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Constructive procedures that make no use of optimization or iterative calculations for the control of many
quantum and classical systems, via controls that are required to satisfy constraints on their power or pulse area,
are presented. These procedures are based on structured decompositions of SU~2!. A general technique for
obtaining such structured decompositions is given. Illustrative examples are provided.

PACS number~s!: 32.80.Qk, 03.65.Bz
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I. INTRODUCTION

This paper is concerned with representingconstructively
andexactly~i.e., without approximations! any SU~2! matrix
S as a product

S5Pk51
Q eakA1bkB ~1.1!

with ~i! O1:ak.0 and~ii ! O2:ubku<C for an a priori pre-
scribed boundC. Here SU~2! is the group of 232 unitary
matrices with determinant one, andA andB are linearly in-
dependent elements of su~2!—the set of 232 anti-Hermitian
matrices with zero trace. Constructive methods will be u
to obtain factorizations that simultaneously satisfy the c
straintsO1 andO2. The numberQ depends on the matrixS.
Several problems in the control of quantum and class
systems motivate this question. Examples are

~1! Control of two-level systems with piecewise consta
controls for applications to spin systems, molecular cont
spectroscopy, and quantum information processing,@1–10#.
In this case,ak is the time a control pulse is applied for an
bk is the time multiplied by the amplitude of thekth pulse
~i.e., the pulse area!.

~2! Control of two-level and N-levelsystems viasinu-
soidal controls in conjunction with approximations such
averaging or the rotating wave approximation@11#. In these
cases, theak , bk are related to constants such as the aver
and duration or pulse area and phase of the pulse.~See Ex-
ample 4 in Sec. IV.!

~3! Control of various classical mechanical systems s
as satellites, switched electrical networks, underwater
hicles etc.,@12–16#.
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Usually, Eq.~1.1! arises from controlling a quantum sys
tem, whose unitary generator obeys:

i\U̇~ t !5H0U1HeUu~ t !, U~0!5I 2 ,

whereH0 andHeu(t) are the internal and external Hamilto
nians, respectively.U is the unitary generator that is assum
to evolve on SU~2!, andu(t) is a scalar perturbing contro
field, treated classically, which is to be designed. Setting\
51, A52 iH 0 , and B52 iH e in the previous equation
leads to

U̇~ t !5AU~ t !1BU~ t !u~ t !, U~0!5I 2 . ~1.2!

Briefly speaking, the right-hand side of the factorizati
~1.1! is nothing but the unitary generator of the system~1.2!
after a11¯1aQ units of time. Thus,O1 arises because
a1 ,...,ak are the times for which a constant control is a
plied to Eq.~1.2! and hence, have to be positive.O2 is mo-
tivated by theoretical and practical limitations such as
upper bound on the power/pulse area of a field. Indeed
this setting, it holds thatbk is the product of the amplitude o
the kth and the duration of thekth pulse, which justifies the
appellation ‘‘pulse area’’ for thebk . ~See Example 1 in Sec
IV.! Thus the principal question being addressed in the pa
is the generation of an arbitrary unitary transformation
control pulses, which are subject to constraints. A furth
discussion of these motivating examples is postponed to
VI.

The aim is to produce a prescribed unitary generator
not merely a desired state. Furthermore, once the sys
~1.2! has been given~either exactly or via approximations!,
our results are exact and make no use of approximate a
ments such as the linearization of a set of nonlinear eq
tions or optimization techniques, as in Ref.@17#. In fact, the
results here are computationally attractive alternatives
optimization based approaches to control.
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RAMAKRISHNA, FLORES, RABITZ, AND OBER PHYSICAL REVIEW A62 053409
To achieveO1 and O2 for a given pairA, B, the basic
idea is to map a pairÂ,B̂, for which these two objectives ar
easier to establish, ontoA,B via a Lie algebra isomorphism
c. By varying the pairs,Â,B̂, different decompositions fo
achievingO1 andO2 can be arrived at. Therefore, calcul
tions are first presented for two specific pairs, viz.,Â

5 isy , B̂5 isx and Â5 isz , B̂5 isy . ~See Secs. III A and
III B. ! Here, thes’s are the Pauli matrices. A comparison
the two cases appears in Sec. III C. The requirement thc
be a Lie algebra isomorphism forces thatA and B be or-
thogonal. This orthogonality can be attained by applying
preliminary control transformation. However, for many cas
~such as those arising in switched electrical networks!, taking
Â5 isy , B̂5 isx allows us to omit this control transforma
tion. ~See Remark 3.4.!

It is assumed that there is only one external control
erative at any given time and more importantly that theA
matrix that represents the unperturbed Hamiltonian of
system is not multiplied by an external control term. In co
trol theoretic language theA matrix is a drift term. The pres
ence of a drift term significantly complicates achievingO1
andO2, @12# and thus this paper represents a significant s
forward in dealing with such systems.The approach taken in
this paper is to suitably modify Euler-like decompositio
according to the objective.

The balance of this paper is organized as follows. In
next section preliminary facts about control theory and
group SU~2! are presented. In particular, the distinction b
tween driftless systems and systems with drift is furth
clarified. Section II A contains useful terminology. Secti
II B contains two preliminary decompositions,R1 andR2, of
SU~2!, which are thestarting pointsfor the factorizations
obtained in the present paper. Section III is devoted to
achievingO1 and O2. Sections III A and III B address the
( isy ,isx) pair and the (isz ,isy) pair, respectively. Section
III C develops a unified approach for meetingO1 andO2 for
arbitrary su~2! matricesA and B. Results for the group o
rotations, SO~3!, are presented in Sec. III D. The Sec. I
further elaborates on the motivating examples mentione
the introduction. The Sec. V contains conclusions and s
gests some future work.

II. PRELIMINARIES ON CONTROL THEORY AND SU „2…

The system introduced in the first section, system~1.2!, is
a system with ‘‘drift’’ evolving on SU~2!. The word drift
stems from the fact that the system continues to evolve e
when the control termu(t) is switched off. In keeping with
this, the coefficientsak will be called the drift coefficients.
Such systems are in contrast to driftless systems. A rele
example of a driftless system associated with the sys
~1.2!, is

U̇5AUu1~ t !1BUu2~ t !. ~2.1!

Here bothu1(t) and u2(t) are external controls. Thus, Eq
~1.2! may be controlled via switching on and off only on
05340
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‘‘perturbation’’ whereas system~2.1! can be controlled by
switching on and off two perturbations.

For both systems, Eqs.~1.2! and ~2.1!, existence results
concerningO1 andO2 are known,@18–20#. However, there
is no constructive method for generating controls for E
(1.2). The only general alternatives are to use optimal con
techniques, which require substantial computation and in
ition. There is an extensive literature on constructive gene
tion of states fordriftless, classicalmechanical systems~see
e.g., Refs.@13,21,22#!. By way of illustration of the advan-
tage of having no drift, note that for driftless systems evo
ing on SU~2!, the objectiveO1 can be met by decompos
tions S5Pk51

Q eakA1bkB, which do not ensure thatak.0.
However, for driftless systems this is not a hurdle becaus
nonpositiveak can be viewed as a nonpositive control a
plied for a positive time.

For systems with drift on SU~2!, such as Eq.~1.2!, in
contrast, no constructive results are available. In the cont
literature there are some extensions to classical systems
drift as in Refs.@22,12,16,23#. In Ref.@16#, systems evolving
on SO~3! are considered in the context of the control
satellites. Single input systems with drift are also conside
but this case has not been fully resolved. In particular,
idea of using periodicity to overcome the problem of dri
which seems to be the suggestion of Ref.@16#, is incorrect.
Let us explain this in the context of SU~2!. Suppose a de-
composition of the type of Eq.~1.1!, without ensuring posi-
tive ak’s, is available. Call the matrix being exponentiated
the typical factor,e(akA1bkB), asCk . As CkPsu(2), wehave
eCht5eCk(t1nPk) for some periodPk and allnPZ,tPR. So,
eCk5eCk(11nPk). Thus, for somen, the coefficient ofA,
namely,ak(11nPk), will hopefully be positive. Clearly this
argument is flawed on two grounds:~i! if ak50 then for no
n will ak(11nPk) be positive and~ii ! even whenakÞ0 this
is not desirable, since correspondingly,bk(11nPk) becomes
large, which will typically invalidate neglecting higher leve
and processes in the basic model.

A. Some terminology

Next some terminology, used throughout this paper, w
be clarified. Consider the decomposition~1.1! and, in terms
of it, the following definitions:

~1! If an indexk is such thatbk50 then the corresponding
factor is calledfree evolution. Otherwise, the correspondin
factor is called acontrol pulse.

~2! ak is called thedrift coefficientof the kth factor.
~3! ubk /aku is called theamplitudeof the kth factor.
~4! ubku is called thepulse areaof thekth factor. Note that

the pulse area of a free evolution factor is zero.
~5! The quantitylk5Aak

21bk
2 is called theradial coor-

dinateof the kth factor.

B. Useful SU„2… facts

The Pauli matrices will be denoted as

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , and sz5S 1 0

0 21D .
9-2
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QUANTUM CONTROL BY DECOMPOSITIONS OF SU~2! PHYSICAL REVIEW A 62 053409
The following exponential formula is used tacitly use
throughout this paper@9,24#:

exp$ i @a~ t !sz1b~ t !sy1d~ t !sz#%

5cos@Al~ t !#I 21 i
1

Al~ t !
sin@Al~ t !#

3@a~ t !sx1b~ t !sy1d~ t !sz#

where

l~ t !5@a~ t !21b~ t !21d~ t !2#, ~2.2!

Next some representations of matrices in SU~2! are con-
sidered. The first is the Cayley-Klein parametrization:

S5S~a,z,u!5S ei z cosa eim sina

ei ~p2m! sina e2 i z cosa D , ~2.3!

wherea, z, m are the Cayley-Klein parameters ofS. Since
this parametrization is nothing but the entries ofSwritten in
polar form, it is clear thatz and m may be taken to be in
@0,2p! anda to be in@0,p/2# ~this is because cosa and sina,
being the radial coordinates ofS’s entries, are non-negative!
This representation yields the following two representatio
of SU~2! matrices, which will be thestarting pointsfor the
results of Sec. III.

~1! R1: S5eidszeiesxei f sz. The real numbersd, e, f are
related to the Cayley-Klein parameters~2.5! by

d5
z1m

2
2

p

4
; e5a; f 5

z2m

2
1

p

4
.

~2! R2: S5Pk51
3 exp@i(2Im gksy1Regksx)#, for appro-

priategkPC, k51,2,3. This representation plays an impo
tant role in the generation of arbitrary unitary transform
tions in a N-level atom/molecule@11#. Related products
involving sx and sy arise in cavity QED studies@25#. The
steps intervening in the derivation play an important role
the sequel. So the derivation from Ref.@11# will be briefly
recalled. To that end, write each factor in the decomposi
asV(gk), where

V~gk!5expS 0 igk

i g̃k 0 D .

It can be shown that@11#:

S~a,z,m!5V~g1!ei zsa,

where

g15aei ~z1m2p/2!. ~2.4!

The key step is the following equation which holds for a
LPR:

eiLsa5V~ ĝ2!V~ ĝ3!,

where
05340
s

-

n
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2
ei ûk, k52,3,

and

L5 û22 û31p. ~2.5!

Putting Eqs.~2.4! and ~2.5! together we get the desired fac
torization:

S~a,z,m!5V~g1!V~g2!V~g3! ~2.6!

with the gk the same asĝk in Eq. ~2.5!, whenL5z.
Thus, bothR1 and R2 are related to the Cayley-Klein

parameters, Eq.~2.3!, via simple formulas, which require n
more than elementary arithmetic operations and, thereby
vide a clear relationship between the parameters of the
torization ~1.1! and the entries ofS.

Remark 2.1:Note that inR1 each of the three factor
involves only one of the two Pauli matrices in question. O
the other hand, inR2 the typical factor will require both the
Pauli matricessx and,sy and hence, typically the comple
numbersgk , k51, . . . ,3 inR2 cannot be taken to be eithe
purely real or purely imaginary.

III. MAIN RESULTS

The main results regardingO1 and O2 follow. For each
case,O1 will be first addressed, and the resulting factoriz
tion will be further modified to achieveO2 simultaneously.
In Sec. III A, results based on an intrinsic approach to
caseA5 isy , B5 isx are provided. One advantage of th
intrinsic approach is that it immediately generalizes to
case A5 iasx1 ibsy and B5 icsx1 idsy , ‘‘without’’the
need for a preliminary orthogonalization~which would be
needed if AlgorithmV of the unified approach of Sec. III C
was applied!. Next, the caseA5 isz andB5 isy is studied.
Section III C, which addresses the generalA,B case, also in-
cludes a comparison of the (isy ,isx) and (isz ,isy) pairs.

The common feature of the first two sections is that
suffices, for bothO1 andO2, to analyze the case when th
target matrix is the exponential of the remaining Pauli m
trix, i.e., the exponential of~essentially! the commutator ofA
andB. This is in keeping with the control theoretic perspe
tive @19#.

A. The caseAÄ i sy , BÄ i sx

Let A5 isy andB5 isx . The relevant starting points ar
decompositions of the formS5P i 51

Q V(gk), where the ma-
trix V(g) is

V~g!5expS 0 ig

i ḡ 0 D 5exp@~2Im g!isy1~Reg!isx#.

Thus the drift coefficients are2Im(gk). Thus, if for the
targetS each of theak’s are positive,equivalently if each of
the complex numbersgk lie in the open lower half-plane,
then R2 @specifically Eq.~2.6!# of Sec. II C providesO1.
However, if even one of thegk’s does not belong to the
9-3
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lower half-plane then more work is needed and our star
points will be Eqs.~2.4! and ~2.5! of R2, Sec. II C. These
equations will be analyzed further to achieveO1. For this
analysis the following observation is very crucial:
Claim: To achieveO1 it suffices to consider the case whe
the target is of the form S5eiLsz for any real L. Indeed, the
following fact is true:

S~a,z,m!5eipsxS~a,z2p,m2p! ~3.1!

for any pPR. Equation~3.1! is proved by using Eq.~2.2!.
Now, Eq. ~2.4! applied to the matrixS(a,z2p,m2p)

yields

S~a,z2p,m2p!5V~ g̃1!ei ~z2p!sx,

where

g̃15aei ~z1m22p2p/2!, ~3.2!

This in turn gives

S~a,z,m!5eipsxV~ g̃1!ei ~z2p!sx. ~3.3!

By choosing p appropriately the angular coordinate ofg̃1
can be given any desired value, and in particular, V(g̃1) can
be chosen as a free evolution factor, by takingp such that
z1m22p2p/253p/2. So one needs to analyze only th
terms eipsz and ei (z2p)sz, but these are of the formeiLsx,
hence the claim.

Remark 3.1:Equation~3.3! contains, as special cases, t
standard Euler factorizations@9#. This greater generality
makes it versatile in other applications as well—such as
torizations into a product ofV(g)’s, with theg’s having their
phases in a desired range. Remark 3.2 below also empha
this issue.

1. O1 for AÄisy , BÄ i sx

In accordance, with the paragraph above we consider
S5eiLsx case first.
O1 when S5eiLsx: In representingeiLsx asV(ĝ2)V(ĝ3) ac-
cording to Eq.~2.5! of Sec. II B, the complex numbersĝ2
and ĝ3 of Eq. ~2.5! may be chosen to lie in any open half
the complex plane. Indeed, according to Eq.~2.5! the angular
coordinates ofĝ2 andĝ3 are related byL5 û22 û31p. Now
L may be taken to be in@0, 2p! and thus,uL2pu<p, with
equality only if L50. Since the exponential ofiLsx for L
50 is I 2 , we may as well assume thatLÞ0. In this case, it
follows thatuû22 û3u,p, i.e., thatĝ2 andĝ3 can be chosen
to lie in the same open half-plane.

This leads to the following algorithm forO1 for a general
targetS(a,z,m).

(a) Algorithm I: O1, A5isy , B5isx . ~1! Use Eq.~3.3!
with p5(z1m)/22p to write S(a,z,m) as
eipsxV(2 ia)ei (z2p)sx. Rewrite the anglesp and z2p as
angles in@0,2p! if they are not already in that range.
05340
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~2! Prepareeipsx as V„(p/2)eiu1
…V„(p/2)eiu2

… with u1 ,
u2P(p,2p) by using the liberty afforded by Eq.~2.5!. Like-
wise factorei (z2p)sx as V„(p/2)eiu3

…V„(p/2)eiu4
… with u3 ,

u4P(p,2p).
~3! Prepare the middle term via a single free evoluti

factor.
~4! ThusQ is at most five~it could be less than five if any

of these five factors isI 2!. At least one of these five factor
can be taken to be free evolution factors. The correspond
values for (ak ,bk), k51, . . . ,5 aredisplayed in Table II in
Sec. III C.

2. Achieving O2 for AÄisy , BÄ i sx

The factorization yieldingO1 will now be refined to meet
O2. Note thatO2 requires factoring a given SU~2! matrix S
into a product of factors, each of the formV(gk), with the
scalarsgk5lke

iuk’s lying in the lower half-plane and satis
fying lkucos(uk)u<C for a given boundC. To achieve this
proceed as follows.

First use Eq. ~3.1! to write S(a,z,m)
5eipsxV(ĝ1)ei (z2p)sx, as in Eq.~3.3!. Once again choosep
so that the factorV(ĝ1) is free evolution, and thus the puls
area corresponding to this factor iszero. So all that is re-
quired is to be able to meetO2 when the target matrix is o
the formeiLsx, for anyLPR. In writing eiLsx as the product

V„(p/2)ei û2
…V„(p/2)ei û3

…, as per Eq.~2.5! of Sec. II B,
choose the second of these factors to be free evolution,
take û353p/2. This ensures that the pulse area of the fac
V(ĝ3) equals 0. Given a pulse area boundC, we can obtain
a bounduC on the deviation ofû2 from 3p/2. In view of the
equation,

L2p5 û22 û3

the inequalityu3p/22u2u<uC translates into:

uL2pu<uC . ~3.4!

If L is not already of that form, then further factoreiLsz as
Pk51

r eiL ksz with eachLk satisfying the required inequality
This can always be achieved by rewritingeiLsz as
ei (L12np)sz for some positive integern, if need be. As a
specific illustration of how this may be done consider t
following, not necessarily optimal, recipe. Pick an even nu
ber r 52n such that L/2n<uC . Letting each Lk , k
51, . . . ,r equalp1L/2n does the job. Thus, by increasin
the number of factors, if needed, one can ensure that
pulse area of any individual pulse does not exceed a
scribed bound.

(b) Algorithm II: O2; A5isy , B5isx . ~1! Translate the
boundubku<C into a bounduC on the deviation from 3~p/2!,
of the phases of the complex numbers,gk , representing the
factors. Specifically choose, cos21(2C/p) in @3p/2,2p!. This
is always achievable by reducingC if needed. Then take
uC5cos21(2C/p)23p/2.
9-4
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~2! Use Eq. ~3.3! with p5(z1m)/22p to write
S(a,z,m)5eipsxV(2 ia)ei (z2p)sx. Rewrite the anglesp and
z2p as angles in@0, 2p! if they are not already in that range

~3! Prepare the middle factor,V(2 ia), via free evolution
for a units of time. RecallaP@0,p/2#, and soa is always
positive.

~4! Find the smallest natural number,n1 , so thatp/2n1

<uC . Then rewriteeipsz as Pk51
2n1 exp@i(p1p/2n1)sz#. Us-

ing Eq. ~2.4! prepare each of these 2n1 factors as products
V„e(p/2)uk…V(2 ip/2) with uk53p/21p/2n1 for all k.
Thus,uk is within uC of 3p/2 and the pulse area correspon
ing to theV„e(p/2)uk… is bounded byC.

~5! Repeat Step 4 withp replaced byz2p and n1 re-
placed by a correspondingn2 .

~6! This yieldsQ<2(2n112n2)11.
Remark 3.2: A,B Linear Combinations ofisx , isy . The

analysis of Sec. III A 1 showed that~i! by choosingp appro-
priately g̃1 can be allowed to have any desired angular
ordinate; and that~ii ! the complex numbersĝ2 andĝ3 can be
located in any open-half plane~i.e., not necessarily the
upper/lower, right/left open half-planes!. Thus, this analysis
can be extended verbatim to achieveO1 when A5 i (asx

1bsy), B5 i (csx1dsy), with ~a,b! and ~c,d! any linearly
independent pair of vectors. Indeed, in this caseO1 would
translate into an inequality of the forma(Reg)1b(Im g)
.0, where~a, b! is the first row of

S a b

c dD
21

.

This is the same as requiring that all theg’s lie in a certain
half-plane.

Similarly, O2 can be translated into the phase of theg’s
being located in a certain range. Now, virtually the sa
argument of Sec. III A 2 shows that anySPSU~2! can be
factored into a product,P i 51

Q V(gk), with thegk’s lying in a
given open half-plane with their phases withinuC of a pre-
scribed anglef in that half-plane. Indeed, the only differenc
is thatpPR would now be chosen so that the angular co
dinate of g̃1 in Eq. ~3.3! is f, and ĝ2 would likewise be
chosen to have angular coordinatef ~cf., Remark 3.1!. The
balance of the argument is verbatim as in Sec. III A 2. Th
the preliminary orthogonalization of Sec. III C can b
avoided in these cases.

As an illustration, of how one~i! can do better than the
conservative analysis presented forO2, and~ii ! use a similar
analysis forA5 isx , B5 isy consider:

Example 3.1:Let A5 isx ; B5 isy . Suppose the targe
state is the matrixei (p/2)sz and the pulse area bound tran
lates to a bound,uC5p/12, on the deviation of the phases
the gk’s from 0. Rewrite the target asei (13p)/2sz and decom-
pose the latter asPk51

7 eiL ksz, with L15L25¯5L5

5165°, L65170°, andL75175°. This achievesO2.

B. The caseAÄ i sz ; BÄ i sy

As in Sec. III A, the key is to show that the exponential
the remaining Pauli matrix, in this caseeiLsx, can be attained
05340
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via controlled pulses. The following proposition achiev
this. In this proposition the real numberL is assumed to
satisfy sin(L)>0, cos(L)>0, since this is the context in which
it will be used to achieveO1 for the pair at hand.

Proposition 3.1: Suppose LPR satisfiescos(L).0. Then
eiLsx can be written as the product of two facto
Pk51

2 eiaksz1 ibksy, where we may take ak.0, k51,2 or bk

.0, k51,2.Furthermore, one of the factors may be taken
be free evolution if needed. Ifcos(L)50, then once again
eiLsx can be written as the product of two facto
Pk51

2 eiaksz1 ibksy with either ak.0 or bk.0. However, in
this case, neither factor can be taken to be free evolution.

Proof: Let lk5Aak
21bk

2, k51,2. Chooselk positive and
satisfying cos(lk)50. Use Eq.~2.2! to evaluateeiaksz1 ibksy

andeiLsx and express the equationeiLsx5Pk51
2 eiaksx1 ibksy

in terms of equalities of the entries of the matrices in t
equation. This gives a system of two equations~of the four
equations that would normally result upon equating entr
of the matrices on both sides, two equations are identica
the remaining two!:

2
a1a21b1b2

l1l2
sin~l1!sin~l2!5cos~L !,

2
a2b12a1b2

l1l2
sin~l1!sin~l2!5sin~L !. ~3.5!

These equations may be solved as follows:

~1! cos(L).0. Case: Pick l15p/2, l253p/2, and b2
50. Then we havea1 /l15cos(L); and b1 /l15sin(L). So
a1 can indeed be chosen positive~thereby meetingO1!. Also
b1>0. ThuseiLsx can be prepared via a non-negative cont
since sin(L)>0.

~2! cos(L)50. Case: Pick l15p/2 and l25p/2. Since
sin(l1)sin(l2)51, the equations to solve become (a1a2
1b1b2)/l1l250 and (a2b12a1b2)/l1l25(21)sin(L).
Note sin(L)51. Then choose a15(1/&)/l1 and a2
5(1/&)/l2 , andb152a1 andb25a2 .
This finishes the proof of the proposition and leads to
following algorithm:

1. Algorithm III: O1, AÄisx , BÄ i sy

~1! Represent S(a,z,m) as exp@i„(z1m)/2
2p/4…sz#exp@iasx# exp@i„(z2m)/21p/4…sz# using R1.
Modify, by multiples of 2p, to ensure that the angles (z
1m)/22p/4 and (z2m)/21p/4 are in@0, 2p!.

~2! Prepare the first and third factors in Step 1 via fr
evolution.

~3! Prepare the middle term via two factors by usi
Proposition 3.1 withL5a. SinceaP@0,p/2#, the hypoth-
esis cosL>0, sinL>0 of Proposition 3.1 automatically hold
Of these two factors, the second can be taken to be
evolution if aÞp/2.

~4! This yieldsQ<4. At least two of these factors~at least
3 if aÞp/2! are free evolution factors. The correspondi
values of (ak ,bk) are displayed in Table II in Sec. III C.
9-5



g
fre
e

t
d

th
b

t

re

s

to

ve

-

y
the

rk

y
rst

re-

er
e

e

te
re

r

,

icit

RAMAKRISHNA, FLORES, RABITZ, AND OBER PHYSICAL REVIEW A62 053409
Remark 3.3:In the proof of Proposition 3.1 when cos(L)
Þ0, the values oflk were chosen with the aim of renderin
the control pulse to be applied for a shorter time than the
evolution factor. NoteO1 can also be achieved, in th
cos(L)Þ0 case, by takinglk5p/2, k51,2. However, in this
case neither pulse can be taken to be free evolution. On
other hand, this has the advantage of reducing the ra
coordinates and thus the time of the factors involved.

2. O2 for the AÄisz; BÄisy case

Next the factorization satisfyingO1 will be refined to
meetO2. Following Proposition 3.1 andR1, all that is re-
quired is to prepareeiasx, for any aP@0,p/2# via pulses
with bounded pulse area. The key to this is to note, from
proof of Proposition 3.1, that this term can be prepared
two factors, the first with pulse area (p/2)sin(a) and the
second a free evolution term. Soa should be such tha
(p/2)sin(a)<C. This leads to the following algorithm.

(a) Algorithm IV: O2, A5isz, B5isy . ~1! Represent
S(a,z,m) as exp@i„(z1m)/22p/4…sz#exp@iasx#exp@i„(z
2m)/21p/4…sz# usingR1. Modify, by multiples of 2p, to
ensure that the angles (z1m)/22p/4 and (z2m)/21p/4
are in @0, 2p!.

~2! Prepare the first and third factors in Step 1 as f
evolution terms.

~3! To prepare the middle term,eiasx, first translate the
boundC on the pulse area into a bounduC on the deviation
of a from 0. Specifically, define uCP@0,p/2#, as
sin21

„C/(p/2)…. This can always be ensured by reducingC,
if needed.

~4! If aÞp/2, factoreiasx as a productPk51
r eiak

sx, with
r 5 da/uCe and ak5a/r . Thus, 0<ak<uC . Here, d•e is the
ceiling function.

~5! Prepare each factoreiaksx of Step 4 via two pulses a
in Proposition 3.1 withak playing the role ofL. The second
pulse corresponds to a free evolution term. The first fac
has pulse area equal to (p/2)sin(ak). This is positive and at
mostC by the choice ofak .

~6! Thus, if aÞp/2, the above steps yieldQ<2dL/uCe
12. If a5p/2, then writeeiasx as, say,ei (4/p)sx ei (4/p)sx and
prepare each of these factors via the above steps.

C. A unified approach

In this section,A andB are allowed to be any 232 su~2!
matrices as described. The basic idea is the following. Gi
a pair A,BPsu~2! and a targetSPSU~2!, the problem of
obtaining the factorization~1.1! is resolved by solving the
same problem for one particular choice of su~2! matrices,
Â,B̂. Given the pairA,B, let c:su~2!→su~2! be defined as:

c~ ȧÂ1bB̂1c@Â,B̂# !5aA1bB1c@A,B# ~3.6!

for any a,b,cPR. The notation@,# represents the commuta
tor.
05340
e

he
ial

e
y

e

r

n

1. Preliminary orthonormalization

The aim is to renderc, of Eq. ~3.6!, a Lie algebra isomor-
phism, in other words to have it satisfyc(@L,V#)
5@c(L),c(V)# for any L,VPsu~2!. Now c, as it stands,
need not satisfy this property. It will however do so, b
virtue of the relation between the matrix commutator and
vector cross product, if both the pairsA,B and Â,B̂ are or-
thonormal pairs. Recall, a pairA,BPsu~2! is said to be or-
thonormal if the vectors inR3, obtained by expressing them
as linear combinations of (i /2)sz ,(i /2)sy ,(i /2)sx , are or-
thonormal. NowÂ5( i /2)sz and B̂5( i /2)sy are already or-
thonormal. So, the proposed unified approach will wo
whenA andB are also orthornormal.

If A,B are not orthonormal to begin with, a preliminar
control transformation can be applied to render them fi
orthogonal to each other. Indeed, defineu(t)5k1v(t), with
v(t) the new control. Then the system~1.2! becomes;

U̇5~A1kB!U1BUv~ t !.

The constantk is now chosen so that the new driftA1kB is
orthogonal toB. Thus, if the design based on (A1kB,B)
producedv as a piecewise constant control, then the cor
spondingu(t), for the original pair~A,B!, would also be
piecewise constant with the constantk being added to each
piece ofv(t). Orthonormalization can be achieved by furth
scalingA1kB andB by positive constants. Note that whil
the application of a preliminary control does not affectO1, it
affectsO2. A scaling affects neitherO1 nor O2. Indeed, to
meetO1 andO2 ~for a given boundC! for thepA,qB system,
the factorization that works for theA,B system, with the
bound C replaced byqC, can be used. This leads to th
following algorithm:

(a) Algorithm V: General A,B ~1! RenderA,B orthonor-
mal ~if needed! via the procedure described just above. No
that this step mayoftenbe omitted even in those cases whe
A andB are not orthogonal~see Remark 3.4 below!.

~2! Calculate the logarithm ofS and express it as a linea
combination ofA,B and @A,B#, i.e.,

ln~S!5c1A1c2B1c3@A,B#, ~3.7!

This is a linear algebraic calculation.
~3! Associate toS the matrixT defined by

T5exp~c1Â1c2B̂1c3@Â,B̂# !. ~3.8!

Thus, f(T)5S. Here f:SU~2!→SU~2! is defined by the
conditionf(eK)5ec(K). As c is a Lie algebra isomorphism
the Campbell-Baker-Hausdorff formula ensures thatf is a
group homomorphism@26#.

~4! Achieve O1 and O2 for Â5( i /2)sz , B̂5( i /2)sy
when the target isT, via the results of Sec. III B. The only
difference would be that the (ak ,bk), k51, . . . ,Q would
now be given by be replaced by (2ak,2bk), k51, . . . ,q of
Sec. III B. Alternatively, chooseÂ5( i /2)sy , B̂5( i /2)sx
and use the results of Sec. III A. This provides an expl
9-6
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factorizationT5Pk51
Q exp(ak Â1bkB̂) with ak.0 and ubku

<C, k51, . . . ,Q for the given boundC.
~5! Then, we have

S5f~T!5f@Pk51
Q e~akÂ1bkB̂!#

5Pk51
Q f@e~akÂ1bkB̂!# ~as f a homomorphism!

5Pk51
Q e~akA1bkB!@as f~eL!5ec~L !#, ~3.9!

Thus thesamechoice ofak ,bk , k51, . . . ,Q that worked for
the matrixT, also works forSand therebyexplicitly provides
O1 andO2 for the target SU~2! matrix S and the given pair
of su~2! matrices.

While Algorithm V works for generalA,B it has the fol-
lowing disadvantages:~i! For the case whenA,B are i times
Pauli matrices~which are already orthogonal!, the second
step of AlgorithmV is substantially more complicated, com
putationally, than representingS via Cayley-Klein param-
eters and using a factorization likeR2. ~ii ! If A,B were not
orthogonal to begin with, then this method requires the
plication of a preliminary constant control. In certain situ
tions whereA,B are not orthogonal, this preliminary ste
may be undesirable. On the other hand, intrinsic approac
may be able to address nonorthogonal pairs without prel
nary controls~see Remarks 3.2 and 3.4, for instance!. ~iii !
The problem of meetingO1 andO2 has been ‘‘transferred’’
to the pairs of Sec. III A or III B. Thus, the resultant choic

TABLE I. Q for O1, the number of free evolution factors an
cumulative radial coordinates for the two pairs.

Pair
Maximal Q

for O1
Minimal no.

of free evolution

Maximal
cumulative
radial coor-

dinates

( isy ,isz) 5 1 5
p

2
( isx ,isy) 4 2 4p
05340
-
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of ak ,bk has peculiarities related to this latter pair. The on
point in the algorithm where information about the given p
A,B is encoded, is in the choice of the matrixT.

2. Comparison of thesy ,sx and sz,sy pairs

Depending on which pair is used in Step 4 of Algorith
V, different decompositions meetingO1, O2 are obtained,
and thus a comparison is in order. Two tables are prese
below. In Table I, these pairs are compared with respec
significant criteria. Table II gives values for (ak ,bk), k
51, . . . ,Q for O1 for these two pairs in terms of the Cayley
Klein coordinates of the targetS(a,z,m). Comparisons for
O2 have been omitted as they cannot be cast into a com
form within the confines of a table.

In the tables below, the factor of 1/2 in the pairsÂ,B̂ of
Step 4 of AlgorithmV has been dropped, because~i! that
factor is present in both pairs and thus does not affect
comparison, and~ii ! the formulas presented in Table II ar

then easier to extrapolate for examples withÂ,B̂ replaced by
pA andqB for p,q.0.

~1! Cumulative radial coordinates are, by definitio
Sk51

Q lk5Sk51
Q Aak

21bk
2.

~2! The number of free evolution factors for theisz ,isy
pair is 3 if aÞp/2.

~3! The (isz ,isy) pair, typically has lower cumulative
pulse area, i.e.,Sk51

Q ubku. Comparisons for this criteria hav
been omitted, since the formulas forubku for ( isy ,isx) have
considerable liberty, thereby rendering upper bounds q
conservative.

~4! The anglesuk , k51, . . . ,4 in thesecond column are
chosen to satisfy the stated constraints and also to be in
range~p, 2p!. See the AlgorithmI in Sec. III A.

According to the first table, the (isz ,isy) performs better
than the (isy ,isx) pair in all categories except for cumula
tive radial coordinates. Having a lower value for the cum
lative radial coordinate is useful because it indicates the a
ity to prepare the target in a better fashion with respec
simultaneously minimizing total time and total pulse area
TABLE II. ( ak ,bk) for O1.

(ak ,bk) ( isy ,isx) ~isz ,isy!, aÞ
p

2
~isz ,isy!, a5

p

2

(a1 ,b1) S2 p

2
sinu1,

p

2
cosu1D, z1m

2
2p5u12u21p Sz1m

2
2

p

4
,0D S z1m

2
2

p

4
,0D

(a2 ,b2) S2 p

2
sinu2,

p

2
cosu2D, z1m

2
2p5u12u21p Sp2 cosa,

p

2
sinaD S p

2&
,2

p

2&
D

(a3 ,b3) (a,0) S3p

2
,0D S p

2&
,

p

2&
D

(a4 ,b4) S2 p

2
sinu3,

p

2
cosu3D, z2m

2
2p5u32u41p Sz2m

2
1

p

4
,0D S z2m

2
1

p

4
,0D

(a5 ,b5) S2 p

2
sinu4,

p

2
cosu4D, z2m

2
2p5u32u41p N.A. N.A.
9-7
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The values for cumulative radii were arrived at as follow
For the (isy ,isx) pair, use is made of the fact that anyScan
be prepared by five factors, four of which have radial co
dinates equal top/2 and the fifth@the factor corresponding to
V(g̃1) in Eq. ~3.11!# has radial coordinate equal toa ~see the
Algorithm I in Sec. III A or Table II!. Since a<p/2, the
upper bound is indeed 5~p/2!.

For the (isz ,isy) pair, Algorithm III or Table II clearly
yield cumulative radial coordinates ofd1 f 13(p/2)1p/2.
Now, d5(z1m)/22p/4, f 5(z2m)/21p/4 ~see Sec. II B!.
By taking z to be 2p2e(e.0), m50, we see that the cu
mulative radial coordinates can be made arbitrarily close
4p. Note it may be tempting to write the anglez as2e and
thus hope to get lower values ofd and f. While this lowersf
~if e is small!, it rendersd negative, thus requiring the rep
resentation ofd as a positive number~to meetO1!. This
rewriting gives the same value ford1 f .

Finally, note that at the cost of reducing the number
free evolution factors, the cumulative radial coordinate
the (isz ,isy) pair can be reduced to 3p ~by virtue of Re-
mark 3.3!. Likewise the cumulative radial coordinate for th
other pair can be reduced to 2p by a different factorization,
which however is not amenable to analyzingO2.

Remark 3.4, Preliminary Orthogonalization Not Alwa
Needed: Another advantage of the pair of Sec. III A deserv
attention. SupposeA and B are not orthogonal. It is often
possible to handle these cases without Step 1 of Algori
V. One such example is provided byA and B being two
linearly independent combinations ofisx ,isy . ~See Remark
3.2.! This example can be used to handle other cases a
For example, let A5a( i /2)sy1b( i /2)sz ; B5c( i /2)sy
1a( i /2)sz with the vectors~a,b! and~c,d! linearly indepen-
dent, but not orthogonal. We now use AlgorithmV with the
following changes. Step 1 is omitted. Define the Lie alge
isomorphism,c, through:

cS i

2
syD5

i

2
sy ; cS i

2
szD5

i

2
sx ; cS i

2
sxD52

i

2
sx .

Define f via c as before,f(eK)5ec(K), and use this new
definition of f in Steps 3 and 5 of AlgorithmV. In Step 4,
choose Â and B̂ as a( i /2)sy1b( i /2)sx and c( i /2)sy
1d( i /2)sx2 and then use Remark~3.2! to to meetO1 or O2
for Â andB̂ and targetT of the new Step 3. Then, just as
Step 5 of AlgorithmV, the sameak ,bk prepare the targetS
for A and B. In other words, the key difference is usin
( i /2)sy and (i /2)sx and notÂ,B̂ ~which are not orthogonal!
to definec, and then using Remark 3.2 to findak ,bk .

Thus, the only cases that seem to require a prelimin
control are A5a1( i /2)sz1b1( i /2)sy1c1( i /2)sx , B
5a2( i /2)sz21b2( i /2)sy1c2( i /2)sx , with the vectors
(a1 ,b1 ,c1) and (a2 ,b2 ,c2) nonorthogonal and such that e
ther ~i! at least one of the two vectors has all compone
nonzero or~ii ! if certain components of one of these vecto
are zero then at least one of the corresponding componen
the other is nonzero. In retrospect, the main feature of
isy ,isx case which allows us to address nonorthogo
05340
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pairs, is the fact that its starting pointR2 unlike R2, uses
both Pauli matrices in all its factors~cf. Remark 2.1 of Sec.
II B !.

D. Systems Evolving on SO„3…

In this section, the achievement ofO1 andO2 on SU~2!
will be used to achieve the same for systems on SO~3!, the
group of proper three dimensional rotations. This facilitat
by the following facts:

~1! The transformation RU :su~2!→su~2!, RU(A)
5UAU21, when viewed as a transformation fromR3 to R3

is an element of SO~3! @27#. This leads to a Lie groupho-
momorphismf:SU~2!→SO~3!, with f(U)PSO~3!. Fur-
thermore, the entries of the SU~2! matrices, which map to a
given SO~3! matrix, can be explicitly described.

~2! There is a Lie algebra isomorphism from
c:su~2!→so~3!, defined according toc:su~2!→so~3!, de-
fined according to@25#

cF2 i

2
~asx1bsy1csx!G5S 0 2c b

c 0 2a

2b a 0
D .

~3! An explicit calculation shows thatf(eK)5ec(K),
whereK5 i (asx1bsy1csz) is a general element of su~2!.
This is shown by using Eq.~2.2! in conjunction with the
Rodrigues’ formula for the exponential of an arbitrary e
mentV of so~3!:

eV5cos~ ivi !I 31
sin~ ivi !

ivi V1
12cos~ ivi !

ivi2 vvT.

In the above formulav is the vector inR3 associated to the
elementVPso~3! andvvT is the outer product ofv andvT.
See@28# for Rodrigues’ formula.

The above items can now be assembled to solve the p
lem of attaining anyOPSO~3! via controls with bounded
pulse area as follows. Given a system evolving on the gr
SO~3!:

U̇5AU1BUu~ t !, A,BPso~3! ~3.10!

and a desired final stateO, we associate to it a system evolv
ing on SU~2! and a final state,SPSU~2!:

U̇5ÂU1B̂U, Â,B̂Psu~2!, ~3.11!

Here ĈPsu~2! is c21(C) and SPSU~2! is any element of
SU~2! such thatf(S)5O.

To prepareO, we find the controls that would prepareS.

This means factoringS as a productPk51
Q e(akÂ1bhB̂) with

ak.0 and ubku<C, k51, . . . ,Q. Then thesamechoice of
ak ,bk , k51, . . . ,Q achievesO1 andO2 for O. This can be
shown by a calculation analogous to that in Step 5 of Alg
rithm V.

The difference between this subsection and the previ
subsection, regarding the homomorphismf, is as follows. In
this sectionf is already given, and we only verified that
9-8
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QUANTUM CONTROL BY DECOMPOSITIONS OF SU~2! PHYSICAL REVIEW A 62 053409
satisfies the important propertyf(eK)5ec(K), for K
Psu~2!. On the other hand, in the previous section,f was
defined viaf(eK)5ec(K) and this leads, in conjunction with
Eq. ~2.4!, to an explicit expression forf.

IV. MOTIVATING EXAMPLES

The basic problem set out in the Introduction is motiva
by many examples in quantum and classical control. A f
of them are briefly reviewed here. Examples 1 through
addressquantum-mechanical examples, whereas Example
discussesclassicalsystems.

Example 1:The decomposition,~1.1!, amounts to produc-
ing piecewise constant controls for the control of a two le
quantum system. Given such an externally controlled t
level system, we can express the evolution of the co
sponding unitary generator via Schrodinger’s equation~after
absorbing thei factor into the matricesA andB!

U̇5AU1BUu~ t !, ~0!5I 2 .

It is assumed thatA,B belong to su~2!. The assumption thatA
andB are anti-Hermitian with zero trace as opposed to be
just anti-Hermitian is appropriate because either~i! that is
already the case~as in the case of the control of electro
spin! or ~ii ! it amounts to only neglecting an overall phas
which is physically irrelevant. As an illustration of the latt
possibility, consider a two level atom with nondegener
energy levelsEk , k51,2 irradiated with an electromagnet
field ~the field being treated semiclassically!. Suppose that
the diagonal matrix elements of the dipole operator van
andm is the nonzero matrix element of the dipole operat
Then after some manipulation we are lead to a system of
form of Eq. ~1.2!:

U̇5 i S E22E1

2 DszU1 imsxUu~ t !. ~4.1!

The system~4.1! differs from the actual evolution of the
unitary generator only via an overall phase factor
e„i (E11E2)/2 t….

Thus, in this example it holds that A5 i (E22E1)/2sx
and B5 imsx . Hence, the results of Sec. III C are relevant
this application.

Now if Eq. ~1.2! is probed by a sequence of contro
uk(t)5 f k , k51, . . . ,L each for a durationtk , respectively,
then the unitary generator aftert11...1tL units of time is
given byPk51

L eakA1bkB, with ak5tk ; bk5 f ktk . Since, thetk

have to be positive~unless the correspondingf k50!, it is
necessary thatak.0. The requirement that thebk be
bounded in absolute value is of importance both theoretic
and practically. Indeed, there may be practical constraints
the power of the pulse. Such bounds are also required
neglecting other levels and physical processes of the sys
being studied.

Example 2:A second example is given on page 84 of R
@5#. Consider the control of the spin of an electron withBx
50 andBz51. By(t) is available for manipulation and thu
is the controlu(t). Assume for simplicity thatmB , the Bohr
05340
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magneton is 1. HereBx , By , andBz are components of the
magnetic field along thex, y, andz axes. So the Hamiltonian
of the system is given by

H5sz1By~ t !sy .

This is Case~c! of the example on page 84 of Ref.@5#. If the
aim is to prepare a specific coherent superposition of
spin-up and spin-down states, then the same can be achi
by preparing the unique SU~2! matrix S that conveys the
initial state to the desired coherent superposition@here, use is
being made of the fact that given 2 vectorsu, v on the
three-dimensional sphere, there is a unique SU~2! matrix S
such thatSu5v#. This leads to studying a system of th
form:

U̇52 iszU2 isyUu~ t !,

whereu(t)5By(t). This is of the form of Eq. (1.2) with A
52 isz , B52 isy . Hence the results, which are relevant
this example belong to Sec. III C. The other cases conside
in this example of Ref.@5# correspond to the easier case
the control ofdriftlesssystems.

Example 3:Another class of problems that requires t
creation of a final unitary matrix arises from quantum co
putation@6–8#. In these examples, it is required not only
prepare desired states, but also desired unitary genera
Most physical systems suggested for quantum computa
consist of independently addressable two-level syste
Controlling such systems via a sequence of constant con
is attractive if they have long quantum lifetimes.

Example 4:O1 andO2 are also relevant for both system
with ‘‘more’’ than two levels and controls which are ‘‘not’
piecewise constant. First, theoretically it may be shown t
any control can be approximated by piecewise constant c
trols @29,10#. Second, controls such as sinusoidal contr
may be reduced to the piecewise constant case via app
mations such as the rotating wave approximation or ave
ing theory. In Ref.@11# an N ‘‘level’’ atom/molecule with
well separated spectrum was considered. Under some a
tional assumptions, it was shown that the system can be
trolled by addressing only pairs of levels via sinusoid
pulses resonant with the corresponding energy differen
Using the rotating wave approximation it was then sho
that any desired unitary generator could then be factored
product of direct sums ofI N22 and SU~2! matrices with spe-
cial structure. Specifically, this special structure was

S5Pk51
3 exp@ i ~2Im gksx1Regksy!#.

The polar coordinates (lk ,fk) of the complex numbers
gk are related to thekth sinusoidal pulse as follows.lk is the
pulse area of thekth pulse andfk is phase of thekth pulse.
Thus, the requirementak.0 now translates into the phase
the pulse being located in certain ranges. Likewise, ot
approximations call for structures which involve the oth
Pauli matrices. Thus, under additional assumptions on
spectrum of the quantum system being studied, multile
systems can be studied by using techniques for two-le
systems.
9-9
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An alternative approximation comes from averagi
theory@30#. For instance, when the system~1.2! is probed by
a sinusoidal pulseuk(t)5ak sin(vk t1fk), the evolution of
the unitary operator is, under the averaging approximat
approximated by

U̇5AU1BUuav,k .

Hereuav,k is the average of thekth sinusoidal pulse. In this
case the correspondingak andbk are related to the duratio
and average of the pulse. Thus,O1 is once again necessar
while O2 amounts to requiring that the dc component of t
field be small.

Example 5:Many classical mechanical systems have
ther part or all of their evolution on the group of rotation
SO~3!. Examples are satellites controlled via internal roto
and aerospace systems with zero angular momentum tha
controlled via internal rotors. Thus, the methods of Sec. II
are relevant for these applications. A different exam
comes from energy transfers between dynamic storage
ments in switched electrical networks used in power conv
sion applications@14,15#. Such networks play an importan
role in many communication devices. Such problems lea
systems that evolve on an Euclidean space. The differe
equations which model these systems are bilinear, i.e., h
the form:

ẋ5Ax1Bxu~ t !, xPRk.

Herek is the number of circuit elements in the network. T
state x usually represents inductor currents and capac
voltages. When no power sources/loads are added, the
ciated equation for the ‘‘unitary generator’’~i.e., the transi-
tion matrix! can be frequently modeled as a system evolv
on SO(k), the group of properk dimensional rotations@14#.
This reflects the conservation of energy. The particular
ample considered in Ref.@15# hask53, and the authors o
Ref. @15# pass to the associated driftless system to ach
approximateenergy transfer. Since the ‘‘unitary’’ generato
in this example evolves on SO~3!, we can use the results o
Sec. III D. It turns out the corresponding system on SU~2!
@i.e., Eq. ~3.11! of Sec. III D# is of the form ~1.2! with A
5 ipsy and B5 i (qsx2psy). Here p,q are nonzero con-
um
r
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n,
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,
s
are
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to
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r
so-
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e

stants related to the circuit elements. Thus this system ca
handledexactly~not approximately, as in Ref.@15#! by using
either Remark 3.2 in Sec. III A or by the methods of Se
III C. The former is preferable since no preliminary orthog
nalization is then called for.

V. CONCLUSIONS

In this paper an explicit procedure for factoring eve
SU~2! matrix into a decomposition of the form~1.1!, respect-
ing requirementsO1 andO2, was provided. This factoriza
tion is motivated by quantum and classical control studies
particular, two-level andN-level quantum systems controlle
via piecewise constant or piecewise sinusoidal external fie
are addressed by these results. A unified approach, w
requires the knowledge of a solution toO1 andO2 for one
pair to constructively address the case of arbitraryA andB,
was provided. Varying the former pair, leads to differe
factorizations that meetO1 and O2 for A,B. It is useful to
have as many factorizations that meetO1 and O2 as pos-
sible. For instance, in many applications it is also useful
prepare a given target matrixS in minimal time. For in-
stance, in nuclear magnetic resonance applications it is
ful to finish the entire control action before relaxation pr
cesses become significant. In general, it is important to fin
all the control action before the given quantum system de
heres@8#. This is a problem that is worth addressing. Anoth
aspect of the results of this paper is that they could pot
tially generalize toN level systems. Indeed, one of the e
abling factors of this paper is that products of exponent
can be explicitly described. We believe that the same is t
for N.2. If this generalization can be achieved, thenN-level
systems can be studied without reducing the analysis to t
level systems. This could help in removing assumptio
about the well separatedness of spectrum of the system b
studied@11#.

ACKNOWLEDGMENTS

V.R. and R.O. were supported by NSF Grant No
0072415 and 9803186, respectively. H.R. was supported
the DOD and the NSF.
o-
pic

s-

em.

. J.

ce
@1# W. S. Warren, H. Rabitz, and M. A. Dahleh, Science259,
1581 ~1993!.

@2# K. R. Wilson et al., J. Phys. Chem.97, 2320~1995!.
@3# S. Shi and H. Rabitz, J. Phys. Chem.92, 364 ~1990!.
@4# R. Gordon and S. A. Rice, Annu. Rev. Phys. Chem.48, 601

~1997!.
@5# A. M. Butkovsky and Y. I. Samoilenko,Control of Quantum

Mechanical Processes and Systems~Kluwer Academic, Dor-
drecht, 1990!.

@6# R. P. Feynman, Optics News,11, 11 ~1985!.
@7# P. Shor, inProceedings of the 25th Annual ACM Symposi

on Foundations of Computer Science, edited by S. Goldwasse
~IEEE Computer Society, Los Alamitos, CA, 1994!, p. 124.
@8# D. P. DiVincenzo, G. Burkard, D. Loss, and E. V. Sukh
rukov, in Quantum Mesoscopic Phenomena and Mesosco
Devices in Micorelectronics, edited by I. O. Kulik and R. El-
lialtioglu ~NATO ASI Publications, 1999!. Also appears on the
lanl website as e-print cond-mat/9911245, 1999~unpublished!.

@9# W. G. Harter,Principles of Symmetry, Dynamics and Spectro
copy ~Wiley-Interscience, New York, 1993!.

@10# R. J. Ober, V. Ramakrishna, and E. S. Ward, J. Math. Ch
26, 15 ~1999!.

@11# V. Ramakrishna, R. J. Ober, X. Sun, O. Steuernagel, J
Botina, and H. Rabitz, Phys. Rev. A61, 032106~2000!.

@12# A. M. Bloch, N. H. McClamroch, and M. Reyhanoglu, inPro-
ceedings of the 29th IEEE Control and Decision Conferen
9-10



m

0

nd

tic

i-

ics

-

ms

QUANTUM CONTROL BY DECOMPOSITIONS OF SU~2! PHYSICAL REVIEW A 62 053409
~IEEE, Piscataway, NJ, 1990!, p. 1312.
@13# N. E. Leonard and P. S. Krishnaprasad, IEEE Trans. Auto

Control 40, 1539~1995!.
@14# J. R. Wood, Technical Report NASA, Report No. CR-12083

1973. Also Ph.D. thesis, Harvard University, 1974.
@15# N. E. Leonard and P. S. Krishnaprasad, inProceedings of the

34th IEEE Control and Decision Conference, 1919, ~IEEE,
Piscataway, NJ, 1995!.

@16# G. Walsh, A. Sarti, and S. Sastry, inProceedings of the 1993
American Control Conference~IEEE, Piscataway, NJ, 1993!,
p. 1312.

@17# G. Harel and V. M. Akulin, Phys. Rev. Lett.82, 1 ~1999!.
@18# V. Jurdjevic and H. J. Sussmann, J. Diff. Eqns.12, 313~1972!.
@19# D. L. Elliott, J. Diff. Eqns.10, 364 ~1971!.
@20# V. Ramakrishna, M. Salapaka, M. A. Dahleh, H. Rabitz, a

A. P. Peirce, Phys. Rev. A51, 960 ~1995!.
@21# G. Lafferiere and H. J. Sussmann, inProceedings of the IEEE

1991 International Conference on Automation and Robo
05340
.

,

s

~IEEE, Piscataway, NJ, 1991!, p. 1148.
@22# H. J. Sussmann, inProceedings of the 30th Control and Dec

sion Conference,~IEEE, Piscataway, NJ, 1991!, p. 1110.
@23# J. Zabcyk,Mathematical Control Theory~Birkhauser, Basel,

1990!.
@24# D. H. Sattinger and O. L. Weaver,Lie Groups and Algebras

With Applications to Physics, Geometry and Mechan
~Springer-Verlag, New York, 1986!.

@25# C. K. Law and J. H. Eberly, Phys. Rev. Lett.76, 1055~1996!.
@26# P. J. Olver,Applications of Lie Groups to Differential Equa

tions, 2nd ed.~Springer-Verlag, New York, 1995!.
@27# B. G. Adams,Algebraic Approach to Simple Quantum Syste

~Springer-Verlag, New York, 1999!.
@28# R. A. Horn and C. R. Johnson,Topics in Matrix Analysis~Aca-

demic, New York, 1980!.
@29# K. L. Grasse, Forum Math.,7, 607 ~1995!.
@30# H. K. Khalil, Nonlinear Systems, 2nd ed.~Wiley-Interscience,

New York, 1998!.
9-11


