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A NOTE ON THE EXISTENCE, UNIQUENESS AND 
SYMMETRY OF PAR-BALANCED REALIZATIONS 

Aurelian Oheondea* Raimund J. Obert 

We give a proof of the realization theorem of N.J. Young which states that ana- 
lytic functions which are symbols of bounded Hankel operators admit par-balanced 
realizations. The main tool used in this proof is the induced Hilbert spaces and a 
lifting lemma of Kre~n-Reid-Lax-Dieudonn4. Alternatively one can use the Loewner 
inequality. A short proof of the uniqueness of par-balanced realizations is includ- 
ed. As an application, it is proved that par-balanced realizations of real symmetric 
transfer functions are J-self-adjoint. 

1. I n t r o d u c t i o n  

Consider a (discrete time, time invariant) linear system (A, B, C, D) with contractive main 
operator A E L(7-I), input operator B G s output operator C E L : ( ~ , y ) ,  and 
external operator D E L(bl, y ) ,  where the state space 7-l, input space/g, and output space 
y are Hilbert spaces. With every linear system (A, B, C, D) there is associated its transfer 
function G: p(A) --+ L(U, 3 )) as follows 

G(A) = D + C ( A I -  A)- IB,  A e p(A). (1.1) 

Since the main operator A is assumed contractive, i.e. I[A[I < 1, the transfer function is 
defined and analytic for all [A[ > 1. 

Following the general theory, e.g. see [10], the system (A, B, C, D) is called observable 
if for any h C 7-/we have ~ I[CAkh[I 2 < co and the observability operator O defined by 

k>0 

Oh = (CAkh)k>O, h C ~ ,  

is bounded and injective. 
The system is called reachable if for any (Uk)k<O C g~ the series ~ AkBuk converges 

k<0 
strongly in 7-/and the teachability operator R defined by 

R((uk)k>0) = ~ AkBuk, (uk)~<o e g~, 
k>0 
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where Sk e s  k _> 0. 
operator Hankel matrix 

is bounded and has dense range. 
Whenever the operators 0 and R are everywhere defined, one can introduce the op- 

erator H = OR. The operator H is called the Hankel operator associated to the system 
(A, B, C, D). From the definition of the operators O and R, the operator H has the fol- 
lowing Hankel block matrix representation 

H ~ (CAi+JB)i,j>o , (1.2) 

more precisely, for all u = (Uk)k>0 C ~ ,  y = (Yk)k_>0 C gk, we have 

<Hu, y> = ~ ~(CAi+JBu j ,  Yi>. ( 1 . 3 )  
j>0  i>0 

If the system (A, B, C, D) has bounded and everywhere defined observability operator 
O, then one can define the observability gramian 0"0. Similarly, if the system has bound- 
ed reachability operator R then one can define the teachability gramian RR*. Following 
N.J. Young [21], the system (A, B, C, D) is called par-balanced if the observability opera- 
tor 0 and tile reachability operator R are bounded everywhere defined operators and the 
observability gramian coincides with the reachability gramian, O*O = RR*. This is a gen- 
eralization of the notion of balanced linear system introduced by B.C. Moore [16] for finite 
dimensional systems. 

The above presentation corresponds to the internal, or, equivalently, the state space 
representation of a system. Sometimes a linear system is given only in its external repre- 
sentation, that is, given b/and y Hilbert spaces we consider G: {z E C I Izl > 1} --~/2(/.,/, 32) 
an operator valued function which is analytic everywhere on its domain of definition and 
at infinity. One can define another operator valued analytic function g: D --* s y )  by 

1 1 
g(z) = z ( O ( z )  - a(oo)),  Izl < 1. 

Then g has the Taylor expansion on D 

g(z) = ~ s~z k, I~t < 1, 
k>0 

Associated with the function G one can consider the block- 

H= 

So Si 
S~ $2 
s~ s3 

sk 

Sa . . .  Sk+l 

(i 4) 

The realization problem asks for the determination of a system (A, B, C, D), with some 
state space 7/, input space U, and output space y such that (1.1) holds. Observable 
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and reachable realizations of transfer functions can be obtained by the so-called reduced 
shift realization, e.g. see [10]. There was a problem for some time to prove that  balanced 
realizations for nonrational transfer functions exist, e.g. see [12]. The main result of the 
paper of N.J. Young [21] is: 

THEOREM 1.1 Let5t a n d y  be Hilbert spaces and let G:{z ~ C I Izl > 1} ~ s  
be an operator valued function which is analytic on its domain and at infinity. If  the 
HankeI block-operator matrix in (t.4) defines a bounded operator H : g~ -+ g~, then there 
exists a realization (A, B, C, D) of G, corresponding to some Hilbert state space 7t, which 
is observable, reachable and par-balanced. 

Tile approach to the proof of this theorem in [21] is to use the restricted shift realization 
and then to perform a state space transformation which yields the desired par-balanced 
realization. The most difficult part of the proof is to show that the new main operator is 
bounded and even a contraction. 

The aim of this short note is to produce an alternate approach based on induced Hilbert 
spaces and a slightly generalized lifting Lemma of KreYn-Reid-Lax-Dieudonn~. The ap- 
proach with induced Hilbert spaces enables us to discuss the choice of the state space 
from a different perspective. We notice that a slightly different argument making use of 
the Loewner inequality, and inspired by the recent paper [15], can be used. Our interest 
in Theorem 1.1 is due to sign symmetric transfer functions that  we considered in [11], 
where we used the induced Hilbert spaces and the KreYn-Reid-Lax-Dieudonn~ Lemma in 
the realization theory. 

The material is organized as follows. In Section 2 we have a short discussion of induced 
Hilbert spaces (for the indefinite variant see [5]), the generalized version of the Krein-Reid- 
Lax-Dieudonn~ Lemma (for an indefinite variant, see [7]) and two other representations Of 
induced Hilbert spaces. Section 3 contains the proof of Theorem 1.1. In Section 4 we give 
a short proof of the uniqueness of par-balanced realizations, see Theorem 4.1. Finally, as 
an application, we prove that par-balanced realizations of real symmetric transfer functions 
are J-self-adjoint. An appendix containing a correction of N.J. Young to his original proof 
in [21], is also included. 

The results discussed in this paper carry over to the continuous-time case using the 
bilinear transform method of [17]. 

2. Induced Hilbert Spaces 

Let us consider a Hilbert space (7-/, (.,.)) and let A be a bounded positive operator on 
7t. A pair (]CA, HA) is called a Hilbert space induced by A if ]CA is a Hilbert space and 
H E s ]CA) has dense range and H ~ t H  A = A. 

On 7l we consider the nonnegative inner product (., "}A defined by 

(x, Y}A = (Ax, y), x, y �9 7-/. 

Let 7{ = 7-/O kerA and note that the restriction of the inner product {' , '}d to ~" is 
nondegenerate. On 7-/ we consider the norm I]A 1/2. [] and let ]CA be the completion of 
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(7./_ ][A 1/2. []) to a Hilbert space. In other words, the strong topology on the Hilbert space 
K:A is induced by the norm [[A 1/2. [[. Define HA: 7./ -+ ]CA as the orthogonal projection 
PnekerA composed with the embedding of 7 / O  kerA into K:A. It is easy to prove that 
H~IIA = A. Since H has dense range, (]CA, HA) is a Hilbert space induced by A. 

Let now 7'//1 and 7-12 be Hilbert spaces and A E s A _> 0, and B E s B > O. 
Also, let T C s be given and consider the induced Hilbert spaces (lEA, HA) and 
(]~B, Y/B). We say that the operator T induces an operator T E s ~:B) i fTHA = IIBT. 
Equivalently, Tker  A C ker B and denoting by T the corresponding quotient operator in 
s (3 ker A,7/2 | kerB) the operator T is bounded with respect to the norms []A 1/2 �9 t] 
and, respectively, ]]B 1/2 �9 ]]. The operator T is then the extension by continuity of the 
operator T and hence it is uniquely determined by T. 

We now recall a result originally due to M.G. KreYn [13] and obtained independently 
by W.T. Reid [18], P.D. Lax [14], and J. Dieudonn5 [6]. An even more general indefinite 
variant was obtained by A. Dijksma, H. Langer, and H. de Snoo [7], see also [4]. The proof 
of the statement below follows by using the same iterative approach used in the original 
proof of M.G. KreYn and the others. 

LEMMA 2.1 Let 7./1 and 7/2 be Hilbert spaces, A E s and B C s be positive 
operators and let T1 E s 7/2) and T2 E s 7-/1) be operators such that 

(Tlz ,  y>B = (z, T2y)A, z e 7./1, Y C 7/2, 

or, equivalently, BTI = T~ A. Then 

IIBV~T~xII __ ]]T2TIIlV2I[AV~xII, x e 7/i, (2.1) 

and similarly 
HAI/~Tuy[[ < [1T1T2111/2I[B1/2yII, y e 7/2, 

and hence, the operators T1 and T2 induce uniquely determined operators T1 G E(]~A, ]gB) 
and, respectively, T2 G s ]~A), such that 

(Tlz, y) = (x, T2y), x E ]~A, Y C ]~B. 

Moreover, the norms ofT1 and :Y2 are bounded by ][T2TI[] 1/2 and []T1T2[] 1/2 respectively. 

Let A E s be a positive operator. Just from the definition it is easy to prove that 
any two Hilbert spaces (K:~, H~) induced by A are unitarily equivalent, that is, there exists 
a (uniquely determined) unitary operator r G s E~) such that (PIll = H2. We will 
describe in the following two other representations of Hilbert spaces induced by a given 
bounded positive operator A. Of course, they will be unitarily equivalent with the induced 
Hilbert space (h:A, HA), but each one has some gain, as well as some limitations. 

EXAMPLE 2.2 Given A C s positive, we consider 7/A = 7./ | kerA with the scalar 
product induced from the scalar product of 7/, and let ~A G s 7/d) be 71" d : A 1 /2 .  Then 
(7/d, 7~d) is a Hilbert space induced by A. Moreover, it is easy to prove that the operator 

defined by 
/CA D 7./(3 ker A ~ x ~ ~x = A~/~x ~ 7/A 

can be extended uniquely to a unitary operator ~b ~ s 7/A) such that (~SY/A = 7r A .  | 
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EXAMPLE 2.3 Fix again A E /2(7/) positive and define BA = Tg(A 1/2) with the scalar 
product (., "}UA defined by 

(A1/2x, A1/2y)B a = (x, y), x, y e 7/. 

Then (BA, (', ")~A) is a Hilbert space. To see this, just note that we have made the operator 
~P = A1/2:7/A -+ BA unitary. Define the operator H~A:7/ --+ BA by H~Ax = Ax,  x E 7/. 
Then (BA, HBA) is a Hilbert space induced by A and, in addition, the unitary equivalence 
of 7/A and BA is given by ~ = A 1/2 E s BA) such that ~PTrA = H~ A. | 

The Hilbert space I3A as in Example 2.3 can be characterized in yet another way. Let 
K: be a Hilbert space continuously embedded in 7t and L:/(: ~-~ 7 / b e  the inclusion. Then 
A = ~L* E s is positive and (/C, ~) is a Hilbert space induced by A. Conversely, it 
is easy to see from Example 2.3 that the Hilbert space BA is continuously embedded in 
7/. These spaces were intensively used by L. de Branges [2], [3], and in a more general 
formulation they were studied by L. Schwartz [19]. As operator ranges they were studied 
by P.A. Fillmore and J.P. Williams [9] and it can be shown, cf. [19], that they are a 
particular type of reproducing kernel Hilbert spaces, e.g. see Aronszajn [1]. 

3. P r o o f  of  T h e o r e m  1.1 

Proof: Let (., .) and II  i] denote the scalar product and the corresponding norm on the 
Hilbert space H. We consider the Hilbert space ~ ,  of square summable sequences with 
entries in/4, endowed with scalar product also denoted by (., .) 

( f ,g)  = ~ , ( f k ,gk) ,  f = (fk)k>o, g = (gk)k>_o e e~. 
k>O 

Let the Hilbert space 7t = s According to our assumption, let H: ~ -+ ~ denote the 
bounded operator defined by the Hankel matrix with operator entries H as in (1.4). We 
consider (Ao, Bo, Co, Do) the right shift realization of G, that is, 

G(z) = Do + C o ( z I -  Ao)-IBo, Izl > 1, (3,1) 

where the operator Ao: "It --> 7 / i s  the right shift 

fk-1, k>_l, 
(Aof)k = O, k = O, f = (fk)k>_o e 7/ = e~, (3.2) 

the operator B0:/g -+ 7 / =  f~ is defined by 

Bo : [I 0 . . .  0 (3.3) 

where t denotes the matrix transpose, the operator Co: 7-/-+ y is defined by 

Co : [So s l  . . .  sk ...], (3.4) 
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and the external operator is Do = G(oc). Note that the operator Co is bounded due to 
the assumption on the boundedness of the Hankel operator H. Taking into account the 
definition of the shift realization as in (3.2), (3.3), and (3.4) it follows that the observability 
operator Oo of the system (A0, Bo, Co, Do) has the matrix representation 

o0 : [Co CoAo C0Ao . ]  = 

so 
$1 

$1 S2 . . .  Sk 
$2 Ss . . .  Sk+l 
3 3 . . .  

~  

o .  , 

= S .  (3.5) 

Similarly, let Ro be the reachability operator 
(3.2), (3.3), and (3.4) it follows that the matrix of 

I 
0 
0 

Ro : [Bo AoBo ...] : : 

0 

of the linear system (Ao, Bo, Co, Do). From 
] ~ o  is 

0 0 
I 0 
0 I 

0 0 

�9 , ,  

. , o  

0 . .  

0 - -  

0 . . .  

I . . .  

(3.6) 

Theretbre, the reachability operator coincides with the operator of identification of ~ with 
7/. 

Consider the modulus ]H[ = (H 'H)  1/2 of the Hankel operator H and let (/r HIHI) 
be the induced Hilbert space. The main construction of the par-balanced realization lies 
in the 'lifting' of the system (Ao, Bo, Co, Do) with state space 7/ to the 'induced' system 
(A, B, C, D) with state space K Iii I. To do this first consider the operator Bo r E(/J, 7/) and 
define/}o := [H[Bo ~ s Hence, with Iu the identity operator on/.4, we have that 

Bolu = IHIBo. 

Therefore, by Lemma 2.1 B0 induces a unique operator B :=/~0 r s K~I~I). Moreover 

B = HIHIBO. 
To deal with Co r s 3)), let H = vIH I be the polar decomposition of the Hankel 

operator H and let 
5o := [i  0 . . .  o . . . ]  ~ c ( ~ , y ) .  

Then we have that 
IyCo = d o l l  = (d0V)lHI.  

Again by Lemma 2.1 Co induces a unique operator C := Ca E s I, Y )  and CHizz I - Co. 
The central part of the proof is to show that A0 r s induces a unique contractive 

operator A r s Indeed, considering A; the left shift on l~ then we have that 

HAo = A;H. (3.7) 
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To see this, if f = (fk)k>O is an arbitrary sequence in 7-I and 9 = (g~)k__o is an arbi trary 
sequence in l~ then 

(HAof ,  9) = ~ (Sj+k(Aof)j,gk) = ~ (Sj+kfj- l ,gk)  (3.8) 
j,k>O j>l,k>O 

= ~ (Sj+k+lfj, gk} = (A ;Hf ,  g). 
j,k>O 

This proves (3.7). Passing to the adjoints in (3.7) we get A~H* = H*Ao, and hence 

H*H  - A~H*HAo = H*H - H*AoA~H = g * ( I  - AoA;)H > O, 

where we used that  AoA~ <_ I since A0 is contractive. Since H*H = [HI 2 this can be 
rewritten as 

d*olHI2Ao < IHI 2. (3.9) 

Therefore, there exists a contraction Z E 1;(7-/) such that  

IHIAo = Z*IH I. (3.10) 

Applying Lemma 2.1 it follows that  A0 induces a unique operator A E Z:(K:IHt). In addition, 

IIIHll/2doxll <_ IIZdol] t/2 IIIgll/2xll, x e 7--l. (3.11) 

Since the shift A0 and the operator Z are contractions, from (3.11) we also get by Lemma 2.1 
that  A E ~(]~[gl) is contractive. 

Having constructed the discrete-time system (A, B, C, D), D := Do, with state-space 
K:I~ I and contractive A, we now need to show that  this system has the required properties. 
Let R be its reachability operator. Note that  for n >_ 0 

7~ 

HI/~IA o Bo : A~HIHIBo = A'~B. 

Hence HiniRoU = Ru for each finite sequence u E l~. Therefore R E s K:IHI) and by 
continuity 

HiHiRO --- R. 

Let O be the observability operator of (A, B, C, D). Since for n >_ 0 

CAnHIgI = CHIHIA ~ = CoA~ 

we have for x E 7-I that  OHIHlX = OoX. This implies that  O E s l?v ) and that  

O HI~ t = 0o. 

Note that we therefore also have for the Hankel operator H 

H : OoRo = OHIHIRO = OR. 

This shows tha t  the system (A, B, C, D) realizes the same transfer function G as does 
(Ao, Bo, Co, Do). 
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It remains to show that  the system (A,B, C, D) is reachable, observable and par- 
balanced. We have that 

since Ro = Iu. Let x~,yl  E ~ and let x = HI,IIxl, y =//IHlY> Then 

(y, O*Ozbq. ,  = </irluly~, O*01-ilmx~>~q. ~ 

= (Yl, HI*HIO*OIIIHIXl>~ = (Yl, O;OoXl>n = (Yl, IHl2x~>n 

= (YI, HI*HIHfHtHI*HIHIHIZ~)u = (Y, HtHIFIt*HIZ)~clm. 

Here we have used that Oo = H and that [HI = HI*HIHIHI. Hence on the dense subset 
HIHIT/ of/(;IHI we have that 

O*O = HIHIHf*HI. 

By continuity, this identity also holds on ~IHI' Therefore the system is par-balanced with 

RR* : o * o  : nt . ln i* .  ~. 

Since HIH I has dense range in K;IHI, this also implies that  R has dense range. Therefore//~rl 
has zero kernel and hence 0 is injective. Thus (A, B, C, D) is reachable and observable. | 

REMARK 3.1 As pointed out in the introduction, our proof has a number of similarities 
with the approach taken by N.J. Young [21], e.g.@e use the shift realization, etc. The main 
difference between the two proofs refers to the construction of the state space: N.J. Young 
uses the restricted shift realiazation and then a renorming while we construct the state 
space at once and then use Lemma 2.1. | 

REMARK 3.2 The fact that  the system (Ao, Bo, Co, Do) can be lifted to the desired par- 
balanced realization can be also proved following an idea in Lemma 3.2 in Megretskii, Treil 
and Peller [15] which uses the Heinz's Theorem. This can be done as follows: 

We consider the shift realization (A0, B0, Co, Do) as in the previous proof, let IHt = 
( H ' H )  1/2 be the modulus of the Hankel operator H and let (Kim I,//1,II) be the induced 
Hilbert space. We now have to perform the 'lifting' of the system (Ao, Bo, Co, Do) with 
state space ~ to the 'induced' system (A, B, C, D) with state space K;IH I. For the operators 
B, C, and D this is very similar with what is done in the first proof, with the difference 
that  we do not apply Lemma 2.1. For example, consider the operator Bo E s 7-l) and 
note that 

IliHl~/~Boul] _< IIHI/21111ull, u ~ U, 

and hence B0 can be lifted to a unique operator B := /~0 E s Moreover B = 

/--/[ ~z i B o . 
For the operator Co E L;(7-L, 3;), let H = V[/-/[ be the polar decomposition of the Hankel 

operator H and note that  Co = PyH,  where 3; is naturally identified with the subspace 
y | 0 | . .-  | 0 |  of g}. Therefore 

IICohll = IlPyHhll = IlPyVlHlhll < IIIHI1/2]I IIIHII/2All. h E 7t = g~. 
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and hence Co induces a unique operator C := C0 E Z:(J~IHI, ~2) and CIIIH l = Co. 
As in the proof, the main concern is to show that  A0 E s induces a unique contrac- 

tive operator A E L:(]CIHI). To see this, we first obtain the inequality (3.9) exactly as in 
the first proof. As AoA~ < I we have from (3.9) that 

(d~lH]mo) 2 < m~lHI2 go <_ IH[ 2. 

By Loewner's inequality (this can be obtained also as a consequence of the Heinz's Theorem, 
see e.g. Theorem 9.4 in [20]) which expresses that the square root is operator monotonic, 
and in conjuction with the uniqueness of the square root, we therefore have that  

A;JHIAo < till. 

But this immediately implies the claim since for x E/(:IN 1 

[ ]AoxIt~: IH, = I[IHI~/2AoxII~ <_ IIIHI / zI[  = IIx[I :,H,' 

Moreover, AI-IIH 1 : H1HIAo. 
The fact that  the system (A, B, C, D) is a par-balanced realization of the transfer func- 

tion G follows exactly in the same way as in the proof. | 

REMARK 3.3 The fact that  one can use the Loewner inequality instead of the Lemma 
KreYn-Reid-Lax-Dieudonn6 comes as no surprise since it can be proved that  these tools are 
actually in the same circle of ideas, e.g. see [8]. | 

REMARK 3.4 The par-balanced realizations are unique, modulo a unitary equivalence, cf. 
[21] and the next section. In our proof of Theorem 1.1 we choose ]CIH 1 for the state space. 
The state space transformation in [21] corresponds to the state space 7-/IHI, see Example 
2.2. But, as Example 2.3 shows, a third choice is possible, namely the state space BIH I. 
This has the advantage of working on the range of some operator, with no closure needed, 
with the cost, of course, of a more involved topology. I 

4. U n i q u e n e s s  o f  P a r - B a l a n c e d  Rea l i za t ions  

In [21] N.J. Young proved that  par-balanced realizations are unique, modulo unitary e- 
quivalence. His proof relied on relating this uniqueness question to the problem of the 
uniqueness of restricted shift realization and the closely related output-normal realizations. 
Here we present an alternative proof of his result. 

In the previous sections of this paper we assumed that  the main operator A of a system 
is a contraction. To allow for a somewhat greater generality of the following theorem we 
drop this assumption. All other definitions are as before. 

Two systems (Ai, Bi, Ci, Di), with state spaces 7-/i, i = 1, 2, are related by a state space 
transformation if there exists a bounded operator T: 7{2 -+ 7-ll such that  

A1T = TA2, BI = TB2, CTT=6�89 D I = D 2 .  (4.1) 

The two systems are called similar if there exists a similarity, that  is, a bounded invertible 
state space transformation T: 7-/2 -+ 7-ll such that (4.1) holds. If the similarity T is unitary 
the two systems are called unitary equivalent. 
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THEOREM 4.1 Let (Ai, Bi, Ci, Di) be discrete-time observable and reachable linear systems, 
with state spaces 7/i, bounded observability operators Oi and bounded teachability operators 
Ri, such that they are par-balanced, that is, 0 [ @  = R~R~, i : 1, 2. If  both systems are 
realizations of the same transfer function then the two systems are unitary equivalent. 

Moreover, this state-space transformation is unique, that is, if U E ~(7/2, 7/~) is the 
unitary state-space transformation between the two systems and T C s 7tl) is a state- 
space transformation between the two systems, then T = U. 

Pro@ Let H be the Hankel operator, associated as in (1.4) with the transfer function 
G, which is realized by the systems (Ai, Bi, Ci, Dg), i = 1, 2. By assumption we have 

H = 01R1 = 02R2, 

and therefore, using the par-balanced condition we get 

* * * * D * D  D *  R = = R20202R2 = ~21~21~2 2. RIRIRzR1 = R~O~O1R1 H*H 

Since R~R1 and R~R~ are positive, using the uniqueness of the square root it follows that 

R~R1 = IHJ = R ~ .  

Therefore, there exists a uniquely determined isometric operator U: clT~(R2) -+ cl 7~(R1) 
such that 

R1 = URn. (4.2) 

The teachability of the systems and hence the fact that the reachability operators Ri have 
dense ranges imply that U: 7/2 --+ 7tl is unitary. Since 

R ,  : . . .  . . . ] ,  i :  

this implies, by considering the first component in (4.2), that 

B~ = UB2. 

Note also that 

and hence 

A i R i =  [AiBi A~Bi a Ak+l B .. , --_ A~ Bi . . .  ~ ~ .] i 1, 2, 

AIUR2 = A1R1 =UA2R2.  

Since R2 has dense range and the operators are bounded, Dom here we get 

AIU = UA2. 

Further, since 
01UR2 =OIR1 = H = O 2 R 2 ,  
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in a similar way we get 
01U = 02. 

As before, from here we obtain 
CI U = C2. 

That  D~ = D~ follows from DI = G(c~) = D2. Hence the two systems are unitary 
equivalent. 

To show the uniqueness of the state space transformation U assume that T:'Hz -+ ~/~ 
is a similarity state space transformation between the two systems. Note that 

UR2 = R1 = [TB2 AITB2 A~TB2 ...] = [TB2 TA2B2 TA~B2 ...] = TR2. 

Since R2 has dense range and the operators T and U are bounded we get from here that 
T = U . |  

A consequence of this result in combination with the realization result is that the main 
operator of any par-balanced realization of a transfer function analytic outside the unit 
disk and with bounded Hankel operator is a contraction. 

5. Rea l  S y m m e t r i c  Transfer Funct ions  

A system (A, B, C, D), with state space 7-/, is called completely J-symmetric if there exists 
a symmetry J C s  that is, J is unitary and selfadjoint, such that (A, B, C, D) and 
(A*, B*, C*, D*) are similar with similarity J, that is, JA = A 'J ,  B = JC*, and D = D*. 
In [11] we gave a direct proof of the existence of completely J-symmetric par-balanced 
realizations of real symmetric transfer functions with bounded Hankel operator. Here we 
give a proof of a sligthly stronger result than Theorem 6.2 in [11]. 

THEOREM 5.1 Assume the assumptions and the notation of Theorem 1.1 and, in addi- 
tion, that the transfer function G is real symmetric, that is, G(~) = G(z)*, ]z I > 1. Let 
(A, B, C, D) be an observable and reachable par-balanced realization of G with state space 
~t. Then there exists a unique symmetry J on ~ such that ( A , B , C , D )  is completely 
J-symmetric. In addition, if 0 and R denote the observability and, respectively, the reach- 
ability operator of the system then R = JO* and hence, the Hankel operator H of the 
system admits the factorizations H = OJO* = R ' JR .  

If  ~ := R*R = 00" ,  then J commutes with Z,  i.e. J Z  = ZJ .  

Pro@ Let (A, B, C, D) be an observable and reachable par-balanced realization of G. 
Since by the real symmetry of G the dual system (A*, C*, B*, D*) is another realization of 
G 

B * ( z I -  A*)-IC * + D* = G(~)* = G(z), [z I > 1 .  

The standard duality results for linear systems imply that the dual system is also reachable, 
observable, and par-balanced. 
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By Theorem 4.1 there exists a unique unitary state space transformation U E s  
such that  

(A, B, C, D) = (UA*U*, UC*, B'U*,  D*). 

Applying a state space transformation with U* to both these systems we obtain 

(U*AU, U'B, CU, D) = (A*, C*, B*, D*). 

Taking the dual system we have 

(U*A*U, U'C, B'U, D*) = (A, B, C, D), 

which shows that U* is also a similarity for the systems (A, B, C, D) and (A*, C*, B*, D*). 
By the uniqueness of the similarity as in Theorem 4.1 we get U -- U*, that  is, U is 
a symmetry and the system ( A , B , C , D )  is completely J-symmetric with J = U. The 
uniqueness of J follows again from Theorem 4.1 and the fact that  both (A, B, C,/P) and 
its dual system are reachable, observable and par-balanced realizations of G. 

Clearly we have R = JO* and hence the Hankel operator H of the system admits the 
factorizations H = OJO* = R ' J R .  That J commutes with Z follows since Z = RR* = 
JO*OJ* = J Z J *  and therefore Z J  = J Z .  ! 

6. A p p e n d i x  

Our proof of Theorem 1.1 actually fills a gap in the proof provided in [21]. The proof in 
[21] relies on Lemma 1, p. 461 in [21]. The Lemma is, however, only valid if, in addition to 
the stated assumptions, the operator M is also assumed to be essentially selfadjoint. More 
precisely, the proof of this Lemma, as provided in [21], proves the following statement. 

LEMMA 6.1 Let M be a positive and essentially selfadjoint operator on a dense linear 
manifold D of a separable Hilbert space 7{, let P E s have zero kernel and let P M P  -1 
be a contraction on PD.  Then M itself is a contraction. 

The additional assumption on M implies that the Lemma can no longer be used to give 
a complete proof of Theorem 1. 

In this appendix we reproduce an argument communicated to us by N.J. Young [22] 
after receiving a preprint of this paper. In this argument the use of Lemma 1 in [21] is 
circumvented. We use the same notation as in [21]. Briefly, the idea is to use the closure 
of the operator ft, instead of A. To prove that this is possible, let T be the closure of the 
operator .A as defined in [21], p. 460. T exists since fi~* has domain D W1/47t which is 
dense. Then it is straightforward to show 

W!/4T* f  - Z*W!/4 f ,  f e D(T*). 

R!rthermore, extending the relation W1/4A = A W  1/4 using closure, we obtain W 1 / 4 T f  = 
A W 1 / 4 f  for all f E :D(T). For arbitrary h E :D(T*T) we have Th  E ~9(T*), and hence 

W1/4T*Th = Z*AW1/4h. 

Thus W~/4(T*T)W -1/4 is a contraction on W1/4:D(T*T). Since T is closed, T*T is positive 
selfadjoint and hence the Lemma 6.1 applies to conclude that  T is a contraction. 



Gheondea, Ober 435 

R e f e r e n c e s  

[1] N. ARONSZAJN: Theory of reproducing kernels, Trans. Amer. Math. Sou., 68(1950), 
337-404. 

[2] L. DE BRANGES: Hilbert Spaces of Entire Analytic Functions, Prentice-Hall, Engle- 
wood Cliffs, N.J. 1968. 

[3] L. DE BRANGES, J. ROVNYAK: Canonical models in quantum mechanics, in Pertur- 
bation Theory and its Applications in Quantum Mechanics, Proc. Adv. Sere. Math. 
Res. Center, Madison WS 1965, pp. 295-392. 

[4] W. CONSTANTINESCU, A. GHEONDEA: Elementary rotations of operators in Kre~n 
spaces, J. Operator Theory, 29(1993), 167-203. 

[5] T. CONSTANTINESCU, A. GHEONDEA: Representations of Hermitian Kernels by 
means of KreYn spaces, preprint no. 15, Institutul de IVIatematic~. al Academiei 
Romfine, Bucur%ti 1996. 

[6] J. DIEUDONNI~: Quasi-hermitian operators, in Proceedings of International Sympo- 
sium on Linear Spaces, Jerusalem 1961, pp. 115-122. 

[7] A. DIJKSMA, H. LANGER, H. DE SNOO: Unitary colligations in KreYn spaces and 
their role in extension theory of isometric and symmetric linear relations in Hilbert 
spaces, in Functional Analysis II, Lecture Notes in Mathematics, no 1242, Springer 
Verlag, Berlin - Heidelberg - New York 1987, pp. 123-143. 

[8] M.A.  DRITSCHEL: A method for constructing invariant subspaces for some operators 
on KreYn spaces, in Operator Theory: Advances and Applications, Vol. 61, Birkh~iuser 
Verlag, Basel 1993. 

[9] P.A. FILLMORE, J .P.  WILLIAMS: On operator ranges, Adv. in Math., 7(1971), 254- 
281. 

[10] P.A. FUHRMANN: Linear Systems and Operators in HiIbert Space, McGraw-Hill, 1981. 

[11] A. GHEONDEA, l~.J. GBEm Completely J-positive linear systems of finite order, 
Math. Nachr., 203(1999), 75-101. 

[12] K. GLOVER, R.F.  CURTAIN, J.R. PARTINGTON: Realisation and approximation of 
linear infinite dimensional systems with error bounds, SIAM J. Control and Optimiza- 
tion, 26(1988), 863-898. 

[13] M.G. KRE~N: On linear completely continuous operators in functional spaces with two 
norms, (Ukrainian), Zbirnik Prac. Inst. Mat. Akad. Nauk USSR, 9(1947), 104-129. 

[14] P.D. LAX: Symmetrizable linear transformations, Comm. Pure Appl. Math. 7(1954). 
633-647. 

[15] A.V. MEGRETSKII, V.V. PELLER, S.R. TREIL: The inverse spectral problem for 
self-adjoint Hankel operators, Acta Mathematica, 174(1995), 241-309. 

[161 B.C. MOORE: Principal component analysis in linear systems: controllability, ob- 
servability and model reduction, IEEE Transactions on Automatic Control, 26(1981)~ 
17-32. 

[17] R.J.  OBER, S. MONTGOMERY-SMITH: Bilinear transformation of infinite- 
dimensional state-space systems and balanced realizations of nonrational transfer func- 
tions, SIAM Journal on Control and Optimization, 28(1990), 438-465. 

[18] W.T.  REID: Symmetrizable completely continuous linear transformations in Hilbert 
space, Duke Math. J. 18(1951), 41-56. 



436 Gheondea, Ober 

[19] L. SCHWARTZ: Sous espaces Hilbertiens d'espaces vectoriel topologiques et noyaux 
associ6s (noyaux reproduisants), J. d'Analy~e Math., 13(1964), 115-256. 

[20] J. WEIDMANN: Linear Operators in Hilbert space, Springer Verlag, Berlin - Heidelberg 
- New-York 1980. 

[21] N.J. YOUNG: Balanced realizations in infinite dimensions, in Operator Theory: Ad- 
vances and Applications, Vol. 19, Birkh/iuser Verlag, Basel 1986, pp. 449-471. 

[22] N.J. YOUNC: Private communication. 

A. Ghe onde a  R.J .  Ober  

Institutul de MatematicS~ 
al Academiei Romgme 
C.P. 1-764, 70700 Bucure~ti 
Romania 

Center for Engineering Mathematics EC35 
University of Texas at Dallas 
Richardson, Texas 75083-0688 
USA 

e-maih gheondea@imar.ro e-maih ober@utdallas.edu 

Mathematics Subject Classification: 93B15, 93B28, 47B35, 47B50. 

Submitted: July 4, 1999 
Revised: September 1, 1999 


