for each ¢ > 0. Since the dimension of the kernel of G; is
. T n

not zero there exists a = (ay,...,qa,) €K', a#0,

such that for 1 > 0

Gin(Da=Ga=0

Considering the last row of Gy, () we therefore have
that a;2,(f) + aags(t) + -+ g, (1) =0 for ¢>0
which is a contradiction to the linear independence of
81,---,8n- Therefore there exists #,; >0 such that
dim (ker (Giy1(txy1))) > dim (ker (Gy)). Hence there
exists fr11 € Ry, tyr #1, i=1,...,k, such that the
dimension of the kernel of G,y := G 1(fey1) is less
than the dimension of the kernel of G, i.e. less than
n—k—1. If k=n setting G:= G, this completes the
proof of the claim. Also if the dimension of ker (Gi1)
is zero then the kernel of G is zero, where we have
defined G by adding rows to G, for arbitrary values
of t,13,...,t,. In all other cases continue inductively
until £ = n or until G, has zero kernel.

Since ker (G) = {0} there exists a matrix F such that
FG=1. Let f be an element of the space spanned by
the functions g, 8, ..., Let oV, 0@ ... o™ e K be
such that A

1) =gy () + aPgy(t) + -+ + g, (1)

for kK > 1, t > 0. Therefore
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f(n) ot
f(22) a?
=g

() o
and hence

oV f(n)

o® f(8)

. = f -

o Sf(t,)
Let now (f;),>, be a sequence in the subspace spanned
by g1,82,-.-,8, that converges pointwise to a function
S . Therefore there exist constants a; afcz yeens a,(c") such
that

fild) = ag1(1) + oD ga(r) + - + o gy (1)
fork > 1, t > 0. Hence

al(cl) Se(t)
a,(cz) Si(t2)
f .

af(") f;:(tn)

As k — oo we therefore have that the limit
o oV
0(2) a,(tz)
= lim
k—o00
o af?
Se(t) f(t)
Si(82) f(t2)
=F lim =F
k—OOO M
Sa(ta) f(t)

exists. But this implies that for ¢ > 0

f(1) = lim f(z)
= lim og1(t) + g, () + - - + o, (2)
=aWg(8) + aPgy(t) + -+ + g, (2)

thereby proving the claim. |
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