
PHYSICAL REVIEW A, VOLUME 61, 032106
Explicit generation of unitary transformations in a single atom or molecule
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A constructive procedure for generating a prescribed unitary transform via the optically driven evolution of
a multilevel atom is described. Assuming a clean separation of the coupled levels, the procedure employs the
rotating wave approximation together with a decomposition of a unitary matrix into simpler matrix factors with
specified structure. Applications to state preparation and observation are also provided.
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I. INTRODUCTION

The preparation of ana priori prescribed finite-
dimensional unitary transformation via the evolution of
externally driven quantum system is a theoretical and te
nological challenge that plays an important role in seve
fields including atomic and molecular manipulation@1–4#,
quantum computation@5,6#, and quantum cryptography@7#.
This paper will describe a systematic technique to gene
arbitrary special unitary transformations in a quantum sys
that draws on concepts from control theory. The results
scribed here are applicable to the broader domain of quan
system manipulation.

The principal concept exploited here is that any spe
unitary matrix can be decomposed into products of trans
mations with a particular structure. Similar decompositio
have recently been suggested as well. Recket al. @8# use the
decomposition of anym3m unitary matrix into a product of
simpler matrices@i.e., tensor products of an arbitrary 232
block and a complementary block consisting of the iden
matrix of dimension (m22) obtained in@9## to produce an
optical implementation of quantum cryptography schem
They assume no structure within the factors and then s
that any special unitary matrix can be written as a produc
such factors. In this regard, Law and Eberly@10# considered
a decomposition for controlling the quantum state of a cav
field. There is a relationship between their factors and th
in the present paper, but the number of factors needed
different. Finally, DiVincenzo has demonstrated that a
unitary matrix can be written as a product of unitary matric
that are either a tensor product of an arbitrary 232 block
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andI M22 or a special 434 block andI M24 @13#. This latter
decomposition was motivated by a multiparticle impleme
tation of quantum logic gates. Here we will consider t
fundamental case that the nontrivial sub-block is of size
32. Unlike the conventional decomposition where the
32 blocks are in U~2!, the approach presented in this pap
respects the structure. Moreover, it can be tailored to t
into account practical laboratory constraints.

The specific ingredients of our approach to creating
unitary matrices has the following steps.

~1! Employ an atom or other simple quantum syste
whose energy levels are well separated, such that there
no interfering resonances with any pair of optically coupl
levels. Assurance of this condition may call for the introdu
tion of suitable static external fields. Spectral separation p
mits the system to be controlled by sequentially address
pairs of levels. Furthermore, this circumstance allows one
employ the rotating wave approximation when consider
control field designs. Controllability is also possible und
conditions more relaxed than this clean spectral separa
but each such case must be individually analyzed for its
plicability.

~2! Decompose the prescribedN3N unitary matrix into a
product ofN3N unitary matrices that are nontrivial only i
a sub-block. Here we will consider the simplest case wh
the sub-block is of size 232. This decomposition will re-
spect the selection rules appropriate to the system, and
also be tailored to take into account the rotating wave
proximation and any limitations on the matrix elements
the electric dipole operator, which is assumed to be the c
pling operator. The decomposition used in this paper is
ferent from the standard one where the 232 block can be
any element of U~2! ~see@9#!.

~3! An explicit characterization of the exponential of a
arbitrary real linear combination of the Pauli matrices will
utilized. This formulation will be useful in parametrizing th
232 blocks of the previous steps to provide an explicit d
sign for laboratory control.

The balance of this paper is organized as follows. Sec
©2000 The American Physical Society06-1
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VISWANATH RAMAKRISHNA et al. PHYSICAL REVIEW A 61 032106
II presents a derivation of the decomposition needed for
physical system. Next, a constructive factorization of a
SU~2! matrix into the factors prescribed by this decompo
tion is derived. In addition, it is shown how selection rul
can be respected during the decomposition process. Re
2.1 explains how the number of factors may be minimiz
and also discusses an alternative derivation of the des
SU~2! decomposition suggested to us by Harter@12#. Section
III discusses how the concepts in the paper may be applie
state preparation and observation. Finally Sec. IV addre
the extent to which the ideas in this paper may be gene
ized to other applications.

II. GENERATING ATOMIC SCALE UNITARY
TRANSFORMATIONS

Consider an atom irradiated by a sequence of electrom
netic pulses with the aim of guiding its evolution initiall
from the identity matrix to a desired final unitary matrix. Th
atom-pulse interaction is taken to be semiclassical. The a
is assumed to have the following properties:~1! The atom
hasM accessible levels that are well separated for contro
bility based on frequency discrimination.~2! The matrix
elements of the dipole operator~with respect to the basi
consisting of the eigenfunctions of the free Hamiltonian! are
all real and the diagonal elements are identically zero. T
latter assumption can be relaxed in certain cases.~3! The
atom-pulse pair is ‘‘controllable’’ in the sense that there
always a connection between any two levels, i.e., if selec
rules preclude accessing leveli directly from j, then there is
a set of levels~possibly more than one! forming a ladder,
such that statei can be accessed at least indirectly from st
j.

The multilevel atom will be irradiated by a sequence
tailored pulses. Each of the pulses above will address on
prescribed pair of levels. There is flexibility in the puls
structure and each should be chosen to be as simple as
sible. The action of the entire sequence of pulses is descr
below as

iU̇ ~ t,0!5~H02me!U~ t,0!, ~2.1!

wherem is the induced dipole operator ande(t) is the con-
trol field. DefiningV(t,0) by

U~ t,0!5exp~2 iH 0t !V~ t,0!

leads to the interaction representation

i V̇~ t,0!52e~ t !eiH 0tme2 iH 0tV~ t,0!.

The control pulse is taken to bee(t)5A(t)cos(vt1f),
wheref is a phase to be chosen andA(t) is assumed to be
slowly time varying compared tov21, and the frequencyv
is resonant with levelsi and j to be coupled.

TheM3M matrix e(t)eiH 0tme2 iH 0t will have all allowed
couplings given bym, but, given the conditions stated earlie
we may neglect all terms except the (i , j )th and (j ,i )th en-
tries, which, respectively, arem i j e

ifA(t) and m i j e
2 ifA(t)
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~recall that all entries of the matrix representation ofm are
assumed to be real and the diagonal entries are all zero!.

The pulse is applied for a timet1 with the only restriction
that the integral*0

t1A(t)dt be insensitive to a slight change i
t1 . Applying the rotating wave approximation yields

V~ t1,0!5V1 ,V~0,0!5IdM ,

where the matrixV1 is anM3M matrix that is the identity
except for a 232 block, which is the exponential of a 2
32 matrix of the form

S 0 ig1

i ḡ1 0 D . ~2.2!

ḡ1 is the complex conjugate of the complex numberg1 ,
which has the following polar representation:

g15m i j e
ifE

0

t1
A~ t !dt. ~2.3!

It will be seen later in Eq.~2.6! that the magnitude of the
complex numberg1 enters into our considerations only a
the argument of trigonometric functions. HenceA(t) andf
are chosen so thatg1’s magnitude can take any desired val
within @0,2p# to achieve the necessary action to generateV1 .
This point is useful for practical laboratory considerations

After the application of this first pulse the unitary gener
tor is given by

U~ t1,0!5e2 iH 0t1V1 .

Now another pulse of lengtht2 is applied that is resonan
with only some other allowed pair of levels. We then hav

U~ t,0!5U~ t,t1!U~ t1,0!.

Once again settingU(t,t1)5e2 iH 0(t2t1)V(t,t1) gives

i V̇~ t,t1!52e~ t !eiH 0~ t2t1!me2 iH 0~ t2t1!V~ t,t1!.

Premultiplying both sides of the last equation byeiH 0t1, us-
ing the rotating wave approximation, and then integrating
to time t5t2 yields

eiH 0t1V~ t2 ,t1!5V2eiH 0t1V~ t1 ,t1!

for a 232 block which is the exponential of a 232 matrix
similar in structure to that in Eq.~2.2!. As V(t1 ,t1) is the
identity matrix, the last equation becomes

V~ t2 ,t1!5e2 iH 0t1V2eiH 0t1.

Hence,

U~ t2 ,t1!5e2 iH 0~ t22t1!V~ t2 ,t1!5e2 iH 0t2V2eiH 0t1,

and

U~ t2,0!5U~ t2 ,t1!U~ t1,0!5e2 iH 0t2V2V1 .
6-2
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EXPLICIT GENERATION OF UNITARY . . . PHYSICAL REVIEW A61 032106
If a total of k such coherently locked pulses are appli
~starting att50 and lasting for a total period of timeT5t1
1t21¯1tk) we get

U~T,0!5e2 iH 0TVkVk21¯V2V1 , ~2.4!

where theVi , i 51, . . . ,k are M3M matrices with each
being the identity except for a 232 block, which is the ex-
ponential of a 232 matrix similar in structure to that in Eq
~2.2!, with g1 replaced by suitable complex numbersg i . If it
is desired thatU(T,0) be a prescribed matrixV, then the
question that needs to be addressed is whetherV can be
decomposed as in the last equation by a suitable choic
pulses. Equivalently, sincee2 iH 0T is already known, the
question is whether anyM3M unitary matrix can be decom
posed as the productP i 51

k Vi for some choice ofk. If the
answer is affirmative, then one can consider optimizing
sequence. This optimization would seek to minimizek, while
simultaneously considering the pulse-shaping capabilitie
the apparatus.

It is necessary to show thatV can be written as
e2 iH 0TPk51

L V(gk). Equivalently we have to show that eve

unitary matrixṼ5eiH 0TV can be written asPk51
L V(gk). It

will be shown below that this can always be achieved ifṼ is
in SU(M ). As anyW̃PU(M ) can be written aseiGṼ with G

a real scalar andṼPSU(M ), this shows that the goal o
creatingV, up to a scalar phase factor that is irrelevant, h
been attained.

In the remainder of the paper we will assume thatV
PSU(M ) and denote byVH its Hermitian conjugate. To-
wards the end of demonstrating thatV has the desired fac
torization, we premultiplyVH by a product of matrices with
each factor in the product being a matrix that is the iden
except for a 232 block of the formV(gk), so that the result
is the identityM3M matrix.

Before proceeding to the general situation we first illu
trate, via examples, how selection rules are respected in
process of reducingVH to the identity by left multiplication.
Assume that the atom hasM54 levels and that the only
allowed transitions are 1→2 and 1→3 and 1→4. Any two
levels are still accessible from one another, albeit via leve

DenotingVH5(ai j ), i , j 51, . . . ,4, wewill first reduce
column 4 to (0,0,0,1)T, then column 3 to (0,0,1,0)T, then
column 2 to (0,1,0,0)T and then finally column 1 to
(1,0,0,0)T. The reduction will be achieved by premultiplyin
VH by suitable matrices that are tensor products ofI 2 with
V(gk). Notice that this order is not the only possible one. A
that is important is that column 1 be reduced last. In orde
appreciate this point, suppose on the contrary that colum
has been transformed first to (1,0,0,0)T, thereby leaving a
matrix of the form

S 1 0 0 0

0 a1 b1 c1

0 a2 b2 c2

0 a3 b3 c3

D
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with the 333 matrix on the bottom right corner an eleme
of SU~3!. Once this is achieved we will not be able to redu
the remaining columns~if any! to unit columns because leve
1 will no longer have any population in it to effect any fu
ther intermediate transitions required between the remain
levels.

Returning now to the procedure suggested above. C
sider the reduction of column 4 to the corresponding u
column. We may view the fourth column as a particular st
of a four-level system. First transfer all of the amplitud
from thea24 element to thea14 element by using the 1→2
transition. This can be effected by premutiplyingVH by a
matrix in SU~4! of the form

S a1 b1 0 0

c1 d1 0 0

0 0 1 0

0 0 0 1

D .

The submatrix

S a1 b1

c1 d1
D

is in SU~2! whose elements encode information abouta24
and a14 ~see remark 2.1 below!. In the process of this pre
multiplication,VH will be transformed into a special unitar
matrix with its ~2,4! entry equal to 0. Next use the 1→3
transition to transfer all population from the~3,4! entry of the
new matrix to its~1,4! entry. This may be effected by pre
multiplying the new matrix by a matrix in SU~4! of the form

S a2 0 b2 0

0 1 0 0

c2 0 d2 0

0 0 0 1

D .

The submatrix

S a2 b2

c2 d2
D

in SU~2! encodes information about the~3,4! and ~1,4! en-
tries of the new matrix, as before. This premultiplication w
result in a SU~4! matrix whose~2,4! and ~3,4! entries are
both zero. Finally the 1→4 transition is used to transform
the the fourth column of the last matrix to the colum
(0,0,0,1)T. Once again this may be achieved by premutip
ing the last matrix by a matrix in SU~4! of the form

S a3 0 0 b3

0 1 0 0

0 0 1 0

c3 0 0 d3

D ,

where the matrix
6-3
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VISWANATH RAMAKRISHNA et al. PHYSICAL REVIEW A 61 032106
S a3 b3

c3 d3
D

in SU~2! is specifically tailored to achieve the desired effe
After this sequence of premultiplications the net effect is
matrix in SU~4! whose last column is (0,0,0,1)T. Unitarity
requires that the fourth row be~0,0,0,1!. Special unitarity
now forces the remaining 333 block Ṽ to be in SU~3!. We
now proceed to reduce the third column ofṼ to (0,0,1)T by
making use of transition 1→2 to transform all the amplitude
to level 1, and then using the transition 1→3 to reduce the
third column of the resultant matrix to (0,0,1)T. As before
both of these transitions are achieved through premultipl
tion by matrices in SU~4! whose last column and last row a
(0,0,0,1)T and ~0,0,0,1!. The balance of these matrices a
tensor products ofI 1 and the matrix in SU~2! specifically
tailored to achieve the desired effects.

Remark 2.1. Let us consider the structure of the matric
in SU~2! that achieves the desired effects above. For
ample, in nulling out thea24 element ofVH, we have severa
choices for the matrix in SU~2!. Let r be the norm of the
vector

S a14

a24
D ,

and then seek a matrixV12PSU(2) such that

V12S a14

a24
D5S reiu

0 D .

Usually u can be taken as arbitrary. Only in the last step
converting any column to the corresponding unit vector d
u have to be zero. Fixingu leads to a uniqueV12 that will
achieve the above result. However, the freedom in the ch
of u ~except in the last step! is useful in minimizing the
number ofV(gk)’s needed. Indeed it will be shown belo
that any matrix in SU~2! is a product of at most three matr
ces of the formV(gk). So the freedom in choosingu is
useful in minimizing the number ofV(gk)’s. In fact, there is
a matrix of the formV(g) such that

V~g!S p
qD5SAupu21uqu2eim

0 D ,

where the complex numbersp andq have polar representa
tions p5upueim andq5uquei z. Notice that the phase ofp is
the same as that of

V~g!S p
qD .

This will be demonstrated later in remark~2.2!. Thus not
insisting thatu be zero (except in one step) reduces the nu
ber of V(gk)’ s to be used and thus the number of pulses
be applied.

The general case of anM-level atom can be handled b
directly extending the above procedure to express any ma
in SU(M ) as a product of matrices that are tensor product
03210
.
a

-

-

s

ce

-
o

ix
f

I M22 and an element of SU~2!. Thus, it will be shown below
that every element of SU~2! can be written as a product o
V(gk)’s.

Consideringg5reif, then the typicalV(g) may be ex-
pressed as

S cosr 0

0 cosr D 1
i sinr

r S 0 reif

re2 if 0 D . ~2.5!

Equation~2.5! is a straightforward consequence of the fo
mula for the exponential of an arbitrary linear combinati
of the Pauli matrices@equivalently the Darboux coordinate
of an SU~2! matrix, @11##. To be successful in factoring an
SU~2! matrix in the desired manner, a first candidate to
would beeilsz ~i.e., the exponential of the remaining Pau
matrix!. Using Eq. ~2.5! a simple calculation shows tha
eilsz5V(g2)V(g3), with g25(p/2)eis1 and g3
5(p/2)eis2, wheres1 and s2 are any real numbers suc
that l5s12s21p. Finally, anySPSU(2) admits the fol-
lowing representation:

S5S eil cosa eim sina

ei ~p2m! sina e2 il cosa D ~2.6!

with l, mP@0,2p) and aP@0,p/2#. Equation~2.6! can be
obtained by writing the entries ofS in polar coordinates and
using the definition of SU~2!. From Eqs.~2.5! and~2.6! it is
easily deduced thatS5V(g1)eilsz, where g15aeiu1, u1
5l1m2p/2. This constructively yields the desired facto
ization of SU~2!. Note that the pulse area of each of the thr
pulses is bounded byp/2 in absolute value.

Remark 2.2. The factorization of SU~2! matrices into
factors involving onlyx andy rotations may also be derive
by other techniques@12#. Regardless of the approach
should be noted thatS is the unique SU~2! matrix that con-
veys the vector~1 0! on the sphere~equivalently the spin-up
z state! to the vector that is represented by the first column
S. Thus, the factorization ofS discussed above may also b
viewed as generating this unique transformation using onx
andy rotations. Using this perspective it is possible to ge
metrically derive@12# a sequence ofx and y rotations that
amounts to a factorization ofS. This viewpoint also enables
a constructive verification of the claim in remark~2.1!. In-
deed,SH is the unique matrix that takes the first column ofS
to ~1 0!. It is possible to go from (eia 0) to ~1 0! via the
matrix e2 iasz for any reala. The relation shown aboveS
5V(g1)eilsz implies that there is a matrix of the formV(g)
that conveys the first column ofSbe the first column of some
SU~2! matrix; thus the claim of remark~2.1! is verified.
SinceV(g) is V(g1)H, there is an explicit formula forg in
relation to the entries~p q! of the given vector on the sphere
viz., g5aeiu, where cosa5upu/(upu21uqu2) and u5m2l
2p/2.

III. APPLICATIONS TO STATE PREPARATION
AND OBSERVATION

This section will consider applications of the generati
of special unitary matrices to~a! state preparation and~b!
6-4
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EXPLICIT GENERATION OF UNITARY . . . PHYSICAL REVIEW A61 032106
state observation. Case~a! will be discussed from the per
spective of controllability@14# and case~b! aims to show that
the preparation of certain sequences of special unitary m
ces leads to the determination of the state of the system

A. State preparation

The case of state preparation is implicitly present in
previous paper@14#, where the problem of controllability o
molecular systems was analyzed by considering the sys
defined by the corresponding unitary generator. Howeve
slight refinement is needed to utilize that analysis, since
this paper we have only shown how special unitary matri
may be prepared. Given two vectorsu and v on the unit
sphere ofCM there is an entire family of unitary matricesU
such thatUu5v. To construct them we first consider th
unitary matricesUu andUv , whereUu andUv have as their
first columns the vectorsu and v. The remaining columns
can be any vectors that renderUu andUv unitary ~e.g., those
obtained by applying the Gram-Schmidt process!. Clearly
Uup5u and Uvp5v, where p5(1,0, . . . ,0)T. Then the
matrix U5UvUu

H satisfiesUu5v.
Now consider the case where the matrix acting onu to

give v is desired to be special unitary. ConstructSu5AUu
H

and Sv5UvB according toA5diag(1,eidu,1, . . .,1), where
eidu5detUu , and B5diag(1,e2 idv,1, . . . ,1) with eidv

5detUv . Then bothSu andSv are special unitary and thu
the productS5SvSu is also special unitary and satisfiesSu
5v, sinceUu5v. Hence by preparing the special unita
matrix S and acting on the initial stateu it is possible to
create the desired statev. In most situations u
5(1,0, . . . ,0)T.

It would be interesting to examine this approach for init
state creation for low-dimensional systems. The ability
create initial states for low-dimensional systems can be c
bined with other approaches such as optimal con
@2,15,3,4# to create desired states for higher-dimensional s
tems.

B. State observation

State observation is fundamental to control engineer
@16#, and it is equally significant for quantum systems@17#.
The ability to determine that a desired state has been actu
obtained is needed to assess the success of the contro
cess and its use in a variety of applications. We assume
the measurement process can determine the populatio
some particular levelN. Thus, ifcfinal5S i 51

M cie
if ic i , where

c i , i 51, . . . ,M is some basis~e.g., eigenfunctions of the
free Hamiltonian!, then we are able to measureucNu2. By
preparing the special unitary matrix that results in the
change of populations between levelsN andn, it is possible
to measureucnu2, for all n51, . . . ,M . The only remaining
quantities to be determined are the phasesf i , i
51, . . . ,M . Since only relative phases are relevant, we
sume that the reference phasefN is 0. Next the special uni-
tary matrix that is the identity except for the following
32 block in the~N,n! position is prepared:
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S 1 1

21 1D .

When applied tocfinal it results in a vector that is identical t
cfinal except that cN and cn are replaced byzN5(cN
1cn)/& andzn5(cN2cn)/&. By assumption, we can rea
out uzNu2. Since,

uzNu25 1
2 $ucNu21ucnu21cNcn* 1cN* cn%

it is possible to determine

Mn5
uzNu22 1

2 ~ ucNu21ucnu2!

2ucNuucnu

5
ei ~fN2fn!1e2 i ~fN2fn!

2
5cos~fN2fn!.

However, this does not determinefn since the cosine func
tion is double valued on~0,2p!.

To remedy this latter problem we prepare the special u
tary matrix that is the tensor product ofI M22 and the follow-
ing 232 block in the~N,n! position:

1

&
S 1 i

i 1D .

When applied tocfinal , the transformation results in a vecto
that is identical tocfinal except thatcN andcn are replaced by
zN8 5(cN1 icn)/& and zn85( icN1cn)/&. Once again, by
assumption we are able to measureuzN8 u2. Since the quantity

Mn85
2 iei ~fN2fn!1 ie2 i ~fN2fn!

2
5sin~fN2fn!

can be measured, it is clear that (fN2fn) can be determined
for eachn, and hence so canfn , n51, . . . ,M .

A total of three (M21) measurements are required on
sequence of controlled systems for the two (M21) un-
knowns uci u2, f i . The above scheme is a special case
determining the elements of a density matrix via project
measurements developed in@17#.

IV. CONCLUSIONS

In this paper a constructive scheme for the creation of
special unitary matrix has been analyzed. Although
physical system used here is a single particle interacting w
an electromagnetic field, there are some general feature
the scheme that are relevant for other quantum systems@18#.
These features are as follows: The quantum system
question can be controlled by addressing subsystems o
mension two sequentially; the logarithm of the unitary ge
erator, obtained after the controlling mechanism is applied
any of these two-dimensional subsystems, lies in the spa
any two of the Pauli matrices.

The first point above suggests that we represent our
sired special unitary matrix as the products of factors that
nontrivial only in a 232 block. If no special structure on thi
6-5
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232 block is desired, then this can always be achieved@9#.
If a special structure is desired, then a preliminary questio
what special structures are feasible. The second point yi
the answer. The reason is that the Lie algebra generate
any two of the Pauli matrices equals the entire Lie algebra
SU~2!. Thus, if the second point is valid for the quantu
system being studied, then any matrix in SU~2! can be de-
composed, in principle at least, into a product of matric
with the prescribed special structure. The very import
practical questions of obtaining this decomposition in an
gorithmic fashion and also minimizing the number of facto
in the decomposition depend on the particular system. H
ever, if the quantum system is such that in the second p
above the logarithm belongs to the span ofisx andisy , then
the constructive algorithm introduced here is applicable t
as well.

Although quantum computation@5,6# was not the primary
focus of this work, its provides useful motivation. Any pr
posal to fabricate a quantum computer encompasses
steps: ~i! preparation of the initial state that will serve a
the input;~ii ! preparation of the unitary transformation th
will function as the logic gate; and~iii ! reading the final
output. With every concrete protocol proposed for a quant
computer the physical means for achieving these three s
must be specified. In addition the nature of each step dep
on the particular problem or quantum algorithm. This pa
considered a single atom~i.e., a particle in the limit of one
electron! as a realization. There are many practical limi
tions associated with this choice~as is the case with an
other choice thus far presented!, but there are also stron
arguments to suggest that an atom would be an ideal sy
for practical laboratory study. Single particles are attract
from the point of view of isolating the system from extern
influences, and thereby enhancing the lifetime~provided
states of sufficient radiative lifetime are involved!. Further-
more, both the theoretical and experimental aspects of c
trolling molecular and atomic dynamics are advancing v
e-
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rapidly. All three steps above can be subsumed into the p
lem of creating a prescribed unitary matrix from the evo
tion of a controlled atom. It is possible to achieve entang
ment within a single molecule by simultaneous
manipulating two degrees of freedom, such as rotation
vibration, or radial and angular degrees of freedom in
single atom, etc. A further critical matter concerns the str
ture of the algorithms used in quantum computation. T
current algorithms are designed to work with multiple pa
ticles. However, this circumstance does not preclude wo
ing with multilevel systems. The nature of the state obs
vation is also very important. Section III considered full sta
observation, but other less demanding observations are d
able in keeping with the quantum computation algorith
proposed so far. These topics go beyond the scope of
paper, but the work here should provide motivation for e
ploring these questions further.

Finally, it would be interesting to examine the field o
molecular control@2,15# from the perspective of this pape
Most problems in molecular control can be cast as s
preparation for multilevel systems. Section III showed th
this goal can be subsumed into the problem of creating
out of a family of special unitary matrices. The main featu
of our algorithm is that it does not require any costly co
putations, although the pulse sequence still needs to be
termined.
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