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Explicit generation of unitary transformations in a single atom or molecule
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A constructive procedure for generating a prescribed unitary transform via the optically driven evolution of
a multilevel atom is described. Assuming a clean separation of the coupled levels, the procedure employs the
rotating wave approximation together with a decomposition of a unitary matrix into simpler matrix factors with
specified structure. Applications to state preparation and observation are also provided.

PACS numbd(s): 03.65.Bz

[. INTRODUCTION andl,,_, or a special 44 block andl,,_, [13]. This latter
decomposition was motivated by a multiparticle implemen-

The preparation of ana priori prescribed finite- . ; . ;
. . . X . . tation of quantum logic gates. Here we will consider the
dimensional unitary transformation via the evolution of an L . .
fundamental case that the nontrivial sub-block is of size 2

externally driven quantum system is a theoretical and tech- . . .
nological challenge that plays an important role in severa 2. Unlike thg conventional decomposition vyherg the 2
fields including atomic and molecular manipulatifih—4], 2 blocks are in @), the approach presented n this paper
g p
. respects the structure. Moreover, it can be tailored to take

qugntum computat|of5,6], and quan.tum cryptograpf[\?]. into account practical laboratory constraints.
This paper will describe a systematic technique to generate .o shecific ingredients of our approach to creating the
arbitrary special unitary transformations in a quantum systerpmitary matrices has the following steps.
that draws on concepts from control theory. The results de- (1) Employ an atom or other simple quantum system
scribed here_are a_pplicable to the broader domain of quantuiynose energy levels are well separated, such that there are
system manipulation. no interfering resonances with any pair of optically coupled

The principal concept exploited here is that any specialevels. Assurance of this condition may call for the introduc-
unitary matrix can be decomposed into products of transfortion of suitable static external fields. Spectral separation per-
mations with a particular structure. Similar decompositionsmits the system to be controlled by sequentially addressing
have recently been suggested as well. Retcil. [8] use the  pairs of levels. Furthermore, this circumstance allows one to
decomposition of anynX m unitary matrix into a product of employ the rotating wave approximation when considering
simpler matricedi.e., tensor products of an arbitrary<2  control field designs. Controllability is also possible under
block and a complementary block consisting of the identityconditions more relaxed than this clean spectral separation,
matrix of dimension h—2) obtained in[9]] to produce an but each such case must be individually analyzed for its ap-
optical implementation of quantum cryptography schemesplicability.
They assume no structure within the factors and then show (2) Decompose the prescrib&tx N unitary matrix into a
that any special unitary matrix can be written as a product oproduct ofNX N unitary matrices that are nontrivial only in
such factors. In this regard, Law and Ebely] considered a sub-block. Here we will consider the simplest case where
a decomposition for controlling the quantum state of a cavitythe sub-block is of size 2 2. This decomposition will re-
field. There is a relationship between their factors and thosepect the selection rules appropriate to the system, and will
in the present paper, but the number of factors needed atdso be tailored to take into account the rotating wave ap-
different. Finally, DiVincenzo has demonstrated that anyproximation and any limitations on the matrix elements of
unitary matrix can be written as a product of unitary matricesthe electric dipole operator, which is assumed to be the cou-
that are either a tensor product of an arbitrary 2 block  pling operator. The decomposition used in this paper is dif-

ferent from the standard one where th& 2 block can be
any element of () (see[9)).

*Electronic address: vish@utdallas.edu (3) An explicit characterization of the exponential of an
TElectronic address: ober@utdallas.edu arbitrary real linear combination of the Pauli matrices will be
*Electronic address: xiaboai@cs.duke.edu utilized. This formulation will be useful in parametrizing the
SElectronic address: ole@straus.princeton.edu 2X 2 blocks of the previous steps to provide an explicit de-
IElectronic address: jbotina@elgar.princeton.edu sign for laboratory control.

Electronic address: hrabitz@chemvax.princeton.edu The balance of this paper is organized as follows. Section
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Il presents a derivation of the decomposition needed for thé¢recall that all entries of the matrix representationwofire
physical system. Next, a constructive factorization of anyassumed to be real and the diagonal entries are al).zero
SU(2) matrix into the factors prescribed by this decomposi- The pulse is applied for a timg with the only restriction
tion is derived. In addition, it is shown how selection rulesthat the integrafglA(t)dt be insensitive to a slight change in

can be respected during the decomposition process. Remayk applying the rotating wave approximation yields
2.1 explains how the number of factors may be minimized

and also discusses an alternative derivation of the desired Q(t1,00=V,,Q(0,0=1dy,,
SU(2) decomposition suggested to us by HafteZ|. Section
[l discusses how the concepts in the paper may be applied twhere the matrix/, is anM X M matrix that is the identity
state preparation and observation. Finally Sec. IV addressescept for a 22 block, which is the exponential of a 2
the extent to which the ideas in this paper may be generalx 2 matrix of the form
ized to other applications.
O | Y1
o) i
Il. GENERATING ATOMIC SCALE UNITARY iy O

TRANSFORMATIONS o
_ o v, IS the complex conjugate of the complex number,
Consider an atom irradiated by a sequence of electromaggnich has the following polar representation:

netic pulses with the aim of guiding its evolution initially
from the identity matrix to a desired final unitary matrix. The Y
atom-pulse interaction is taken to be semiclassical. The atom 71:Mijel¢J A(t)dt. 2.3
is assumed to have the following propertiesl) The atom 0
hasM accessible levels that are well separated for controIIaT
bility based on frequency discrimination(2) The matrix

elements of the dipole operatgwith respect to the basis
consisting of the eigenfunctions of the free Hamiltoniare

t will be seen later in Eq(2.6) that the magnitude of the
complex numbery,; enters into our considerations only as
the argument of trigonometric functions. Heng&t) and ¢
.are chosen so that;’s magnitude can take any desired value
Within [0,277] to achieve the necessary action to genevate

atom-pulse pair is “controllable” in the sense that there iSThis point is useful for practical laboratory considerations.
P pair IS S : After the application of this first pulse the unitary genera-
always a connection between any two levels, i.e., if selection

rules preclude accessing levdlirectly fromj, then there is tor is given by
a set of levels(possibly more than one€orming a ladder, U(t,,00=e Hotay
such that statecan be accessed at least indirectly from state v v

- Now another pulse of length, is applied that is resonant

_The multilevel atom will be irradiated by a sequence of\yith only some other allowed pair of levels. We then have
tailored pulses. Each of the pulses above will address only a

prescribed pair of levels. There is flexibility in the pulse U(t,00=U(t,t;)U(t,0).

structure and each should be chosen to be as simple as pos-

sible. The action of the entire sequence of pulses is describelnce again setting(t,t;)=e "ot"tWO(t,t,) gives
below as

latter assumption can be relaxed in certain cas€3) The

_ iQ(t,t))=—e(t)eMot-t) e Hot=-t) O (¢ t,).
iU (t,00=(Hg— pe)U(t,0), (2.2 ,
Premultiplying both sides of the last equation é{/o'1, us-
where u is the induced dipole operator ardt) is the con-  ing the rotating wave approximation, and then integrating up

trol field. Defining((t,0) by to timet=t, yields
U(t,0)=exp( —iH o) Q(t,0) eMola0)(ty,t;) = V€0l (ty,ty)
leads to the interaction representation for a 2X2 block which is the exponential of @2 matrix
similar in structure to that in Eq2.2). As Q(t;,t;) is the
iQ(t,0)= — e(t)eMot e HotQ)(t,0). identity matrix, the last equation becomes

— a—iHotiy/_aiHots
The control pulse is taken to be(t)=A(t)coswt+ ¢), Atz ty)=e Ve,

where ¢ is a phase to be chosen aAt) is assumed to be once

slowly time varying compared t@ !, and the frequency ’

is resonant with Ie_velis andj to bﬁ coupled. U(t,,ty) =e Moo=t (t,,t,) =e Hotay,eiHots,
TheM x M matrix e(t)e'Ho' we~ Mot will have all allowed

couplings given by, but, given the conditions stated earlier, and

we may neglect all terms except thigj)th and (,i)th en- '

tries, which, respectively, arg;je'?A(t) and u;;e ' ?A(t) U(t,,00=U(t,,t;)U(t;,00=e Hol2v,V, .
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If a total of k such coherently locked pulses are appliedwith the 3X3 matrix on the bottom right corner an element
(starting att=0 and lasting for a total period of time=t;  of SU(3). Once this is achieved we will not be able to reduce

+i,+---+1,) we get the remaining column§f any) to unit columns because level
1 will no longer have any population in it to effect any fur-
U(T,0)=e HoTV,V,_;--V,V,, (2.9 ther intermediate transitions required between the remaining
levels.
where theV,, i=1,... k are MXM matrices with each Returning now to the procedure suggested above. Con-

sider the reduction of column 4 to the corresponding unit
column. We may view the fourth column as a particular state
of a four-level system. First transfer all of the amplitude
from thea,, element to thea,, element by using the 12
transition. This can be effected by premutiplyiM)' by a
(ggatrix in SU4) of the form

being the identity except for a>22 block, which is the ex-
ponential of a 22 matrix similar in structure to that in Eq.
(2.2), with vy, replaced by suitable complex numbeys If it

is desired thatJ(T,0) be a prescribed matri¥, then the
question that needs to be addressed is whethean be
decomposed as in the last equation by a suitable choice
pulses. Equivalently, since 'Mo" is already known, the

question is whether anyl X M unitary matrix can be decom- 8 by 00
posed as the produﬂi‘;lvi for some choice ok. If the ¢, dp 0 0
answer is affirmative, then one can consider optimizing the 0O 0 1 ol
sequence. This optimization would seek to minimizevhile o 0 0 1

simultaneously considering the pulse-shaping capabilities of
the apparatus.

It is necessary to show tha¥/ can be written as
e "MoTTIL_, V(). Equivalently we have to show that every (al b1>

unitary matrixV=e'"o™V can be written adl;_,V(yy). It
will be shown below that this can always be achieve i

in SUM). As anyWe U(M) can be written ag'"V with T is in SU2) whose elements encode information abeyt
a real scalar an&/ e SU(M), this shows that the goal of anday, (see remark 2.1 belgwin the process of this pre-

creatingV, up to a scalar phase factor that is irrelevant hagnultiplication,VH will be ransformed into a special unitary
been attai,ned " matrix with its (2,4) entry equal to 0. Next use the—43

In the remainder of the paper we will assume that transition to transfer all population from tl4@,4) entry of the
e SU(M) and denote by its Hermitian conjugate. To- new matrix to its(1,4) entry. This may be effected by pre-

wards the end of demonstrating théthas the desired fac- multiplying the new matrix by a matrix in 34 of the form
torization, we premultiplyv" by a product of matrices with

The submatrix

cy d;

each factor in the product being a matrix that is the identity 3 0 b, 0

except for a 2 2 block of the formV(y,), so that the result 0 1.0 O

is the identityM X M matrix. c, 0 d, 0]
Before proceeding to the general situation we first illus- 0 0 0 1

trate, via examples, Hhow selection rules are respected in the

process of reduciny" to the identity by left multiplication. :

Assume that the atom had =4 levels and that the only The submatrix

allowed transitions are-+2 and 1-3 and 1-4. Any two a, b,

levels are still accessible from one another, albeit via level 1. (
DenotingVH=(aij), i,j=1,...,4, wewill first reduce c; dp

column 4 to (0,0,0,1), then column 3 to (0,0,1,0) then
column 2 to (0,1,0,0) and then finally column 1 to
(1,0,0,0Y. The reduction will be achieved by premultiplying

VH by suitable matrices that are tensor products oWith . R

V(). Notice that this order is not the only possible one. All bhoéh tﬁgr?c.)ul:rltrr:alclz)gltuhnin%; ttrr?gslgé)tn r;”?atjrisftic;otr:reancsgﬁlrmn
that is important is that column 1 be reduced last. In order tio 0017, O i thi b hieved b -
appreciate this point, suppose on the contrary that column 1%~ y. Once 'agamt IS may be achieved by premutiply
has been transformed first to (1,0,0,0Yhereby leaving a ing the last matrix by a matrix in S4) of the form

matrix of the form

in SU(2) encodes information about th8,4) and (1,4) en-
tries of the new matrix, as before. This premultiplication will
result in a SW4) matrix whose(2,4) and (3,4 entries are

as 0 0 b3
1. 0 0 O 0O 1 0 O
0 a by o 0 01 0
0 a, b2 c, Cs 0 0 d3
0 az by c3 where the matrix
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az bs Im—» and an element of S@). Thus, it will be shown below
e d that every element of S) can be written as a product of
378 V(yd's.

in SU(2) is specifically tailored to achieve the desired effect. Consideringy=re'?, then the typicaV(y) may be ex-
After this sequence of premultiplications the net effect is aPressed as
matrix in SU4) whose last column is (0,0,0,1) Unitarity (

requires that the fourth row b€,0,0,1. Special unitarity cost 0

now forces the remaining83 blockV to be in SU3). We

now proceed to reduce the third column\éto (0,0,1)" by
making use of transition-+ 2 to transform all the amplitude

isinr/ O rel?
r \re 7 0/

(2.5

0 cosr

Equation(2.5) is a straightforward consequence of the for-
i - mula for the exponential of an arbitrary linear combination
to level 1, and then using the transition-B3 to reduce the  f the pPauli matricegequivalently the Darboux coordinates
third column of the resultant matrix to (0,0,1)As before of an SU?2) matrix, [11]]. To be successful in factoring any
both of these transitions are achieved through premultiplicasu(z) matrix in the desired manner, a first candidate to try
tion by n;atrices in SW) whose last column and last row are yould bee*“: (i.e., the exponential of the remaining Pauli
(0,0,0,1) and(0,0,0,3. The balance of these matrices are nariy). Using Eq. (2.5 a simple calculation shows that
tensor products of; and the matrix in S(2) specifically eM=V(y)V(ys), With y,=(m/2)et and s
tailored to achieve the deS|_red effects. _ =(m/2)e'?2, whereo, and o, are any real numbers such
Remark 2.1 Let us consider the structure of the matrices, o ) = 01— 0+ m. Finally, anySe SU(2) admits the fol-
in SU(2) that achieves the desired effects above. For ®XJowing representation:
ample, in nulling out thex,, element oV, we have several

choices for the matrix in S@2). Let r be the norm of the e cosa e“sina
vector S=| i) o —ix (2.6
e"""Msinae e " cosa
a
al4 , with \, u€[0,27) and @ €[0,77/2]. Equation(2.6) can be
24

obtained by writing the entries &in polar coordinates and
and then seek a matri¥;,e SU(2) such that using the definition of S(2). From Eqs(2.5) and(2.6) it is
easily deduced tha®=V(y,)e'*z, where y,=ae'’1, 6,
=N+ pu— /2. This constructively yields the desired factor-
ization of SU2). Note that the pulse area of each of the three
pulses is bounded by/2 in absolute value.
Usually 6 can be taken as arbitrary. Only in the last step in  Remark 2.2 The factorization of S(2) matrices into
converting any column to the corresponding unit vector doegactors involving onlyx andy rotations may also be derived
6 have to be zero. Fixing leads to a uniqué&/,, that will by other techniqueg12]. Regardless of the approach it
achieve the above result. However, the freedom in the choicghould be noted th& is the unique S(2) matrix that con-
of 6 (except in the last stepis useful in minimizing the veys the vectofl 0) on the spher¢equivalently the spin-up
number ofV(y,)’s needed. Indeed it will be shown below zstate to the vector that is represented by the first column of
that any matrix in S(R) is a product of at most three matri- S Thus, the factorization ob discussed above may also be
ces of the formV(y,). So the freedom in choosing is  viewed as generating this unique transformation using gnly
useful in minimizing the number &f(y,)’s. In fact, there is andy rotations. Using this perspective it is possible to geo-
a matrix of the formV(y) such that metrically derive[12] a sequence ok andy rotations that
_ amounts to a factorization @& This viewpoint also enables
p) _( VIpl*+al%e™
q

reiB

0

V!
oY

12

a constructive verification of the claim in remaf&.1). In-

0 ' deed,S" is the unique matrix that takes the first columnSof
to (1 0). It is possible to go from €2 0) to (1 0) via the
where the complex numbegsand q have polar representa- matrix e '3z for any reala. The relation shown above

V(y)

tions p=|p|e'* andq=|q|e'*. Notice that the phase gfis  =V(y;)e"zimplies that there is a matrix of the fork( y)
the same as that of that conveys the first column &be the first column of some
SU(2) matrix; thus the claim of remark2.1) is verified.
V(y) p) SinceV(y) is V(y,)", there is an explicit formula fory in
q/’ relation to the entrie§ g) of the given vector on the sphere,

o _ viz., y=a€'’, where cosr=|p|/(|p|>*+|g]?) and 6=pu—x
This will be demonstrated later in remafR.2). Thus not _ /2.

insisting thaté be zero (except in one step) reduces the num-
ber of (y,)’'s to be used and thus the number of pulses to
be applied

The general case of av-level atom can be handled by
directly extending the above procedure to express any matrix This section will consider applications of the generation
in SU(M) as a product of matrices that are tensor products 0bf special unitary matrices t(a) state preparation antb)

Ill. APPLICATIONS TO STATE PREPARATION
AND OBSERVATION
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spective of controllability14] and caseéb) aims to show that —\l_1 1

state observation. Caga) will be discussed from the per- 1 ( 1 1
V2

the preparation of certain sequences of special unitary matri-

ces leads to the determination of the state of the system. When applied taj, 4 it results in a vector that is identical to

Yinal €XCept thatcy and c, are replaced by{y=(cy
+c,)/v2 and{,=(cy—c,)/v2. By assumption, we can read
out |Zy|2. Since,

The case of state preparation is implicitly present in a
previous papef14], where the problem of controllability of |4nl7= 3{lcnl®+ el +eney +cfien}
molecular systems was analyzed by considering the system. . .
defined by the corresponding unitary generator. However, g is possible to determine
slight refinement is needed to utilize that analysis, since in
this paper we have only shown how special unitary matrices

A. State preparation

el B ey 2+ e

may be prepared. Given two vectassand v on the unit ! 2[cy ||
sphere ofC™ there is an entire family of unitary matricés el (ON=n) 4 @ i(dn—¢n)
such thatUu=v. To construct them we first consider the = =coq ¢n— dp).

unitary matricesJ , andU,, whereU, andU, have as their 2

first columns the vectors andv. The remaining columns However, this does not deterr‘nir@1 since the cosine func-
can be any vectors that rendgf, andU,, unitary(e.g., those tjon is double valued 010,27).

obtained by applying the Gram-Schmidt progesSlearly To remedy this latter problem we prepare the special uni-
Uyp=u and U,p=v, where p=(1,0,...,0). Then the tary matrix that is the tensor productlgf_, and the follow-
matrix U=U_ U satisfiesU,=v. ing 2X 2 block in the(N,n) position:

Now consider the case where the matrix actinguoto )
give v is desired to be special unitary. Constr&;t= AUE| 101 i
andS,=U,B according toA=diag(1¢'%1, . ..,1), where AL

e'%u=detU,, and B=diag(le '%,1,...,1) with e'%
=detU,. Then bothS, andS, are special unitary and thus When applied ta/;,,, the transformation results in a vector
the productS=S,S, is also special unitary and satisfi8si  that is identical tajs,, except thaty andc, are replaced by
=v, sinceUu=v. Hence by preparing the special unitary {}=(cy+ic,)/v2 and {,=(icy+c,)/v2. Once again, by
matrix S and acting on the initial stata it is possible to assumption we are able to measwmz_ Since the quantity
create the desired statey. In most situations u . ‘
:(1,0’__ ] ,Oj—. ) —je (N ¢n) 4 je 1 (éN—¢n) '

It would be interesting to examine this approach for initial Mn= 2 =Sin(én— én)
state creation for low-dimensional systems. The ability to
create initial states for low-dimensional systems can be comsan be measured, it is clear thaiy— ¢,,) can be determined

bined with other approaches such as optimal controfor eachn, and hence so ca#,, n=1,... M.
[2,15,3,4 to create desired states for higher-dimensional sys- A total of three (M —1) measurements are required on a
tems. sequence of controlled systems for the twd 1) un-
knowns|ci|?, #;. The above scheme is a special case of
B. State observation determining the elements of a density matrix via projection

State observation is fundamental to control engineeringmeasurements developed[tir].

[16], and it is equally significant for quantum systefig].

The ability to determine that a desired state has been actually
obtained is needed to assess the success of the control pr0'|n th|S paper a Constructive Scheme for the Creation Of any
cess and its use in a variety of applications. We assume thgpecial unitary matrix has been analyzed. Although the

the measurement process can determine the population ghysical system used here is a single particle interacting with
some particular level. Thus, if o= 321 ,ci€' %y, where  an’electromagnetic field, there are some general features to
¥, i=1,... M is some basige.g., eigenfunctions of the the scheme that are relevant for other quantum sysf&#ijs

free Hamiltoniap, then we are able to measurey|?. By  These features are as follows: The quantum system in
preparing the special unitary matrix that results in the exquestion can be controlled by addressing subsystems of di-
change of populations between levélsandn, it is possible  mension two sequentially; the logarithm of the unitary gen-

IV. CONCLUSIONS

to measurgc,|?, for all n=1,... M. The only remaining erator, obtained after the controlling mechanism is applied to
quantites to be determined are the phases, i any of these two-dimensional subsystems, lies in the span of
=1,... M. Since only relative phases are relevant, we asany two of the Pauli matrices.

sume that the reference phagg is 0. Next the special uni- The first point above suggests that we represent our de-
tary matrix that is the identity except for the following 2 sired special unitary matrix as the products of factors that are
X 2 block in the(N,n) position is prepared: nontrivial only in a 2< 2 block. If no special structure on this
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2% 2 block is desired, then this can always be achig@d rapidly. All three steps above can be subsumed into the prob-
If a special structure is desired, then a preliminary question ifem of creating a prescribed unitary matrix from the evolu-

what special structures are feasible. The second point yield#on of a controlled atom. It is possible to achieve entangle-
the answer. The reason is that the Lie algebra generated tjgent within a single molecule by simultaneously

any two of the Pauli matrices equals the entire Lie algebra ofanipulating two degrees of freedom, such as rotation and
SU(2). Thus, if the second point is valid for the quantum Vibration, or radial and angular degrees of freedom in a
system being studied, then any matrix in (@Ucan be de- single atom, etc. A further crlt!cal matter concerns the struc-
composed, in principle at least, into a product of matricedUre of the algorithms used in quantum computation. The

with the prescribed special structure. The very importanfurrent algorithms are designed to work with multiple par-

practical questions of obtaining this decomposition in an al_ycles. However, this circumstance does not preclude work-

gorithmic fashion and also minimizing the number of factors™Y with multilevel systems. ~ The nature of the state obser-

in the decomposition depend on the particular system HOW\_/ation is also very important. Section Ill considered full state

ever, if the quantum system is such that in the second poirﬁbservatmn, but other less demanding observations are desir-

: X : able in keeping with the quantum computation algorithms
above the logarithm belongs to the spar@f andiy , then iProposed so far. These topics go beyond the scope of this

paper, but the work here should provide motivation for ex-
ploring these questions further.
Finally, it would be interesting to examine the field of
olecular contro[2,15] from the perspective of this paper.
ost problems in molecular control can be cast as state
; (i ; - ; preparation for multilevel systems. Section Il showed that
the input; (ii) preparation of the unitary transformation that this goal can be subsumed into the problem of creating one

will function as the logic gate; andii) reading the final . ; . : ;
output. With every concrete protocol proposed for a quantu ut of fam_||y of_spema_l unitary matrices. The main feature
§ our algorithm is that it does not require any costly com-

computer the physical means for achieving these three ste;? ) .
must be specified. In addition the nature of each step depencﬁ’é’taqons' although the pulse sequence still needs to be de-
on the particular problem or quantum algorithm. This papellerm'ned'

considered a smgl'e a.to(ne., a particle in the I|m|.t of one ACKNOWLEDGMENTS
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Although quantum computatidm,6] was not the primary
focus of this work, its provides useful motivation. Any pro-
posal to fabricate a quantum computer encompasses thr
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