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System theoretic aspects of NMR spectroscopy
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1 Introduction

System theory {see ¢.g. {2]) has played a major role over the past
decades in many fields such as engineering. Powerful techniques
which have been developed in system theory have been applied
successfully to a large array of problems. Here we show how NMR
spectroscopy can also be deacribed in the Janguage of system the-
ory. System theoretic methods are used to address a number of
problems in NMR spectroacopy. We discuss results that describe
characterizations of possible NMR spectra given a fixed quan-
tum mechanical system. In addition, we dlscus the pmoemng of
NMR dsta and in particular new methods.

2 Master System
2.1 Schrédinger equation, restricted to
spin dynamics
i 2
¥ =—i(Hi + Y Hyjui(
=t

where
oM

to strong magnetic field.

® Hy ; is Hamiltonians corresponding to time-varying magnetic
field (inputs).

o ), Hg hermitian.

o uj, u inputs, i.e. the excitation pulses.

2.2 Density matrix description (Master
system)

k
(t) = i, 0(6)] =i Y u;(8){Haj, 0(8)) —~ Rlo(t) - oeql,
J=1

y(t) = trace(Mo(t)), t2>to,
» y measured output (induced magnetization).
» R relaxation superoperator.
® M measurement operator.
® geq equilibrium density matrix.

3 Bilinear system

Set

o et) = vec{o(t)) — ve(oeg), £20.

sA=—iI®H ~HT®I)-R

o Nj=—i(l® Hg_,--H{,-el). i=12

obj 1= Njvec(oeg), j=1,2.

o= (vecMT)T.

Under mild sssumptions the master system is equivalent to the
bilinear system ([7])

2 2
&(t) = Ae(t) + (3 ui{®)Np)e(t) + Y byuj(t),
=1 =1

¥(t) = ceft).

o Bilinear systema are extensively studied in systems and control
theory (see eg. [9]).

4 One-Dimensional Experiments

o Spectrum ({7])
Real(clis — A)eq),

where eg is the state of the system at the time when detection
starta.

5 Two-Dimensional Experiments

« 2-dimensional time signal
ati,t2), 20,8220
o 2-dimensionial Fourier tranaform i (special case) ([7})
Gl wg) = cliwy ] — A Tilinl — A)'eq
where

— g is the state at the end of the preparation period.
—T; is a matrix ‘aseociated’ with the mixing period.

6 Classification of 1-D experiments

Addition schemes {e.g. phase cycling):
© Several different (single scan) experiments are run.
» The resulting measurements (fids) are added.

Theorem 8.1 ([8]) The set of all one-dimensional spectra
obtainable using addition schemes is given by
{eliw - &) e | eq € £},
where £ is the smallest subspace of C* that
1. contains by and by
2. and is invariant under A, N} and Ny.

7 Classification of 2-D experiments

Addition schemes (e.g. phase cycling):
# Several different (single scan) experiments are run.
« The resulting measurements (fids) are added.
© Resulting spectrum
Glw,wg)

ks
= cliunl - 4! (lz: A,ru) Gl — A
=1

Theorem 7.1 ({8]) The set of all two-dimensional specira ob-
tainable using addition schemes is given by

{clin — A Tyfint - A) g | T T € £),

where
1. £ is the smallest subspace of C" that
(a) contains by and by
(b) and is invariant under A, Ny and Ny.
2.T is the matric algebra generated by A, Ny and N3.

If addition schemes are not permitted, then the characterization
of all obtainable spectra becomes more difficult. The questions
are most naturally posed using notions such as the set, of reachable
states of the underlying bilinear systems {[4]).

8 From data to spectral parameters

Find a state space realization, i.e. (Ag, by, cx) at.:
FidnAT) = A7 ', m=1,2,..0,
where AT is the sampling interval (see e.g. [3},[1},[6]).
Diagonalize Ay, i.e.
TAT ™ =: diag(ay,...,ap) = dAy,
Then with dBy := Ty, dC) = C4T,

k
fid(n)  dCdAL 'dBy = Y 4iBe] ", m=l2...,
=

where dBy = {5y -+ pg)rndck'(‘ﬂv M)
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As
ajn @ AT jay Lk,

the frequency estimates are

. angle(a,)
“iT T3xAT
the estimates of the damping factors are

F=1,2,...,k

;. _ —logloyl .
dj-WL, i=12...k

For two-dmenmond dm a similar approach can be carried out
using for two-dimensional systems ({5}).

9 Data processing

Algorithms were tested that are based on the above formulation of
NMR experiments using simulated data of a COSY type spectrum
of a coupled two spin system (Figure 1 and 2). The simulations
were carried out first with noise free data and then with noisy
data (Figures 1-12). To test how well the proposed methods can
extend short data sets the original noise free data set was reduced
to the subset of its first 16 by 16 data points. Figurea3 and 4 show
the spectrum that is obtained after zero-filling this data set. The
multiplet structure of the spectrum is no longer resolved. This 16
by 16 data set was then extended to a 1024 by 1024 data set. The
spectrum (Figures 5 and 6) was compared with the spectrum of
the actual full data set. The errors between the extended data
and the actual data was leas than 10~ which indicates that for
practical purposes the extensions provide perfect reconstructions
of the actual data in the noise free case. The estimates of the
spectral parameters were also essentially perfect up to machine
precision.

The proposed methods are also designed to be able to deal with
noisy data. To test this property a relatively high level of white
noise waa added to the simulated data (see Figure 7). Due to the
high level of noise the extensions and parameter estimates for the
16 by 16 data set were no longer reliable. However, for 2 128 by
128 data set almost perfect noise suppression and data extension
to the full data length could be achieved (Figure 8). For a 32 by
32 data subset very good noise suppression and somewhat accept-
able data reconstruction could be achieved (Figures 11 and 12).
For the same 32 by 32 data set zero-filling provided unacceptable
spectral resolution (Figures 9 and 10). The parameter estimates
for the 128 by 128 data set produced very good parameter esti-
mates with errors of less than one percent (and significantly better
depending on the precise implementation of the approach). As
can be inferred from Figure 12 the accuracy of the parameter esti-
mates for the 32 by 32 data set was less good but still acceptable
considering the noise Jevel.
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Figure 1: Figure 2:
Two dimensional spectrum of simulated noise One-dimensional slice of spectrum in Figure 1.
, free 1024 x 1024 data set (in absolute value mode).
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Figure 3:
Of the data set of Figure 1 the 16x16 subset of data points One-dimensional slice of spectrum in Figure 3.

was retained that corresponds to the first 16 points in the
t1 and t2 dimensions. This 16x16 dataset was then zero

filled and Fourier transformed.

Figure 4:

There is a clear loss of resolution in
comparison to Figure 2.
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Figure 5: Figure 6:
The same 16x16 subset of the data set as in Figure 3 was  One dimensional slice of spectrum in Figure 5.
extended to a 1024x1024 data set using Method 1 as It demonstrates that the proposed method has
described in the proposal. The resulting extended data set  recovered the resolution of the original
was then Fourier transformed. A numerical comparison simulated data in stark contrast to zero filling
between this spectrum and the spectrum of the full data as can be seen in comparison with Figure 4.
set in Figure 1 shows indicates that the spectra are
essentially identical up to round off errors.
4060 T T T T 4000 T Y T T T
3500+ 3500 o
3000 3000 -
2500} 4 2scok i
2000+ 2000 - -
1500 -7 1500 o
il |
1000 e 1000 - :
" l’ | - ! U | -
s . 'y N !4—/
% 270 1000 1200 % 200 40" 600 800 1000 1200
Figure 7: Figure 8:

One dimensional slice of the spectrum of the same data as
in Figures 1 and 2, but with white noise added to the time
domain data.

The noisy data set of Figure 7 has been

reduced to a 128x128 data set, This figure
shows the same slice of the spectrum as in
Figures 2 and 7 after processing with Method 1.
There is essentially no difference to the noise
free and full data case of Figure 2.
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Figure 9: Figure 10:
A 32x32 subset of the noisy data set of Figure 7 was zero  One dimensional slice of spectrum of Figure 9.

filled. The resulting spectrum does not resolve the
multiplet structure,
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Figure 11:
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Two dimensional spectrum after noisy 32 by 32 data

set has been noise reduced and extended using Method 1.
In contrast to zero filling (Figure 9) the multiplet structure
is fully resolved.
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Figure 12:

One dimensional slice of spectrum in Figure 11.
Clearly the noise reduction was successful. However,
in contrast to the noise free case of Figure 6 and

the case of the larger noisy data set of Figure 8
some perturbations of the spectrum are

introduced. Nevertheless, unlike processing

solely based on zero-filling (Figure 10) the

method could recover the essential features of

the spectrum.



