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A NOTE ON THE EXISTENCE, UNIQUENESS AND

SYMMETRY OF PAR-BALANCED REALIZATIONS

Raimund J. OhertAurelian Gheondea*

We give a proof of the realization theorem of N.J. Young which states that ana-
lytic functions which are symbols of bounded Hankel operators admit par-balanced
realizations. The main tool used in this proof is the induced Hilbert spaces and a
lifting lemma of Kreln-Reid-Lax-Dieudonne. Alternatively one can use the Loewner
inequality. A short proof of the uniqueness of par-balanced realizations is includ-
ed. As an application, it is proved that par-balanced realizations of real symmetric
transfer functions are J-self-adjoint.

IntroductionI.

Consider a (discrete time, time invariant) linear system (A, B, G, D) with contractive main
operator A E L:(1i), input operator B E L:(U, 1i), output operator G E L:(1i, y), and
external operator D E L:(U, y), where the state space 1i, input space U, and output space
Yare Hilbert spaces. With every linear system (A, B, G, D) there is associated its transfer

function G: p(A) -+ L:(U, y) as follows

G(A) = D + C(AI -A)-l B, A E p(A). (1.1)

Since the main operator A is assumed contractive, i.e. IIAII ::;: 1, the transfer function is

defined and analytic for all 1.'\1 > 1.
Follo\ving the general theory, e.g. see [10], the system (A, B, G, D) is called observable

if for any h E 1£ we have E IlGAkhl12 < 00 and the observability operator O defined by
k?;O

Oh = (CAkh)k?:OI h E 1£,

is bounded and injective.

The system is called reachable,..if for any (Uk)k<O E (!J the series L Ak Buk converges
-k<Ostrongly in 1£ and the reachability operator R defined by -

R((Uk)k?:O) = L Ak BUk, (Uk)k~O E f~,

k?;O
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is bounded and has dense range.
Whenever the operators O and R are everywhere defined, one can introduce the op-

erator H = OR. The operator H is called the Hankel operator associated to the system
(A, B, G, D). From the definition of the operators O and R, the operator H has the fol-
lowing Hankel block matrix representation ,;.

(1.2)

more precisely, for all u = (Uk)k?:O E ~, y = (yk)k?:O E 4, we have

(1.3)(Nu, y) L L<GAi+j Buj, Yi)'

>Oi>OJ- -

If the system (A, B, G, D) has bounded and everywhere defined observability operator
0, then one can define the observability gramian 0.0. Similarly, if the system has bound-

ed reachabilit.y operator R then one can define the reachability gramian RR.. Following
N.J. Young [21], the system (A, B, G, D) is called par-balanced if the observability opera-
tor 0 and the reachability operator R are bounded every,vhere defined operators and the
observability gramian coincides with the reachability gramian, 0.0 = RR.. This is a gen-

eralization of the notion of balanced linear system introduced by B.C. Moore [16] for finite

dimensional systems.
The above presentation corresponds to the internal, or, equivalently, the state space

representation of a system. Sometimes a linear system is given only in its external repre-
sentation, that is, given U and y Hilbert spaces we consider G: { z E C Ilzi > 1} ~ .c(U, y)
an operator valued function which is analytic everywhere on its domain of definition and

at infinity. One can define another operator valued analytic function g: j[» ~ .c(U, y) by

-G(00)), Izi < 1.

Then 9 has the Taylor expansion on j[))

g(z) = L SkZk,

k?:O

Izl < I,

where 8k E £(U, y), k ~ 0. Associated with the function G one can consider the block-

operator Hankel matrix

So

SI

S2

Sk

Sk

Sk+l

{1.4)H=

The realization problem asks for the determination of a system (A, B, G, D), with some

state space 1i, input space U, and output space y such that (1.1) holds. Observable

SI

S2

SJ

S2

S3

...

1 ( 1
g(z) = -G(-

z z

H I"V(C A i+j B
) i,j?;O'

~~
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and reachable realizations of transfer functions can be obtained by the so-called reduced
shift realization, e.g. see [10]. There was a problem for some time to prove that balanced
realizations for nonrational transfer functions exist, e.g. see [12]. The main result of the
paper of N.J. Young [21] is:

THEOREM 1.1 Let U and y be Hilbert spaces and let G: { z E C I Izi > 1} -* L:(U, y)

be an operator valued function which is analytic on its domain and at infinity. If the

Hankel block-operator matrix in {1.4) defines a bounded operator H : e~ -* e~ then there

exists a realization (A, B, G, D) of G, corresponding to some Hilbert state space 1-£, which

is observable, reachable and par-balanced.

The approach to the proof of this theorem in [21] is to use the restricted shift realization
and then to perform a state space transformation which yields the desired par-balanced
realization. The most difficult part of the proof is to show that the new main operator is
bounded and even a contraction.

The aim of this short note is to produce an alternate approach ba.ged on induced Hilbert
spaces and a slightly generalized lifting Lemma of Krefu-Reid-Lax-Dieudonne. The ap-
proach with induced Hilbert spaces enables us to discuss the choice of the state space
from a different perspective. We notice that a slightly different argument making use of
the Loewner inequality, and inspired by the recent paper [15], can be used. Our interest
in Theorem 1.1 is due to sign symmetric transfer functions that we considered in [11],
where we used the induced Hilbert spaces and the Krefu-Reid-Lax-Dieudonne Lemma in
the realization theory.

The material is organized a.g follows. In Section 2 we have a short discussion of induced
Hilbert'spaces (for the indefinite variant see [5]), the generalized version of the Krefu-Reid-
Lax-Dieudonne Lemma (for an indefinite variant, see [7]) and two other representations of
induced Hilbert spaces. Section 3 contains the proof of Theorem 1.1. In Section 4 we give
a short proof of the uniqueness of par-balanced realizations, see Theorem 4.1. Finally, a.g
an application, we prove that par-balanced realizations of real symmetric transfer functions
are J-self-adjoint. An appendix containing a correction of N.J. Young to his original proof
in [21], is also included.

The results discussed in this paper carryover to the continuous-time case using the
bilinear transform method of [17].

Induced Hilbert Spaces2.

Let us consider a Hilbert space (1£, ( ., .) ) and let A be a bounded positive operator on

1£, A pair (K:A, IIA) is called a Hilbert space induced by A if K:A is a Hilbert space and
II E £(1£, K:A) has dense range and 'IIAIIA = A.

On 1£ we consider the nonnegative inner product (', ')A defined by

{X,Y)A = {Ax,y), x, y E 1£.

Let 'ii = 1£ e ker A and note that the restriction of the inner product { ", .) A to 'ii is

nondegenerate. On 'ii we consider the norm IIA1/2 " II and let /CA be the completion of
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(ii, IIA1/2 .II) to a Hilbert space. In other words, the strong topology on the Hilbert space
K:A is induced by the norm IIA1/2. II. Define lIA: 1£ -t K:A as the orthogonal projection

P1lekerA composed with the embedding of 1£ e kerA into K:A. It is easy to prove that
lIAlIA = A. Since II has dense range, (K:A,lIA) is a Hilbert space induced by A.

Let now 1£1 and 1£2 be Hilbert spaces and A E .C(1£1)'~ A :;::: 0, and B E .C(1£2), B ~ 0.
Also, let T E .C(1£1,1£2) be given and consider the induced Hilbert spaces (K:A,lIA) and

(K:B, JIB). We say that the operator T induces an operator t E .C(K:A, K:B) if t lIA = lIBT.
Equivalently, T ker A ~ ker B and denoting by T the corresponding quotient operator in
.C(1£1 e ker A, 1£2 e ker B) the operator T is bounded with respect to the norms IIA 1/2 .II

and, respectively, IIB1/2 .II. The operator t is then the extension by continuity of the
operator T and hence it is uniquely determined by T.

We now recall a result originally due to M.G. Kreln [13] and obtained independently

by W.T. Reid [18], P.D. Lax [14], and J. Dieudonne [6]. An even more general indefinite
variant was obtained by A. Dijksma, H. Langer, and H. de Snoo [7], see also [4]. The proof
of the statement below follows by using the same iterative approach used in the original

proof of M.G. Kreln and the others.

LEMMA 2.1 Let 1£1 and 1£2 be Hilbert spaces, A E .C(1£I) and B E .C(1£2) be positive

operators and let TI E .C(1£I, 1£2) and T2 E .C(1£2, 1£1) be operators such that

(T1x, Y)B = (x, T2y}A, x E 1£1, y E 1£2,

or, equivalently, BT1 = T2 A. Then

IIB1/2TIxll $ IIT2T11II/21IA1/2XII, x E 1£1, (2.1)

and similarly

IIAl/2T2yll ~ IITlT21Il/21IBl/2yll, y E 'ii2,

and hence, the operators Tl and T2 induce uniquely determined operators Tl E £(KA, K8)

and, respectively, t2 E £(KB. KA), such that

(Tlx,y) = (x.t2y), x E KA, y E K8.

Moreover, the norms oftl and T2 are bounded by IIT2Tliil/2 and IITlT21Il/2 respectively.

Let A E £('ii) be a positive operator. Just from the definition it is easy to prove that
any two Hilbert spaces (Ki. 11i) induced by A are unitarily equivalent, that is, there exists
a (uniquely determined) unitary operator (j) E £(Kl. K2) such that l/>11l = 112. We will

describe in the following two other representations of Hilbert spaces induced by a given
-c

bounded positive opera:torA. Of course. they will be unitarily equivalent with the induced
Hilbert space (KA, Il4J;:~9;!t ea-ch one has some gain, as well as some limitations.

EXAMPLE 2.2 Given A E £('ii) positive, we consider 'iiA = 'ii e kerA with the scalar

product induced from the scalar product of 'ii. and let 7fA E £('ii,'iiA) be 7fA = Al/2. Then
('iiA.7fA) is a Hilbert space induced by A. Moreover, it is easy to prove that the operator
1/> defined by

KA ~ 1£ e kerA 3 x 1--+ tPx = A1/2X E 1£A

can be extended uniquely to a unitary operator tP E £(KA. 1£A) such that tPIlA = 7rA' I
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EXAMPLE 2.3 Fix again A E £(1l) positive and define BA = n(Al/2) with the scalar

product (., .)13A defined by

x, y E 1l.

Then ( B A , ( ., .) BA ) is a Hilbert space. To see this, just note that we have made the operator
IjF = Al/2:1£A -+ BA unitary. Define the operator lIBA:1£-+ BA by lIBAX = Ax, x E 1£.

Then (BA,lIBA) is a Hilbert space induced by A and, in addition, the unitary equivalence
of 1£A and BA is given by IjF = Al/2 E [,(1£A, BA) such that IjF7rA = lIBA. I

The Hilbert space BA as in Example 2.3 can be characterized in yet another way. Let
K:, be a Hilbert space continuously embedded in 1£ and t: K:, y 1£ be the inclusion. Then
A = u* E £'(1£) is positive and (K, t) is a Hilbert space induced by A. Conversely, it
is easy to see from Example 2.3 that the Hilbert space B A is continuously embedded in
1£. These spaces were intensively used by L. de Branges [2], [3], and in a more general
formulation they were studied by L. Schwartz [19]. As operator ranges they were studied
by P.A. Fillmore and J.P. Williams [9] and it can be shown, cf. [19], that they are a

particular type of reproducing kernel Hilbert spaces, e.g. see Aronszajn [1].

Proof of Theorem 1.13.

Proof= Let ( " ' ) and II' II denote the scalar product and the corresponding norm on the

Hilbert space U, We consider the Hilbert space f~, of square summable sequences \vith
entries in U, endo\ved with scalar product also denoted by ( " .)

! = (!k)k?:O, 9 = (gk)k?:O E f~.(!,g) = L(/k,gk),

k?;O

Let the Hilbert space 1£ = t'~. According to our assumption, let H: t'~ -+ t'~ denote the
bounded operator defined by the Hankel matrix with operator entries H as in (1.4). We

consider (Ao, Eo, Go, Do) the right shift realization of G, that is,

(3.1)G(z) = Do + Co(zI -AO)-l Eo, Izi > 1,

where the operator Ao: 1£ -t 1£ is the right shift

!k-l, k ~ I,

0, k = 0,

! = (!k)k?:O E 1£ = t'~, (3.2){Aof)k =

the operator Eo: U-t 1£ = ~ is defined by
'..

(3.3)

where t denotes the matrix transpose, the operator Go: ti -t y is defined by

(3.4)

Bo=[IO...0...]t,

Go = [So Si ...Sk ...],

t

(A1/2X,A1/2y)BA = (X,y),
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and the external operator is Do = G{00). Note that the operator Go is bounded due to

the assumption on the boundedness of the Hankel operator H. Taking into account the

definition of the shift realization as in {3.2), {3.3), and {3.4) it follows that the observability
operator 00 of the system {Ao, Eo, Go, Do) has the matrix representation

"?
So

SI

S2

Sk

Bk

...Bk+l

=H. (3.5)

Similarly, let Ro be the reachability operator of the linear system (Ao, Eo, Go, Do). From

(3.2), (3.3), and (3.4) it follows that the matrix of Ro is

Ro = [ Eo AoEo A~Eo ... (3.6)-

I

O

O

O

Therefore, the reachability operator coincides with the operator of identification of e~ with

1£.
Consider the modulus IHI = (H- H)1/2 of the Hankel operator H and let (KIJJ!,.lIIIII)

be the induced Hilbert space. The main construction of the par-balanced realization lies

in the 'lifting' of the system (Ao, Eo, Go, Do) with state space ti to the 'induced' system
(A, E, G, D) \vith state space KIJJI. To do this first consider the operator Eo E £(U, ti) and

define Eo := IHIno E £(U, ti). Hence, with fu the identity operator on U, we have that

Bolu = IHIBo.

Therefore, by Lemma 2.1 Bo induces a unique operator B := i30 E [,(U, K:IHI). Moreover
B = IIIHIBo.

To deal with Go E [,(1£, y), let H = VIHI be the polar decomposition of the Hankel

operator H and let

60:=[10...0... E £(l~, y).

Then we have that
IyGo = GoH = (GoV)IHI.

Again by Lemma 2.1 Go induces a unique operator G := Go E L:(KIHI' y) and G11I/I1 = Go.

The central part of the proof is to show that Ao E L:(1l) induces a unique contractive

operator A E L:(KIHI). Indeed, considering Ao the left shift on l~ then we have that

(3.7)HAo = A~H.

SI

S2

S3

S2

S3

...

O

I

O

O

O .

O .

I.

O .

o
o
0

I

00 = [ Co CoAo CoA~ ...] =

~~~~

]

]
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To see this, if! = (!k)k?;O is an arbitrary sequence in 1£ and 9 = (9k)k?;O is an arbitrary

sequence in l~ then

L (Sj+k!j-l, gk)

j?; 1,k?;O

{H Ao!, g) = L {Sj+k{Ao!)j, gk)

j,k?:O
..

H* Ao , and hence

AoA~)H ~ 0,H* AoA~H = H*(IAoH* H Ao H*HH*H

where we used that AoAo < I since Ao is contractive. Since H* H = IHI2 this can be

rewritten as

A~IHI2 Ao ~ IHI2.

Therefore, there exists a contraction Z E .C(1i) such that

(3.10)IHIAo = z.,HI

Applying Lemma 2.1 it follows that Ao induces a unique operator A E .C(K:IHI). In addition,

(3.11)x E 1£.

Since the shift Ao and the operator Z are contractions, from (3.11) we also get by Lemma 2.1

that A E £(K:IHI) is contractive.
Having constructed the discrete-time system (A, B, G, D), D := Do, with state-space

K:IHI and contractive A, we now need to show that this system has the required properties.
Let R be its reachability operator. Note that for n ~ 0

ARB.l1IHIA~Bo = An l1IHIBo

Ru for each finite sequence u E l~. Therefore R E .C(l~, JC1HI) and byHence J1IHlRou

continuity
11IHlRo = R.

Let O be the observability operator of (A, B, G, D). Since for n ~ 0

CAnIliHI = CIliHIA~ = CoA~

oox. This implies that O E .C(K,IHI' l~) and thatwe have for x E 1l that O lllHIX

OlIlHI
(~

Note that we therefore also have for the Hankel operator H

00.

O11IHlRo = OR.H OoRo

This shows that the system (A, E, a, D) realizes the same transfer function G as does

(Ao, Eo, Go, Do).

j,k?:;O

This proves (3.7). Passing to the adjoints in (3.7) we get AoH*

IIIHl1/2 Aoxll ::; IIZAolll/211IHll/2XII,

= L (Sj+k+l!j,9k) = (A~H!,9).
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It remains to show that the system (A, B, G, D) is reachable, observable and par-

balanced. We have that

RR* = 111 HI Ro~11iHI = 111 HI 11iHI

..,
since Ro = fu. Let Xl, Yl E ti and let x = 11IHlxl, y = 11IHlyl. Then

(y, O*Ox}K:IHI = (11\HIY1, O*O11IHlxl}K:IHI

= (Yl,11jHIO.O11IHlxl)1£ = (Yl, °000Xl)1£ = (Yl,IHI2xl)1£

= (Yl,11IHI11IHI11IHI11IHIXl)1£ = (y,11IHI11iHlx)K:.IHI'

Here we have used that 00 = H and that IHI = 11iHI11IHI" Hence on the dense subset

11lll11i of K:IHI we have that
0.0 = 11IHI11IHI'

By continuity, this identity also holds on K:IHI" Therefore the system is par-balanced with

RR. = 0.0 = 11IHI11IHI"

Since l11II I has dense range in K,IHI, this also implies that R has dense range. Therefore l1,HI
has zero kernel and hence O is injective. Thus (A, B, G, D) is reachable and observable. I

REMARK 3.1 As pointed out in the introduction, our proof has a number of similarities
with the approach taken by N.J. Young [21], e.g.we use the shift realization, etc. The main

difference between the two proofs refers to the construction of the state space: N.J. Young
uses the restricted shift realiazation and then a renorming \vhile we construct the state

space at once and then use Lemma 2.1. I

REMARK 3.2 The fact that the system (Ao, Eo, Go, Do) can be lifted to the desired par-
balanced realization can be also proved following an idea in Lemma 3.2 in Megretskii, Treil

and Peller [15] which uses the Heinz's Theorem. This can be done as follows:

We consider the shift realization (Ao, Eo, Go, Do) as in the previous proof, let IHI =

(H* H)1/2 be the modulus of the Hankel operator H and let (K:IHI' lIIHI) be the induced
Hilbert space. We now have to perform the 'lifting' of the system (Ao, Eo, Go, Do) with

state space 1£ to the 'induced' system (A, E, G, D) with state space K:IHI. For the operators
E, G, and D this is very similar with what is done in the first proof, with the difference
that we do not apply Lemma 2.1. For example, consider the operator Eo E .c(U' 1£) and

note that
IIIHl1/2 Eoull .$: IIH1/2111Iul!, U E U,

..
and hence Eo can be lifted to a unique operator E := Eo E £(U, KIHI). Moreover E =

lIIHIEo.
For the operator Go E £(1{, y), let H = VIHI be the polar decomposition of the Hankel

operator H and note that Go = PyH, where y is naturally identified with the subspace

y $ O $ ...$ O $ ...of i~ .Therefore

IIGohl1 = IIPyHhl1 = IIPyVIHlhl1 .$: IIIHl1/21111IHl1/2hll, h E 1{ = i~,
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and hence Go induces a unique operator G := Go E £(K:IHI' y) and GlIIHI = Go.

As in the proof, the main concern is to show that Ao E £(1£) induces a unique contrac-
tive operator A E £(K:IHI). To see this, we first obtain the inequality (3.9) exactly as in

the first proof. As AoAQ ~ I we have from (3.9) that

(A~IHIAor ~ A~IHI2 Ao ~ IHI2.

By Loewner's inequality (this can be obtained also as a consequence of the Heinz's Theorem,
see e.g. Theorem 9.4 in [20]) which expresses that the square root is operator monotonic,
and in conjuction with the uniqueness of the square root, we therefore have that

A~IHIAo ~ IHI.

But this immediately implies the claim since for x E KIHI

IIAoxll.K:!HI = IIIHI1/2 Aoxll1l ~ IIIHI1/2xll1£ = Ilxll.K:IHI.

Moreover, AlIIHI = lIIHIAo.
The fact that the system (A, B, G, D) is a par-balanced realization of the transfer func-

tion G follows exactly in the same way as in the proof. I

REMARK 3.3 The fact that one can use the Loewner inequality instead of the Lemma
Kreln-Reid-Lax-Dieudonne comes as no surprise since it can be proved that these tools are

actually in the same circle of ideas, e.g. see [8]. I

REMARK 3.4 The par-balanced realizations are unique, modulo a unitary equivalence, cf.
[21] and the next section. In our proof of Theorem 1.1 we choose KIHI for the state space.
The state space transformation in [21] corresponds to the state space 1lIHI, see Example
2.2. But, as Example 2.3 shows, a third choice is possible, namely the state space BIHI.
This has the advantage of working on the range of some operator, with no closure needed,

with the cost, of course, of a more involved topology. I

Uniqueness of Par-Balanced Realizations4.

In [21] N.J. Young proved that par-balanced realizations are unique, modulo unitary e-
quivalence. His proof relied on relating this uniqueness question to the problem of the
uniqueness of restricted shift realization and the closely related output-normal realizations.

Here we present an alternative proof of his result.
In the previous sections of this paper we assumed that the main operator A of a system

is a contraction. To allow for a somewhat greater generality of the following theorem we

drop this assumption. All other definitions are as before.
Two systems (Ail Ei, Ci, Di), with state spaces 1{i, i = 1, 2, are related by a state space

transformation if there exists a bounded operator T: 1{2 -t 1{1 such that

A1T = T A2, El = TE2, C1T = C2, Dl = D2. (4.1)

The two systems are called similar if there exists a similarity, that is, a bounded invertible
state space transformation T: 1{2 -t 1{1 such that (4.1) holds. If the similarity T is unitary

the two systems are called unitary equivalent.
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THEOREM 4.1 Let {Ai, Bi, Gi, Di) be discrete-time observable and reachable linear systems,

with state spaces 1£i, bounded observability operators Oi and bounded reachability operators
~, such that they are par-balanced, that is, °:Oi = ~R: , i = 1,2. If both systems are

realizations of the same transfer function then the two systems are unitary equivalent.
Moreover, this state-space transformation is unique, That is, if U E £{1£2,1£1) is the

unitary state-space transformation between the two systems and T E £{1£2, 1£1) is a state-
space transformation between the two systems, then T = U .

Proof. Let H be the Hankel operator, associated as in (1.4) \vith the transfer function
G, which is realized by the systems (Ai, Bi, Gi, Di), i = 1,2. By assumption we have

QlRl 02R2,H

and therefore, using the par-balanced condition we get

H* H = R;O;O2R2 = R;R2R;R2.
R~R1R~R1 R~O~OlR1

IHI = R;R2°R~R1

Rl = U R2. (4.2)

The reachability of the systems and hence the fact that the reachability operators ~ have

dense ranges imply that U: 1-£2 -t 1-£1 is unitary. Since

...] ,,. A:Bi 1,2,l

El = UE2,

Note also that

...] ,...Af+l Bi 1,2,Ai~ z

and hence
A1UR2 = AIRl = UA2R2.

Since R2 has dense range and the operators are bounded, from here we get

AIU UA2.

Further, since
H = 02R2,OlUR2 = OlRl

[ AiBi A; Bi A~ Bi

this implies, by considering the first component in (4.2), that

~ = [Bi AiBi A;Bi

Therefore, there exists a uniquely determined isometric operator U: cl n(R2) -+ cl n(R1)

such that

Since Ri Rl and R2R2 are positive, using the uniqueness of the square root it follows that
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in a similar way we get
01U = O2,

As before, from here we obtain
G1U = G2.

That Dl = D2 follows from Dl -G(oo) = D2.

equivalent.
To show the uniqueness of the state space transformation U assume that T: 1-£2 -+ 1-£1

is a similarity state space transformation between the t\VO systems. Note that

Hence the two systems are unitary

TR2UR2 = Rl [TB2 AITB2 A~TB2 ...

A consequence of this result in combination with the realization result is that the main

operator of any par-balanced realization of a transfer function analytic outside the unit

disk and with bounded Hankel operator is a contraction.

5. Real Symmetric Transfer Functions

A system (A, B, C, D), with state space 1£, is called completely 1 -symmetric if there exists
a symmetry 1 E .C(1£), that is, 1 is unitary and selfadjoint, such that (A, B, C, D) and
(A*,B*,C*,D.) are similar with similarity 1, that is, 1.4 = A*1, B = 1C*, and D = D*,

In [11] we gave a direct proof of the existence of completely 1-symmetric par-balanced
realizations of real symmetric transfer functions with bounded Hankel operator. Here we

give a proof of a sligthly stronger result than Theorem 6.2 in [11].

THEOREM 5.1 Assume the assumptions and the notation of T/~eorem 1.1 and, in addi-
tion, that the transfer function G is real symmetric, that is, G(z) = G(z)*, Izl > 1. Let

(A, B, G, D) be an observable and reachable par-balanced realization of G with state space

1£. Then there exists a unique symmetry J on 1£ such that (A, B, G, D) is completely

J -symmetric. In addition, if 0 and R denote the observability and, respectively, the reach-

ability operator of the system then R = JO* and hence, the Hankel operator H of the

system admits the factorizations H = OJO* = R* J R.
IfE := R*R = 00*, then J commutes with E, i.e. JE = EJ.

Proof. Let (A, B, G, D) be an observable and reachable par-balanced realization of G.

Since by the real symmetry of G the dual system (A*, G*, B*, D*) is another realization of

G
B*(zI- A*)-lC* + D* = G(z)* = G(z), Izi > 1.

The standard duality results for linear systems imply that the dual system is also reachable,

observable, and par-balanced.

Since R2 has dense range and the operators T and U are bounded we get from here that

T=U.I

= [TB2 TA2B2 TA~B2 ... ]
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By Theorem 4.1 there exists a unique unitary state space transformation U E [,(ti)

such that
(A, B, C, D) = (U A*U*, UC*, B*U*, D*).

Applying a state space transformation with U* to both these systems we obtain
",

(U*AU,U*B,CU,D) = (A*,C*,B*,D*).

Taking the dual system we have

(U* A*U, U*G, B*U, D*) = (A, B, G, D),

which shows that U* is also a similarity for the systems (A, B, G, D) and (A*, G*, B*, D*).
By the uniqueness of the similarity as in Theorem 4.1 we get U = U*, that is, U is

a symmetry and the system (A, B, G, D) is completely J-symmetric with J = U. The

uniqueness of J follows again from Theorem 4.1 and the fact that both (A, B, G, D) and

its dual system are reachable, observable and par-balanced realizations of G .
Clearly we have R = JO* and hence the Hankel operator H of the system admits the

factorizations H = OJO* = R* J R. That J commutes with E follows since E = RR* =

JO*OJ* = JEJ* and therefore EJ = JE. I

Appendix6.

Our proof of Theorem 1.1 actually fills a gap in the proof provided in [21]. The proof in
[21] relies on Lemma 1, p. 461 in [21]. The Lemma is, however, only valid if, in addition to
the stated assumptions, the operator M is also assumed to be essentially selfadjoint. More
precisely, the proof of this Lemma, as provided in [21], proves the following statement.

LEMMA 6.1 Let .1\1 be a positive and essentially selfadjoint operator on a dense linear
manifold V of a separable Hilbert space 1£, let p E 1:,(1£) have zero kernel and let p M p-l

be a contraction on PV. Then M itself is a contraction.

The additional assumption on M implies that the Lemma can no longer be used to give

a complete proof of Theorem 1.
In this appendix we reproduce an argument communicated to us by N.J. Young [22]

after receiving a preprint of this paper. In this argument the use of Lemma 1 in [21] is
circumvented. We use the same notation as in [21]. Briefly, the idea is to use the closure
of the operator A instead of A. To prove that this is possible, let T be the closure of the
operator A as defined in [21], p. 460. T exists since A* has domain J Wl/41£ which is

dense. Then it is straightforward to show

W1/4T* I = Z*W1/4 I, I E V(T*).

Furthermore, extending the relation Wl/4 A = A W1/4 using closure, we obtain Wl/4T I =

AWl/4 I for all I E V(T). For arbitrary h E V(T*T) we have Th E V(T*), and hence

W1/4T*Th = Z* AW1/4h.

Thus W1/4(T*T)W-1/4 is a contraction on Wl/4V(T*T). Since T is closed, T*T is positive
selfadjoint and hence the Lemma 6.1 applies to conclude that T is a contraction.
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