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An important step in the analysis of sensorgram
ata for BIAcore experiments is the subtraction of
eference cell data to remove the effects of the bulk
hift on the sensorgram of interest. It is shown that
his step can introduce errors in the measured kinetic
onstants. This phenomenon is investigated both the-
retically and with experimental data. © 1999 Academic

ress

Key Words: kinetic constants; surface plasmon reso-
ance; BIAcore; reference cell.

The use of optical biosensors for the analysis of mac-
omolecular interactions offers several advantages
ver more conventional approaches of affinity determi-
ation. First, the interacting components do not need
o be labeled. Second, the amounts of material needed
or analysis are relatively small. Third, multiple poten-
ial interactions can be analyzed in a relatively short
ime period.

In a BIAcore instrument soluble analyte is flowed
ver immobilized ligand and binding is monitored in
eal time using surface plasmon resonance (SPR)3

echnology. In the BIAcore 2000, flow of analyte over
our flow cells on a sensor chip allows the simultaneous
nalysis of multiple interactions to be carried out with
single analyte injection (see, e.g., Refs. 3 and 8 for

urveys of BIAcore methodology). One of the four flow
ells is usually used as a reference surface. For pro-

1 Permanent address: Center for Engineering Mathematics EC35,
niversity of Texas at Dallas, Richardson, TX 75083.
2 To whom correspondence should be addressed. Fax: (214) 648-

259.
3 Abbreviations used: SPR, surface plasmon resonance; HEL,
(
en egg lysozyme; PBST, phosphate-buffered saline containing
.01% Tween 20.

0

ein–protein interactions this reference surface is ei-
her a flow cell treated with the coupling chemistry in
he absence of added ligand or a flow cell coupled with
protein that is known not to interact with the analyte
nder analysis. Sensorgram data corresponding to the
eference surface is then subtracted from that corre-
ponding to the “binding” surface to remove effects of
efractive index changes due to analyte injection and
aseline drift.
Various artifacts are known to result in data that is

ifficult to interpret (see, e.g., 6). In order to reduce
ffects due to mass transport, rebinding, steric hin-
rance, and other transport-related artifacts, it is im-
ortant to couple the ligand at low density to the flow
ell (2, 4, 7, 9). This results in a low signal to noise
atio, which in turn can give rise to decreased accuracy
f the estimated kinetic constants (5). Measurements
f the association constant can be severely affected by
naccurate measurements of the analyte concentration.

In the current study we have addressed the effects of
aseline drift and bulk shift subtraction on the accu-
acy of the estimates of the kinetic constants. An ex-
ensive analysis has been carried out to investigate
his problem. The effects of subtracting data from dif-
erent reference cells, obtained from the same analyte
njection, have been investigated. The results indicate
hat significant errors can be introduced into the ki-
etic constants by the effects of random drifts in indi-
idual flow cells. Furthermore, these effects are exac-
rbated by increases in bulk shift and decreases in
igand coupling density.

ATERIALS AND METHODS

reparation/Source of Proteins
Hen egg lysozyme (HEL) was purchased from Sigma
St. Louis, MO). D1.3 antibody (1) was purified from

0003-2697/99 $30.00
Copyright © 1999 by Academic Press
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71REFERENCE CELL SELECTION
ybridoma supernatants using protein G–Sepharose
nd standard methods.

reparation of Sensor Chips

Flow cells of a CM5 chip were treated with a stan-
ard amine-coupling reagent (injecting 10 mM NaOAc,
H 4.8, instead of protein) or with amine-coupling re-
gents and D1.3 antibody. The coupling density of the
1.3 antibody was 270RU.

ata Collection

Experiments were run at 25°C (buffer only experi-
ents) and 20°C (D1.3 antibody–HEL experiments)
sing programmed methods and the BIAcore control
oftware. In experiments involving the HEL:D1.3 an-
ibody interaction, HEL was injected at concentrations
f 100, 10, and 1 nM in phosphate-buffered saline, pH
.2, containing 0.01% (v/v) Tween 20 (PBST, pH 7.2).
BST (pH 7.2) was used as running buffer for all ex-
eriments, and analyte injections were carried out us-
ng the kinject command. Buffers were degassed and
ltered through 0.2 mM cut-off Corning filters prior to
se. Experiments were run with multiple repeats for
ach set of conditions, and flow rates of 5 and 80 ml/min
ere used. All experiments were preceded by extensive
quilibration runs.

ata Processing

The data were analyzed using algorithms coded in
he high-level programming language MATLAB. The
ptimization toolbox in MATLAB was used to imple-
ent a nonlinear search routine to fit the kinetic pa-

ameters to the association and dissociation data in a
east squares sense. For each sensorgram a fit was
arried out for the association and dissociation phases
ollowing zero adjustment and subtraction of reference
ell sensorgrams. The time axes for the sensorgrams
ollected in the four flow cells were adjusted to com-
ensate for the varying time delays that are due to the
iffering lengths of the flow paths. These algorithms
ere used rather than the manufacturer’s software

ince they allowed for a more efficient and uniform
rocessing of the large data sets that were used in this
tudy. A comparison of our implementation of the es-
imation algorithms with those of the manufacturer
howed that they were at least equally accurate and
ppear to have fewer convergence problems.
For the simulation studies, data were simulated us-

ng the integrated form of Eq. [1] and independent
aussian noise was added. The analysis of the simu-
ated data was carried out in a way analogous to that
sed for the analysis of the experimental data. More

p
i

recise details of the simulations are given in the leg-
nds corresponding to the figures.

ESULTS

ationale

In order to measure the kinetic constants by BIAcore
rst (Step 1) buffer is flowed over the chip on which the
rotein is coupled. This is followed (Step 2) by flowing
he analyte over the chip. During this phase the asso-
iation constant can be measured. Immediately follow-
ng the analyte injection (Step 3) buffer is again flowed
ver the chip. During this step of the experiment the
issociation constant of the interaction can be deter-
ined by measuring the rate of decrease of the concen-

ration of the analyte–ligand complex on the chip. The
njection of analyte, i.e., Step 2, will typically lead to a
ulk shift, i.e., a significant change in signal which is
ainly due to the change in refractive index of the

nalyte in comparison with the buffer. This bulk shift
s also observed in a reference cell in which no protein
r a protein which does not bind to the analyte is
oupled. The sensorgram corresponding to this refer-
nce cell is then subtracted from the sensorgrams of
he flow cells in which the actual interaction is being
easured. This procedure can also subtract out other

rtifacts in the data such as baseline drift. In this
aper we investigate with both theoretical and exper-
mental means the effect of imperfections in this ap-
roach on the accuracy of the estimates.
The interactions that we study are assumed to obey

he following kinetic equations of a 1:1 interaction

dR
dt 5 konC~Rmax 2 R! 2 koff R, [1]

here R is the measured signal in resonance units
RU), k on is the association constant, k off is the dissoci-
tion constant, Rmax the maximum analyte-binding ca-
acity in RU, and C is the concentration of the analyte
hat is flowed over the chip during the association
hase. During the association phase (Step 2 of the
xperiment) the concentration term C is assumed to be
onstant. Before the association phase (Step 1) and
uring the dissociation phase (Step 3) the concentra-
ion is assumed to be 0. In fact, this equation can be
asily solved analytically both for the association and
or the dissociation phase (see below).

As discussed above, the sensorgram S, the measured
ignal, is made up of a contribution R which is due to
he changing concentration of the ligand–analyte com-

lex on the chip and the bulk shift B which possibly
ncludes other effects such as baseline drift, i.e.,



T
c
l
r
o
f
l
i
i
t

i
i
t
o
e

T
o
i
c

B

c
e
d
s
c
s
a
l
c
o
I
t
i
d
e
c
t
c
w
c
i
t

a
(
fl
“
s
s

t
A
t

E
C

i

F
m
o
b
a

72 OBER AND WARD
S~t! 5 R~t! 1 B~t!, t $ 0.

he part of the signal that is of interest is R, i.e., the
ontribution due to the changing concentration of the
igand–analyte complex. It is therefore important to
emove the contribution due to the disturbance B. In
rder to do this, in a standard experiment one of the
our flow cells will not have any ligand or an irrelevant
igand coupled to it. The signal B 1 in this reference cell
s then measured and subtracted from the signal S. It
s usually assumed that B 1 equals B and therefore that
he subtracted signal

Ssub 5 S 2 B1 5 R 1 B 2 B1

n fact equals S. The purpose of this paper is to exam-
ne both theoretically and experimentally to what ex-
ent this assumption is justified and what the effect is
n the measured kinetic constants if there is a nonzero
rror

DB 5 B 2 B1.

his study has been carried out by assessing the effects
f subtracting different reference cell data correspond-
ng to different uncoupled flow cells within the same
hip.

uffer Injections over Uncoupled Flow Cells

There is a certain arbitrariness concerning the
hoice of reference cell. The objective of the first set of
xperiments was to assess the extent of variability for
ata obtained from four identical flow cells within the
ame sensor chip. To this end simple experiments were
onducted in which buffer was injected over a CM5
ensor chip for which all cells were treated with the
mine coupling chemistry in the absence of protein
igand; i.e., buffer only was used as the “ligand” in the
oupling cycle. Buffer was then injected (using kinject)
ver all flow cells using aliquots of the running buffer.
n addition, one series of runs was carried out with
wofold diluted running buffer to assess the effects of
ntentionally introducing large bulk shifts (in this case,
ownwards) in the data. The results of 2 of a total of 36
xperiments are shown in Figs. 1 and 2. It follows very
learly that there can be considerable variability be-
ween the sensorgrams of the bulk shifts in the four
hannels, even when the running buffer is matched
ith the injected buffer. However, this variability be-

omes even more marked when larger bulk shifts are

ntroduced, e.g., by using buffer that is more dilute
han the running buffer (Fig. 2).

t
c

It should be noted that even if buffer is injected from
n aliquot of the running buffer, a bulk shift is seen
Fig. 1). Following subtraction of data for one of the
ow cells from that corresponding to the three other
identical” flow cells, the resulting signals (Fig. 1) show
ignificant drifts and offsets, especially during the as-
ociation phase.
Figure 2B shows the buffer runs of Figure 2A after

he sensorgram of flow channel 1 has been subtracted.
significant residual signal level during the dissocia-

ion phase is shown in Figure 2C.

ffects of Deterministic Errors on the Estimated Kinetic
onstants

In this subsection a theoretical study is carried out to
nvestigate the influence of the above mentioned dis-

IG. 1. (A) A representative set of sensorgrams (flow rate: 80
l/min) from the four flow cells of a buffer (PBST, pH 7.2) injection
ver an uncoupled chip. The data were zero adjusted. The injected
uffer was an aliquot of the running buffer. (B) Same data as in (A)
fter background subtraction using the data recorded in flow cell 1.
urbances on the accuracy of the estimated kinetic
onstants.
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issociation Constant

The dissociation signal of an experiment governed by
he kinetic model [1] is given by

diss~t! 5 ce 2koff t, t $ 0,

here c is a positive constant and k off is the dissocia-
ion constant. A method to estimate the dissociation
onstant k off is to differentiate the dissociation signal
nd to use linear regression to determine k off. In prac-
ice this is rarely done. However, for the idealized
tudy of this section in which we assume that no noise
s present, this approach provides an easy way to an-
lyze the estimation process. The signal diss differen-
iated at 0 is

diss9~0! 5
d
dt diss~t!ut50 5 2koffce 2koff tu t50 5 2koffdiss~0!.

n estimate k̂ off of the dissociation constant k off is then
iven by

k̂off 5 2
diss9~0!

diss~0!
. [2]

nder the current assumptions we have that the esti-
ate yields the correct constant, i.e., k̂ off 5 k off. This

esult is an idealized form of many of the other meth-
ds that are being employed to estimate the dissocia-
ion constant.

The topic of this paper is to analyze the influence of
he error DB in the signal on the accuracy of the
stimates of the kinetic constants. It is therefore as-
umed that the dissociation signal is given by

diss~t! 5 ce 2koff t 1 DB~t!, t $ 0,

here the only assumption on the disturbance term DB
s that it is differentiable at 0. If we apply the estima-
ion procedure of Eq. [2], we obtain

k̂off 5 2
diss9~0!

diss~0!
5

koffc 2 DB9~0!

c 1 DB~0!
. [3]

learly, if the disturbance term and its derivative are
ero at time t 5 0 then the correct constant is esti-
ated.
Limiting situations. For fixed disturbance term it

ollows that
IG. 2. (A) An experiment analogous to that shown in Fig. 1. In
his case the flow rate was changed to 5 ml/min. The buffer was a
wofold dilution of the running buffer, which resulted in a significant
ownward bulk shift. The time axis of the various flow cells was also
djusted to compensate for the differing delays which occur since the
engths of flow paths differ slightly for the different flow cells. (B)
k̂off3 koff,
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74 OBER AND WARD
s c increases towards infinity, irrespective of the dis-
urbance term. The implication is that even in the
resence of a disturbance term its influence decreases
s the size of the underlying signal increases. In con-
rast, as c decreases to 0 we have for a given distur-
ance component that

k̂off3
DB9~0!

DB~0!
.

his shows that as the signal level decreases the esti-
ated off-rate converges to a value that is independent

f the dissociation constant.
Error analysis. The relative error between the es-

imated dissociation constant k̂ off and k off is given by

U k̂off 2 koff

koff
U 5 UDB9~0! 1 DB~0!koff

koff ~c 1 DB~0!!
U . [4]

ssociation Constant

The association signal of an experiment governed by
he kinetic model [1] is given by

ass~t! 5 Req~1 2 e 2kobst!, t $ 0,

here R eq is a positive constant that stands for the
quilibrium level; i.e., R eq equals the limit of the asso-
iation signal as t approaches infinity, i.e., R eq 5
ss(`). The symbol k obs stands for the “observed on-
ate,” which is given by k obs 5 Ck on 1 k off, where C is
he analyte concentration. In most cases k obs is first
stimated. The actual association constant k on is then
omputed from k obs given knowledge of C and k off.
The observed on-rate can be estimated in a very

imilar fashion to the dissociation constant. For the
ime point t 0 . 0 we consider the derivative

ass9~t0! 5 kobsReqe 2kobst0

5 2kobsReq~1 2 e 2kobst0! 1 kobsReq

5 2kobsass~t 0! 1 kobsass~`!.

f we assume that R eq 5 ass(`) is known, then

kobs 5
ass9~t0!

ass~`! 2 ass~t0!
[5]

nd therefore

1 ass9~t0!

kon 5 C Sass~`! 2 ass~t0!

2 koffD . [6] c
c

For the purposes of analyzing the influence of the
bove-mentioned phenomena on the estimates of the
ssociation constant, a disturbance component DB is
dded to the association signal,

ass~t! 5 Req~1 2 e 2kobst! 1 DB~t!, t $ 0.

t is assumed that the disturbance term is differentia-
le at t 0 and that the limit DB(`) of the disturbance
erm as t approaches infinity is finite. From the expres-
ion for the on-rate estimate (Eq. [6]) we therefore have

k̂on 5
1
C S ass9~t0!

ass~`! 2 ass~t0!
2 koffD

5
1
C S kobsReqe 2kobst0 1 DB9~t0!

Reqe 2kobst0 1 DB~`! 2 DB~t0!
2 koffD .

Limiting situations. Analogously to the case of the
issociation constant, for a given disturbance DB, the
stimated association constant k̂ on converges to the
orrect value k on as the signal level increases to infin-
ty, i.e.,

k̂on3 kon,

s R eq 3 `. As the signal level decreases to 0, we
ee that k̂ on converges to a value that is independent of
he dissociation constant, i.e.,

k̂on3
1
C S DB9~t0!

DB~`! 2 DB~t0!
2 koffD

s R eq 3 0.
Error analysis. The relative error between the es-

imated association constant k̂ on and k on is given by

k̂on 2 kon

kon
U 5 U DB9~t0! 2 kobsDB~`! 1 kobsDB~t0!

konC~Reqe 2kobst0 1 DB~`! 2 DB~t0!!
U . [7]

omparison of the Theoretical Results with Simulations

The formulas for the errors (Eqs. [4] and [7]) were
erived using idealized assumptions which will not
ccur in practice when experimental data is analyzed.
he basic assumption behind these derivations was
hat the value of the association/dissociation curve and
ts derivative are known at a particular point in time.
ue to the presence of noise in experimental data this

s of course not a valid assumption, and iterative
earch methods are employed to estimate the kinetic

onstants from longer data segments. These formulas
an therefore only be expected to be an approximation
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75REFERENCE CELL SELECTION
f the errors that are encountered in the analysis of
xperimental data. The purpose of the study that is
arried out in this section is to investigate how accu-
ate these formulas are if they are compared with
stimates based on simulated data.
Figure 3A shows a comparison of the estimate of the

issociation constant based on Eq. [3] with the esti-
ates that are obtained from the simulated data using

n iterative search routine. Figure 3B shows a compar-
son of the error formula for the estimate of the disso-
iation constant with the errors that are encountered
sing the estimates obtained from the simulated data.
ignal levels ranging from 5 to 100 RU are used for this
imulated data since for protein–protein interactions
his is a suitable signal level to minimize effects due to
ebinding, mass transport (see discussion in the Intro-
uction). Figure 4 shows the analogous results for the
stimation of the association constant.
The disturbance terms that were used in the simu-

ations (Figs. 3 and 4) in the current study were rela-
ively small compared with the disturbance terms that
an be encountered due to the bulk shift subtraction
roblems that were discussed above. In fact, the slope
f the linear disturbance term was chosen to be slightly
ess than the limits set by the machine specifications
or baseline drift, a phenomenon that is much less
roblematic than the bulk-shift-induced artifacts being
iscussed here. It should be pointed out, however, that
oth in the analytical derivation of the error estimates
nd in the nonlinear search routine a disturbance term
as not included. Although at first this may appear to
e inappropriate, there are a number of reasons for
oing this. In a practical situation often only a short
ata segment can be used in the data analysis since
onger segments often display artifacts, including re-
inding phenomena. For short data segments the in-
lusion of drift terms provides notoriously unreliable
stimates. Moreover, the type of disturbance terms
hat arise from the bulk shift subtraction effects usu-
lly cannot be described as linear functions.

ffects of Different Experimental Reference Cell Data on the
nalysis of a Simulated Sensorgram

In order to study the effects of bulk shift subtraction
n the accuracy of the kinetic constants, the following
nalysis was carried out. A sensorgram was simulated
nd experimentally obtained bulk shift signals were
dded. The reason for carrying out this analysis was
hat in contrast to experimental data, in this situation
he kinetic constants that need to be recovered are
nown. For the simulated data, a curve for an interac-
ion of hypothetical on-rate of 1960 M21s21 and off-rate

23
f 5 3 10 was generated (R eq 5 20 RU). Reference cell
ata were produced by injecting buffer over four un-

i
i

oupled flow cells of a sensor chip using the BIAcore
000 (Fig. 5). The buffer was injected from either
apped or uncapped vials of aliquots of the running
uffer. Each row of Fig. 5 shows a series of three

IG. 3. (A) Estimated dissociation constants. The x-coordinate de-
otes the signal level, i.e., the starting point of the dissociation curve.
issociation data was simulated with dissociation constant k off 5
.005 s21. Zero mean Gaussian noise of standard deviation 0.25 RU
nd a disturbance term DB(t) 5 20.005t 1 0.5 (in RU) were added
o the simulated dissociation curve. This level of drift is within the
pecification of the instrument. The dissociation constant was then
stimated using a nonlinear search routine programmed in the high-
evel programming language Matlab. Each data point (x) is an aver-
ge of four estimated dissociation constants for the particular signal
evel c. The data (—) show the estimated dissociation constant based
n Eq. [3] for the given data. (B) Relative errors as percentages of the
issociation constant estimate. The data used are the same as those
n (A). The data (x) show the relative errors as percentages corre-
ponding to the estimates shown in (A). The data (—) show the
stimated relative error based on Eq. [4] for the given data.
njections from the same vial. Uncapped vials were
ntentionally used to assess the effects of buffer dehy-
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76 OBER AND WARD
ration during the course of an experiment. Data from
ow cell 4 was added to the simulated curve and ref-
rence cell data from flow cells 1, 2, and 3 were then
ubtracted. On and off rates were determined for each
f these processed curves. A total of nine different sets

IG. 4. (A) Data analogous to those in Fig. 3 displaying estimates
f association constant based on Eq. [6] (—) and based on an iterative
earch method to determine the parameters from simulated data (x).
he data were simulated analogously to the simulations described in
he legend to Fig. 3. The association constant is k on 5 1960 M21 s21

nd the observed association constant is k obs 5 0.103 s21. The term
ignal level here stands for the signal at equilibrium, i.e., R eq. (B)
elative errors as percentages of the estimate of the association
onstant. The data used are the same as those in (A). The data (x)
how the relative errors as percentages corresponding to the esti-
ates shown in (A). The data (—) show the estimated relative error

ased on Eq. [7] for the given data. The term DB(`) in Eq. [7] was
aken to be the linear drift evaluated at the last data point that was
onsidered for the analysis (D(`) 5 0.175 RU).
f reference cell data sets (Fig. 5) was used. The sizes of
he buffer signals vary considerably. The signals re-

e
c

ulting from injections from the same uncapped vial
last row) are larger than those from the two capped
ials (first two rows). However, once the cap of a vial
as been broken due to an injection, the signals in-
rease significantly (second and third columns of first
wo rows). The on- and off-rates for the processed data
i.e., simulated curves with real reference cell data
ubtracted) are shown in Figs. 6–8.
Both Fig. 7 and Fig. 8 show association constants for

he various simulated data sets. The errors in Fig. 7
re significantly higher than those in Fig. 8. While the
nderlying data sets for both figures were identical,
ifferent segments of the association phases of the
ignals were chosen. The number of data points that
ere analyzed was identical in both cases. In Fig. 8 the
ata window was, however, shifted by 15 s. The effect
f this shift was that much of the difference between
he transients of bulk shifts had died down at the
eginning of the data segment that was analyzed. This
esulted in a much lower variability between the var-
ous data segments and hence in a lower scatter of the
stimated association constants.
In another study (5) the effect of random noise in the
easured sensorgrams on the estimated kinetic con-

tants was investigated. It was shown that with the

IG. 5. Sensorgrams of buffer (PBST, pH 7.2) injection over uncou-
led flow cells. The flow rate was 5 ml/min. The three sensorgrams in
he first row show a sequence of three injections from the same
apped vial. The second row of sensorgrams shows a repeat of the
ame experiment. The third row of sensorgrams is again a repeat

xperiment, but this time the vial for the buffer injections was not
apped.
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77REFERENCE CELL SELECTION
stimation procedure that is being used (gradient

IG. 6. (A) Estimated dissociation constants obtained from an
nalysis of simulated data with added/subtracted experimental bulk
hifts. A sensorgram was simulated with dissociation constant k off 5
3 1023 s21, association constant k on 5 1960 M21 s21, concentration
5 5 3 1025 M, and R eq 5 20 RU. To this sensorgram the nine data

ets from flow cell four of the bulk shifts of Fig. 5 were sequentially
dded to obtain nine sensorgrams that have differing bulk shift
omponents. The data sets from flow cells 1–3 of Fig. 5 are treated as
ata from three reference cells. To emulate what is typically done in
he analysis of BIAcore data the data from these “reference cells”
ere subtracted from the data that were simulated to correspond to

eference cell four. The resulting data were then analyzed. In this
gure the estimated dissociation constants are shown. The data
oints (x) show the estimated dissociation constants when the bulk
hift of flow cell 1 has been subtracted from the data corresponding
o flow cell 4. The data points E and 1 indicate the estimates
btained after the subtraction of the bulk shifts of flow cell 2 and flow
ell 3, respectively. (B) The relative errors as percentages of the
stimated dissociation constants shown in (A).
ased minimization of a least squares criterion) the
tandard deviation of the estimated kinetic constants

t
o

s very close, if not identical, to the Cramer–Rao lower
ound for which an analytical expression was given. In
rder to exclude the possibility that the scatter of the
stimated kinetic constants in this study is solely due
o the naturally occurring scatter of estimates based on
oisy data, the lower bounds on the standard devia-
ions were calculated for the current simulations. In
ur analysis bulk shifts were measured and therefore
ave the same random noise level as any measured
ata on the instrument. The analyzed data therefore
lso has a random noise component. The standard de-
iation of the dissociation constant due to the random
oise in the data is predicted to be 1024 s21. For the
ssociation constant the standard deviation due to
oise is predicted to be less than 30 M21 s21. Both
umbers are small in comparison to the scatter in the

IG. 7. (A) Estimated association constants of data described in

he legend to Fig. 6. (B) The relative errors presented as percentages
f the estimated association constants shown in (A).
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78 OBER AND WARD
stimated kinetic constants. It therefore follows that
he observed scatter is unlikely to be due to the random
oise component of the data, but should be attributed
o disturbances introduced by the bulk shift subtrac-
ions.

nalysis of Experimental Data of HEL:D1.3 Antibody
nteraction

Next, data from the analysis of the HEL:D1.3 anti-

IG. 8. (A) Estimated association constants of data described in
he legend to Fig. 6. The difference between the estimated associa-
ion constants shown here and the estimated association constants
hown in Fig. 7 is that here the association constants were obtained
y analysis of a data segment that was shifted by 15 s. (B) Shows the
elative errors as percentages of the estimated association constants
hown in (A). The errors obtained here are significantly lower than
hose obtained in Fig. 7.
ody interaction was analyzed in an manner analogous
o that shown in Figs. 5–7 for the simulated sensor-

f
p

ram. One flow cell of a sensor chip was coupled with
1.3 antibody and the remaining three flow cells were
ncoupled. Data from the three uncoupled flow cells
ere then sequentially subtracted from the binding

ensorgram and kinetic constants determined (Figs. 9
nd 10). Data for two different flow rates are shown.
or a flow rate of 5 ml/min, the on- and off-rates are
enerally lower (mean of 1.4 3 1023 M21 s21 for the
ff-rate and mean of 6.9 3 106 M21 s21 for the on-rate)
han those obtained for a flow rate of 80 ml/min (mean
f 2.1 3 1023 M21 s21 for the off-rate and mean of 7.4 3
06 M21 s21 for the on-rate), suggesting that even at the
ow ligand coupling density used in this experiment

ass transport and rebinding effects are still opera-
ive. The R eq values for this experiment were in the
ange of 5–12 RU. A comparison of the standard devi-
tions for the estimated kinetic constants with the
tandard deviations that are predicted based on the
oise content of the data (5) shows that the observed
tandard deviations cannot only be explained by the
oise content of the data. This is further evidence that
he background subtraction problems are indeed of
ignificance.

ISCUSSION

The data in this report show that reference cell
hoice can result in significant variability in the kinetic
onstants that are obtained from BIAcore analyses.
hese effects become particularly marked at low signal

evels and are due to irreproducibility of data obtained
rom reference flow cells within the same chip. The
nalysis of simulated data indicates that the effects are
ecreased if data are generated whose signal levels are
igh in comparison to the disturbances that are en-
ountered. However, it is well known that data with
igh signal levels can have artifacts due to the pres-
nce of mass transport effects and rebinding (2, 4, 7, 9).
urthermore, at very high ligand coupling densities
here the reference cell effects become negligible,

teric hindrance will also adversely affect the reliabil-
ty of the data. To obtain data that do not suffer from
hese artifacts, it is therefore essential to design exper-
ments with low coupling densities.

Detailed analysis of buffer injections over “blank”
eference flow cells indicates that there is variability in
he data obtained from individual flow cells within the
ame chip. Although it is preferable to use a “nonbind-
ng” protein coupled to a flow cell at the same density
s the ligand which binds as a reference cell in SPR
xperiments, the use of blank reference cells in the
urrent study gives estimates of the extent of the error
hat can be introduced by reference cell subtraction. In

act, larger errors might be expected if analogous ex-
eriments were carried out with protein-coupled refer-
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nce cells due to variations in the amounts of protein

IG. 9. (A) The estimated dissociation constants for 18 separate
xperiments are shown. In these experiments flow cell 4 of a chip was
oupled with D1.3 antibody. The remaining three flow cells were left
ncoupled. Eighteen experiments were conducted in which hen egg

ycosyme (HEL) was injected. Three concentrations were used (100,
0, and 1 nM). For each concentration, six experiments were carried
ut. Vials containing the analyte were capped and three successive
njections were taken from the same vial. The experiments were
onducted at a flow rate of 5 lml/min. In order to remove the bulk shift
rom the interaction data, reference cell data acquired in flow cells
–3 was subtracted (after suitable adjustment of the time axes of the
ensorgrams to compensate for differing lengths of the flow paths
mong the various flow cells). The data points ({) correspond to the
stimated dissociation constants after reference cell data in flow cell
was subtracted. The subtraction of reference cell data acquired in
ow cells 2 and 3 lead to the estimated dissociation constants
arked by h and E, respectively. The signal levels were between 5

nd 12 RU. The bulk shifts were in the range 2–25 RU. (B) Estimated
ssociations constants for data discussed in (A) for 10 nM injections.
oupled to individual flow cells (most likely due to
ipetting errors). Surprisingly, even injection of buffer

fl
d

hat is identical to the running buffer can result in bulk
hifts of up to about 100 RU. The irreproducibility
etween flow cells becomes more marked as the bulk
hift is increased, for example, by using a different
uffer to the running buffer. Although this situation
an usually be avoided, this is not always the case. For
xample, when low-affinity interactions or the pH de-
endence of the kinetics of an interaction are being
nvestigated larger bulk shifts are by necessity intro-
uced. In this respect, effects of buffer pH changes on
he dextran matrix of the chips have been described
reviously (2). In addition, the analysis of low-affinity
nteractions necessitates the use of high analyte con-
entrations, which results in large bulk shifts. The
ulk shift appears to increase significantly once the cap
f the vial is punctured, suggesting that the use of

IG. 10. (A) Estimated dissociation constants for a data set anal-
gous to that described in the legend to Fig. 9 but acquired with a

ow rate of 80 lml/min. (B) Estimated association constants for data
iscussed in (A) for 10 nM injections.
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80 OBER AND WARD
ndividual capped vials for each injection may be pref-
rable to the use of the same vial for multiple injec-
ions. Extensive equilibration of the chip with running
uffer appears to reduce some of the phenomena that
e discussed, but no evidence has been obtained that
quilibration removes them.
In the current study both experimental and simu-

ated data have been analyzed. Simulations of the ef-
ects of drifts on a simulated binding curve indicate
hat there is a strong dependence of the errors on the
ignal level. The drift was chosen to be within the
anufacturer’s specifications for the BIAcore 2000. Be-

ow a signal of about 20 RU, the estimates of the kinetic
onstants become unreliable. Experimental reference
ell data are subtracted from either a simulated sen-
orgram or sensorgrams obtained from the analysis of
he HEL:D1.3 antibody interaction. For both types of
nteraction curves, subtraction of reference cell data
orresponding to different flow cells within the same
hip introduces significant variation in the kinetic con-
tants that are extracted from the binding sensor-
rams. Other errors can be introduced into the con-
tants obtained from SPR data due, for example, to the
ollowing: inaccurate protein (analyte) concentration
stimation, ligand heterogeneity induced during cou-
ling, steric hindrance effects, mass transport, and
ebinding effects. How these errors affect the kinetic
onstants, and the effects relative to the errors due to
eference cell subtraction described here, will be de-
endent on the particular experimental set up. How-
ver, there is clearly a balance between using higher
oupling densities to reduce the errors introduced by
eference cell subtraction and minimizing the ligand
ensity to decrease mass transport and rebinding.
A further concern is the effect of reference cell data

ubtraction on model selection, where curve fitting to

ifferent interaction models is carried out. Clearly,
rtifacts in the data could bias fitting to one model in

8
9

reference to another. Furthermore, since model fitting
o kinetic data should by necessity be carried out using
ow ligand densities, the reference cell effects may be
ignificant.
The data in this study indicates that it is very im-

ortant to obtain a reasonable appreciation of the na-
ure of the bulk shifts in the particular experiment.
ince the behavior of the bulk shifts during the rise
nd decay time appears to differ between the four flow
ells, even after subtraction, large perturbations with
ong transient behavior can remain. In analyzing the
cquired data, it is particularly important that the
ata window used to determine the kinetic constants is
hosen to minimize the influence of these phenomena.
he analytical formulae presented (Eqs. [4] and [7])
an provide guidance for the design of experiments so
s to reduce the influence of these artifacts on the
easured kinetic constants.
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