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Constructive procedures that make no use of optimization or iterative calculations for the control of many
guantum and classical systems, via controls that are required to satisfy constraints on their power or pulse area,
are presented. These procedures are based on structured decompositiori®) ofASi¢neral technique for
obtaining such structured decompositions is given. lllustrative examples are provided.

PACS numbes): 32.80.Qk, 03.65.Bz

[. INTRODUCTION Usually, Eq.(1.1) arises from controlling a quantum sys-
tem, whose unitary generator obeys:
This paper is concerned with representcanstructively
andexactly(i.e., without approximationsany SU2) matrix inU(H)=HoU+HUu(t), U(0)=I,,
Sas a product

whereHq andHu(t) are the internal and external Hamilto-
nians, respectivelyJ is the unitary generator that is assumed
to evolve on SW2), andu(t) is a scalar perturbing control
field, treated classically, which is to be designed. Setfing
=1, A=—iHgy, and B=—iH, in the previous equation
leads to

S=IIQ ,edA+hB (1.2)

with (i) Ol:a,>0 and(ii) O2:|b,|<C for ana priori pre-
scribed boundC. Here SU2) is the group of 2 unitary
matrices with determinant one, arvdandB are linearly in-
dependent elements of (@—the set of 22 anti-Hermitian
matrices with zero trace. Constructive methods will be used .

to obtain factorizations that simultaneously satisfy the con- Ut =AUt +BUMuU(), UO)=I,. (1.2
straintsO1 andO2. The numbelQ depends on the matri®

Several problems in the control of quantum and classicaBriefly speaking, the right-hand side of the factorization
systems motivate this question. Examples are (1.1 is nothing but the unitary generator of the systen®)

(1) Control of two-level systems with piecewise constantafter a; +---+aq units of time. Thus,01 arises because
controls for applications to spin systems, molecular controla,,...,a, are the times for which a constant control is ap-
spectroscopy, and quantum information procesdihg;10. plied to Eqg.(1.2 and hence, have to be positiv@2 is mo-

In this casea, is the time a control pulse is applied for and tivated by theoretical and practical limitations such as an
b, is the time multiplied by the amplitude of tHeh pulse  upper bound on the power/pulse area of a field. Indeed, in
(i.e., the pulse arga this setting, it holds thab, is the product of the amplitude of

(2) Control of two-level and N-levebystems viasinu-  thekth and the duration of thkth pulse, which justifies the
soidal controls in conjunction with approximations such asappellation “pulse area” for thé, . (See Example 1 in Sec.
averaging or the rotating wave approximatidri]. In these IV.) Thus the principal question being addressed in the paper
cases, the,, b, are related to constants such as the averagis the generation of an arbitrary unitary transformation via
and duration or pulse area and phase of the pi&ee Ex- control pulses, which are subject to constraints. A further
ample 4 in Sec. V. discussion of these motivating examples is postponed to Sec.

(3) Control of various classical mechanical systems suchV/I.
as satellites, switched electrical networks, underwater ve- The aim is to produce a prescribed unitary generator and
hicles etc.[12-14. not merely a desired state. Furthermore, once the system

(1.2 has been givefieither exactly or via approximatiops
our results are exact and make no use of approximate argu-
*Corresponding author. Email address: vish@utdallas.edu anthents such as the linearization of a set of nonlinear equa-

kflores@utdallas.edu tions or optimization techniques, as in REE7]. In fact, the
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To achieveO1 and O2 for a given pairA, B, the basic “perturbation” whereas systeni2.1) can be controlled by

idea is to map a paik, B, for which these two objectives are Switching on and off two perturbations.

easier to establish, ont®,B via a Lie algebra isomorphism ~ For both systems, Eq$1.2) and (2.1), existence results
. By varying the pairsA,B, different decompositions for F:oncernlngpl adeZ are known,[18—2q. However, there
achievingO1 and O2 can be arrived at. Therefore, calcula- is no_constructive method for generating controls for Eq.

. p d i i . o~ (1.2). The only general alternatives are to use optimal control
tions are first presented for two specific pairs, VIA, tochniques, which require substantial computation and intu-

=ioy, B=io, andA=io,, B=ioy. (See Secs. lllA and ition. There is an extensive literature on constructive genera-
I B.) Here, theo’s are the Pauli matrices. A comparison of tion of states fodriftless, classicamechanical systemsee

the two cases appears in Sec. IllC. The requirementyhat e.g., Refs[13,21,24). By way of illustration of the advan-
be a Lie algebra isomorphism forces thatand B be or-  tage of having no drift, note that for driftless systems evolv-
thogonal. This orthogonality can be attained by applying &ng on SU?2), the objectiveO1 can be met by decomposi-
preliminary control transformation. However, for many casesjons S=112_,e***°€  which do not ensure tha,>0.

(ASUCh as 'Ehose arising in switched electrical netwpreking  However, for driftless systems this is not a hurdle because a
A=io,, B=io, allows us to omit this control transforma- nonpositivea, can be viewed as a nonpositive control ap-
tion. (See Remark 3.4. plied for a positive time.

It is assumed that there is only one external control op- For systems with drift on S(2), such as Eq(1.2), in
erative at any given time and more importantly that fie contrast, no constructive results are available. In the controls
matrix that represents the unperturbed Hamiltonian of thditerature there are some extensions to classical systems with
system is not multiplied by an external control term. In con-drift as in Refs[22,12,16,23 In Ref.[16], systems evolving
trol theoretic language th& matrix is a drift term. The pres- on SQ3) are considered in the context of the control of
ence of a drift term significantly complicates achieviad  satellites. Single input systems with drift are also considered
andO2, [12] and thus this paper represents a significant stefput this case has not been fully resolved. In particular, the
forward in dealing with such systeniBhe approach taken in idea of using periodicity to overcome the problem of drift,
this paper is to suitably modify Euler-like decompositionswhich seems to be the suggestion of Hd®], is incorrect.
according to the objective Let us explain this in the context of $2). Suppose a de-

The balance of this paper is organized as follows. In thecomposition of the type of Eq1.1), without ensuring posi-
next section preliminary facts about control theory and theive a,’s, is available. Call the matrix being exponentiated in
group SU2) are presented. In particular, the distinction be-the typical factorg(®A*2®) asC,. AsC, e su(2), wehave
tween driftless systems and systems with drift is furthergCnt=gCx(t+"PY) for some perio®, and allne Z,t e R. So,
clarified. Section Il A contains useful terminology. Section gC«=gC(1+"PW  Thys, for somen, the coefficient ofA,

II B contains two preliminary decompositiorR1 andR2, of  namely,a,(1+nP,), will hopefully be positive. Clearly this
SU(Z), which are thestarting pOintSfor the factorizations argument is flawed on two ground$) if ak:0 then for no
obtained in the present paper. Section Il is devoted to they wi|| a,(1+nP,) be positive andii) even whera,#0 this
achievingO1 and O2. Sections IllA and B address the g not desirable, since correspondingiy(1+nP,) becomes
(ioy,ioy) pairand the {o,ioy) pair, respectively. Section |arge, which will typically invalidate neglecting higher levels
Il C develops a unified approach for meeti®d andO2for  and processes in the basic model.
arbitrary sy2) matricesA and B. Results for the group of
rotations, S@3), are presented in Sec. llID. The Sec. IV
further elaborates on the motivating examples mentioned in
the introduction. The Sec. V contains conclusions and sug- Next some terminology, used throughout this paper, will
gests some future work. be clarified. Consider the decompositidhl) and, in terms
of it, the following definitions:

A. Some terminology

Il. PRELIMINARIES ON CONTROL THEORY AND SU (2) (1) If an indexk is such thab,= 0 then the corresponding
) ) ] ) i factor is calledfree evolution Otherwise, the corresponding
The system introduced in the first section, systér@), is  factor is called acontrol pulse

a system with “drift” evolving on SU2). The word drift (2) a, is called thedrift coefficientof the kth factor.
stems from the fact that the system continues to evolve even (3) |p, /a,| is called theamplitudeof the kth factor.
when the control ternu(t) is switched off. In keeping with (4) |b| is called thepulse areaof thekth factor. Note that

thiS, the CoeffiCientSik will be called the drift coefficients. the pu'se area of a free evolution factor is zero.

Such systems are in contrast to driftless systems. A relevant (5) The quantity\ = a2+ b2 is called theradial coor-
example of a driftless system associated with the SYStefinate of the kth factor koK

(1.2, is
B. Useful SU?2) facts

U=AUuy (1) +BUu(1). (2.1) The Pauli matrices will be denoted as

Here bothu,(t) andu,(t) are external controls. Thus, Eq. _ 01 _ 0 —i and o= 10
(1.2 may be controlled via switching on and off only one  “* {1 0o/" Y \i o0/’ z '
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The following exponential formula is used tacitly used

throughout this papdi9,24]: A'Yk:geibk- k=23,
expli a(t)o,+ B(t)oy+ 8(t) o]} and
1 " oA
=cog VA (1) ]l +i sin VA (1)] L=0,— 03+ . 2.9

VA(1) ' _
Putting Egs.(2.4) and (2.5) together we get the desired fac-
X[a(t) o+ B(t)oy+ d(t)o,] torization:

where S(a, ¢, 1) =V(y)V(72)V(73) (2.6

MO =[a(t)?+ B0+ 8(1)7], (22 with the v, the same a$, in Eq. (2.5, whenL=¢.

Thus, bothR1 and R2 are related to the Cayley-Klein
parameters, Eq2.3), via simple formulas, which require no
more than elementary arithmetic operations and, thereby pro-
vide a clear relationship between the parameters of the fac-

e ) i it . (2.3 torization(1.1) and the entries o8
e Sina € ** CoSa Remark 2.1:Note that inR1 each of the three factors
involves only one of the two Pauli matrices in question. On
the other hand, ifR2 the typical factor will require both the
Pauli matriceso, and, o, and hence, typically the complex
numbersy,, k=1, ...,3 inR2 cannot be taken to be either
purely real or purely imaginary

Next some representations of matrices in(3Uare con-
sidered. The first is the Cayley-Klein parametrization:

el cosa e”sina

S=9Y(a,{,u)=

where a, {, u are the Cayley-Klein parameters 8f Since
this parametrization is nothing but the entriesSofritten in
polar form, it is clear thag and uw may be taken to be in
[0,27) anda to be in[0,7/2] (this is because casand sina,
being the radial coordinates 8 entries, are non-negative.
This representation yields the following two representations

of SU(2) matrices, which will be thestarting pointsfor the Il MAIN RESULTS

results of Sec. m. The main results regarding1 and O2 follow. For each
(1) R1: S=e"7e'*?xe"?z. The real numbers, e, f are  case 01 will be first addressed, and the resulting factoriza-
related to the Cayley-Klein parametds5) by tion will be further modified to achiev®2 simultaneously

In Sec. Il A, results based on an intrinsic approach to the

Z_ caseA=io,, B=io, are provided. One advantage of this
4 intrinsic approach is that it immediately generalizes to the
_ 3 . case A=iaoy+ibo, and B=ico,+idoy,, “without"the

(2) R2: S=TIi_, exi(—Im poy+Reyay], for appro-  neeq for a preliminary orthogonalizatidwhich would be
priate e C, k=1,2,3. This representation plays an impor- needed if AlgorithmV of the unified approach of Sec. 11l C
tant role in the generation of arbitrary unitary transforma-yas appliedl Next, the casé\=io, andB=io, is studied.
tions in a N-level atom/molecule[11]. Related products gection 111 C, which addresses the genekd case, also in-
involving o and o arise in cavity QED studieR25]. The ¢jydes a comparison of thed, i) and (o, ,ic,) pairs.
steps intervening in the derivation play an important role in - The common feature of the first two sections is that it
the sequelSo the derivation from Ref11] will be briefly  gyffices, for bothO1 and 02, to analyze the case when the
recalled. To that end, write each factor in the decompositioRarget matrix is the exponential of the remaining Pauli ma-

+ —
ng'u—g; e=a; f:§ a

d 2

asV(yx), where trix, i.e., the exponential ofessentially the commutator oA
0 i andB. This is in keeping with the control theoretic perspec-
v _ Yk tive [19].
(yw=exg .- .
1Yk 0

A.Th A=ic,, B=i
It can be shown thdtl1]: e caseA=loy 1oy
Let A=io, andB=io,. The relevant starting points are

S(a,{, ) =V(y,)€'%, decompositions of the forB=112,V(y,), where the ma-
where trix V() is
. 0 iy
y = g (EHu-ml2), (2.9 V(y):ex;{ 7 0 ) =exd (—Imy)ioy,+(Rey)ioy].
The key step is the following equation which holds for any ) . )
LeR: Thus the drift coefficients are-Im(+y,). Thus, if for the
targetS each of thea,’s are positive gquivalently if each of
e %=V (3,)V(¥s,), the complex numberg, lie in the open lower half-plane
then R2 [specifically Eq.(2.6)] of Sec. IIC providesO1.
where However, if even one of they,’s does not belong to the
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lower half-plane then more work is needed and our starting (2) Preparee’??x as V((w/2)e' 1)V((/2)e'’2) with 6,,
points will be Egs.(2.4) and (2.5 of R2, Sec. IIC. These 6, (w,27) by using the liberty afforded by E@2.5). Like-

equations will be analyzed further to achie@d. For this
analysis the following observation is very crucial:

Claim: To achieveOl it suffices to consider the case when

the target is of the form Se'““z for any real L Indeed, the
following fact is true:

S(a,{,p)=ePrS(a,{—p,u—p) (3.0

for any pe R. Equation(3.1) is proved by using Eq2.2).

Now, Eg. (2.4) applied to the matrixS(a,{—p,u—p)
yields

S(aag_ pu“_ p) :V(Ty,l)ei(gip)(rxl
where
3, = agl((+r=2p-2) (3.2

This in turn gives

S(a,f, ) =PV ()l 7P, (3.3

By choosing p appropriately the angular coordinate Wf
can be given any desired value, and in particuM(7¥y,) can
be chosen as a free evolution facttay takingp such that

{+pu—2p—m/2=3m/2. SO0 one needs to analyze only the

termse'P?z and €'~ )7z, put these are of the forra'-7x,
hence the claim.

wise factore' ¢ P 9x asV((mr/2)e' %)V ((mr/2)e'%4) with 65,
O,e (m,27).

(3) Prepare the middle term via a single free evolution
factor.

(4) ThusQ is at most five(it could be less than five if any
of these five factors i$,). At least one of these five factors
can be taken to be free evolution factors. The corresponding
values for g, ,b,), k=1, ...,5 aredisplayed in Table Il in
Sec. llIIC.

2. Achieving O2 for A=iay, B=io,

The factorization yielding1 will now be refined to meet
02. Note thatO2 requires factoring a given SB) matrix S
into a product of factors, each of the forvf(y,), with the
scalarsy,=\e'%’s lying in the lower half-plane and satis-
fying \,Jcos(@)|<C for a given boundC. To achieve this
proceed as follows.

First use Egq. (32 to write S(a,l,u)
=e'PoxV/(%,)e'¢"P)?  as in Eq.(3.3. Once again chooge
so that the factoW(%,) is free evolution, and thus the pulse
area corresponding to this factor 2era So all that is re-
quired is to be able to me@2 when the target matrix is of
the forme[L”x, for anyL e R. In writing e't9x as the product
V((w/2)e 2)V((w/2)e'%), as per Eq.(2.5 of Sec. IIB,
choose the second of these factors to be free evolution, i.e.,
take 6;=37/2. This ensures that the pulse area of the factor
V(%3) equals 0. Given a pulse area boudgdwe can obtain

a boundé. on the deviation o, from 3a/2. In view of the

Remark 3.1Equation(3.3) contains, as special cases, the €quation,

standard Euler factorizationg9]. This greater generality
makes it versatile in other applications as well—such as fac-
torizations into a product of(y)’s, with the y's having their
phases in a desired range. Remark 3.2 below also emphasizes

L_W:’éz_bg,

this issue.

1. O1 for A=ioy,, B=ioy

the inequality| 37/2— 0,| < 6. translates into:

IL—7|<6c. (3.4

In accordance, with the paragraph above we consider the

S=e'-7x case first. _
01 when Se'-7x: In representing'-7x asV(7,)V(¥3) ac-
cording to Eq.(2.5 of Sec. IIB, the complex number,

If L is not already of that form, then further factel 7z as
I} _,e'"xz with eachL, satisfying the required inequality.
This can always be achieved by rewriting“z as

and 3 of Eq. (2.5 may be chosen to lie in any open half of giL+2nme, t5r some positive integen, if need be. As a

the complex plandndeed, according to E¢2.5) the angular
coordinates ofy, and¥; are related by. = #,— 83+ 7. Now
L may be taken to be if0, 2mr) and thus|L — m|<, with
equality only if L=0. Since the exponential ot o, for L
=0 isl,, we may as well assume thiat# 0. In this case, it
follows that|6,— 85| <, i.e., thaty, and ¥, can be chosen
to lie in the same open half-plane.

This leads to the following algorithm faD1 for a general
targetS(a,, ).

(a) Algorithm I: O1, A=ioy, B=ioy. (1) Use Eq.(3.3
with  p=({+w)2—7 to write S(a,l,u) as
e'PoxV/(—ia)e'"P7  Rewrite the anglep and {—p as
angles in[0,2) if they are not already in that range.

specific illustration of how this may be done consider the
following, not necessarily optimal, recipe. Pick an even num-
ber r=2n such thatL/2n<6.. Letting eachL,, k
=1,...r equalm+L/2n does the job. Thus, by increasing
the number of factors, if needed, one can ensure that the
pulse area of any individual pulse does not exceed a pre-
scribed bound.

(b) Algorithm II: O2; A=ioy, B=ioy. (1) Translate the
bound|b,|<C into a boundd. on the deviation from G/2),
of the phases of the complex numbeyg, representing the
factors. Specifically choose, c6$2C/) in [37/2,24). This
is always achievable by reducin@ if needed. Then take
6c=cos Y(2C/m)—3ml2.
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(2 Use Eq. (3.3 with p=({+u)2—m to write
S(a, ¢, 1) =ePxV(—ia)e'¢" P9 Rewrite the anglep and
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via controlled pulses. The following proposition achieves
this. In this proposition the real numbéris assumed to

{—p as angles ifi0, 27) if they are not already in that range. satisfy sin()=0, cos{)=0, since this is the context in which

(3) Prepare the middle factov,(—i«), via free evolution
for a units of time. Recalle €[ 0,7/2], and soa is always
positive.

(4) Find the smallest natural numbaer;, so thatp/2n,
<0c. Then rewritee'P’z asHiill exdi(7+p/2n,)o,]. Us-

ing Eq. (2.4) prepare each of thesen? factors as products

V(e(m/2)0)V(—iw/2) with 6,=3=7/2+p/2n; for all k.

Thus, 6, is within 6c of 37/2 and the pulse area correspond-

ing to theV(e(/2)86,) is bounded byC.

(5) Repeat Step 4 witlp replaced by,—p and n; re-
placed by a corresponding,.

(6) This yieldsQ=2(2n;+2n,)+ 1.

Remark 3.2: /8 Linear Combinations ofo,, ioy. The
analysis of Sec. Il A1 showed théf by choosingp appro-

priately 7y, can be allowed to have any desired angular co

ordinate; and tha(i) the complex number$, and?5 can be

located in any open-half plané.e., not necessarily the
upper/lower, right/left open half-planesThus, this analysis

can be extended verbatim to achie@d when A=i(aoy
+boy), B=i(co,+doy), with (ab) and(c,d) any linearly
independent pair of vectors. Indeed, in this c&kewould
translate into an inequality of the formx(Revy)+B(Im %)
>0, where(a, B) is the first row of

-1

a b
c d

This is the same as requiring that all this lie in a certain
half-plane.
Similarly, O2 can be translated into the phase of t}ie

it will be used to achiev@®1 for the pair at hand.
Proposition 3.1: Suppose &R satisfiescos()>0. Then
e''?x can be written as the product of two factors
12_,e'%7z" Py where we may take &0, k=1,2 or by
>0, k=1,2. Furthermore, one of the factors may be taken to
be free evolution if needed. Hos()=0, then once again
e''?x can be written as the product of two factors
I12_ ez b7y with either 3>0 or b,>0. However, in
this case, neither factor can be taken to be free evolution
Proof: Let A = \/a2k+ bzk, k=1,2. Choose\ positive and
satisfying cos{,)=0. Use Eq.(2.2) to evaluatee'®“z"Pkoy
ande'-“x and express the equati@tox=T12_,e'akx"Pkoy
in terms of equalities of the entries of the matrices in the
equation. This gives a system of two equatidosthe four

equations that would normally result upon equating entries

of the matrices on both sides, two equations are identical to
the remaining twi

a,a,+bqb,

W sin(A1)sin(A,) =cogL),

a,b;—a

L . .
—————sin(\q)Sin(A,)=sin(L).

AN 3.5

These equations may be solved as follows:

(1) cosl)>0. Case: Pick A\y=/2, A\,=37/2, and b,
=0. Then we havea,/\;=cosl); andb;/\;=sin{L). So
a; can indeed be chosen positiftaereby meetin@1). Also
b,;=0. Thuse'-“x can be prepared via a non-negative control

being located in a certain range. Now, virtually the samegjnce sin()=0.

argument of Sec. IllA2 shows that ar§e SU(2) can be
factored into a productI2 ;V(y), with the y,’s lying in a
given open half-plane with their phases withdp of a pre-

(2) cos()=0. Case: Pick A;=m/2 and\,= /2. Since
sin(\;)sin(\,)=1, the equations to solve become. &,
+b1b2)/)\l)\220 and @.zbl_albz)/)\l)\zz(_1)Sina_).

scribed anglep in that half-plane. Indeed, the only difference Note  sin()=1. Then choosea,=(1/2)/\; and a,
is thatp e R would now be chosen so that the angular coor-=(14/2)/x,, andb;= —a,; andb,=a,.

dinate of%y,; in Eq. (3.3 is ¢, and ¥, would likewise be
chosen to have angular coordinatgcf., Remark 3.1 The

This finishes the proof of the proposition and leads to the
following algorithm:

balance of the argument is verbatim as in Sec. lll A2. Thus,
the preliminary orthogonalization of Sec. IlIC can be
avoided in these cases.

As an illustration, of how onei) can do better than the ! . \
conservative analysis presented @2, and(ii) use a similar ~ — 4o Jexfiao]exdi(({— n)/2+ w/4)a,] using RI.
analysis forA=io,, B=io, consider: Modify, by multiples of 2, to ensure that the angleg (

Example 3.1:iLet A=io,; B=io,. Suppose the target *#)/2—m/4 and €~ u)/2+ /4 are in[0, 2m). .
state is the matrix!(™7z and the pulse area bound trans- (2) Prepare the first and third factors in Step 1 via free
lates to a boundg.= 7/12, on the deviation of the phases of €volution. _ _ _
the y,’s from 0. Rewrite the target a& (13272 and decom- 3 Erepare th_e middle t_erm via two factors by using
pose the latter asIl/_,elx?z with Ly=L,=---=Ls Proposition 3._1 withL = . Slnc_e_ae[o,w/2], the_ hypoth-
=165°, Lg=170°, andL,=175°. This achieve©2. esis cod =0, sinL=0 of Proposition 3.1 automatically hold.

' ’ Of these two factors, the second can be taken to be free
evolution if a# 7/2.

(4) This yieldsQ=4. At least two of these factorat least

As in Sec. Il A, the key is to show that the exponential of 3 if a# 7/2) are free evolution factors. The corresponding
the remaining Pauli matrix, in this cast “x, can be attained values of @, ,b,) are displayed in Table Il in Sec. Il C.

1. Algorithm 1ll: O1, A =ioy, B=io,
(1) Represent  S(a,{,u) as  expi(({+wp)/2

B. The caseA=io,; B=io,
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Remark 3.31n the proof of Proposition 3.1 when cag( 1. Preliminary orthonormalization

#0, the values oh were chosen with the aim of rendering  The aim is to rende, of Eq.(3.6), a Lie algebra isomor-
the control pulse to be applied for a shorter time than the fre%hism, in other words to have it satisfys([A,Q])
evolution factor. NoteO1 can also be achieved, in the =[(A),$(Q)] for any A,Q esu2). Now ¢, as it stands,
cos()#0 case, by taking. = 7/2, k=1,2. However, in this need not satisfy this property. It will however do so, by
case neither pulse can be taken to be free evolution. On th@rtue of the relation between the matrix commutator and the

other hand, this has the advantage of reducing the radiglecior cross product, if both the paifsB andA,B are or-

coordinates and thus the time of the factors involved. thonormal pairs. Recall, a pak,B e su?2) is said to be or-
thonormal if the vectors ifR®, obtained by expressing them
2. 02 for the A=io,; B=ioy case as linear combinations ofiR)o,,(i/2)ay,(i/2)oy, are or-

thonormal. NowA= (i/2)o-, andB=(i/2), are already or-
thonormal. So, the proposed unified approach will work
whenA andB are also orthornormal.

Next the factorization satisfyin@1 will be refined to
meetO2. Following Proposition 3.1 an&1, all that is re-

i H iao :
qgt'rr]es IS (;O dpregl)ar@ o _];?]r ?(ny ?EtLQ’ﬁlzt] V'at puflses the T AB are not orthonormal to begin with, a preliminary
with bounded pulse area. he key 10 this 1S 10 note, Tom W&,y transformation can be applied to render them first

proof of Propositic_m 31 that this term can be prepared b36rthogona| to each other. Indeed, defir{¢) = k+ v (t), with
two factors, the first with pulse arear(2)sin(@) and the v(t) the new control. Then the systefh.2) becomes;
second a free evolution term. S® should be such that

(7/2)sin(@)<C. This leads to the following algorithm.

(@) Algorithm 1IV: 02, A=io,, B=ioy. (1) Represent
S(a,l,;) as  expi(({+ w)/2— wld)o,lexdiaoylexdi(({
— w)2+ wl4)o,] usingR1. Modify, by multiples of 27, to
ensure that the angleg € u)/2—w/4 and (— w)/2+ wl4
are in[0, 2m).

U=(A+kB)U+BUo(t).

The constank is now chosen so that the new d§t-kB is
orthogonal toB. Thus, if the design based o\ kB,B)
producedv as a piecewise constant control, then the corre-
. . ) spondingu(t), for the original pair(A,B), would also be

(2) Prepare the first and third factors in Step 1 as freep?ecewisge E:o)nstant with tﬁe corrl)staﬂbeing added to each
evolution terms. , i , piece ofv (t). Orthonormalization can be achieved by further

(3) To prepare the middle terne “”, first translate the  gcajingA+ kB andB by positive constants. Note that while
boundC on the pulse area into a boursig on the deviation  the application of a preliminary control does not affext, it
of a from 0. Specifically, define 6ce[0,7/2], as affectsO2. A scaling affects neithe®1 nor 0O2. Indeed, to
sin~Y(C/(m/2)). This can always be ensured by reduclhg  meetO1 andO2 (for a given bounc) for the pAgB system,
if needed. the factorization that works for thé&B system, with the

(4) If a# /2, factore’®x as a producHLzle‘ak”X' with bound C replaced bygC, can be used. This leads to the
r=[alfc] and ay=alr. Thus, O<ay<6c. Here,[-]is the  following algorithm:
ceiling function. (a) Algorithm V: General A,B (1) RenderA,B orthonor-

(5) Prepare each facta' *«” of Step 4 via two pulses as mal (if needed via the procedure described just above. Note
in Proposition 3.1 withy, playing the role ofL. The second that this step mapftenbe omitted even in those cases where
pulse corresponds to a free evolution term. The first factoA andB are not orthogonalsee Remark 3.4 below
has pulse area equal terf2)sin(xy). This is positive and at (2) Calculate the logarithm o and express it as a linear

mostC by the choice ofxy. combination ofA,B and[AB], i.e.,
(6) Thus, if a# m/2, the above steps yiel@<2[L/6c]
+2. If a= /2, then writee' *“x as, sayg' (™ 7x el (¥mox and In(S)=c;A+cB+c3[AB], (3.7

prepare each of these factors via the above steps. o . . .
This is a linear algebraic calculation.

(3) Associate taS the matrixT defined by
C. A unified approach

In this sectionA andB are allowed to be any>22 su?2) T=expc,A+CB+C3[AB]). 39

matrices as described. The basic idea is the following. Given ) )

a pair A,Besu?2) and a targetSe SU(2), the problem of Thus, ¢(T)=S. Here ¢:SU2)—SU(2) is defined by the

obtaining the factorizatiori1.1) is resolved by solving the conditiong(e)=e?(. As yis a Lie algebra isomorphism,

same problem for one particular choice of(Zumatrices, the Campbell-Baker-Hausdorff formula ensures tifais a

A,B. Given the pairA,B, let y:su2)—su2) be defined as:  9"0UP homomorphisri26]. A .

(4) Achieve O1 and O2 for A=(i/2)o,, B=(i/2)ay

y(aA+bB+c[A,B])=aA+bB+c[A,B] (3.6) when the target i, via the results of Sec. IlIB. The only

difference would be that thea(,b,), k=1,...,Q would
now be given by be replaced by 422b,), k=1, ... q of

for any a,b,ce R. The notatiorn,] represents the commuta- Sec. IlI B. Alternatively, choose&=(i/2)cry, B=(i/2)oy

tor. and use the results of Sec. Il A. This provides an explicit
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TABLE I. Q for O1, the number of free evolution factors and of a,,b, has peculiarities related to this latter pair. The only
cumulative radial coordinates for the two pairs.

Maximal Q

Pair for O1

Minimal no.
of free evolution

Maximal
cumulative
radial coor-

dinates

point in the algorithm where information about the given pair
AB is encoded, is in the choice of the matiiix

2. Comparison of theo oy and o,,0, pairs

Depending on which pair is used in Step 4 of Algorithm
- V, different decompositions meetingl, O2 are obtained,
(ioy,ioy) S 1 55 and thus a comparison is in order. Two tables are presented
(ioy.ioy) 4 2 - below. In Table |, these pairs are compared with respect to
significant criteria. Table Il gives values fomy,by), k
=1, ... Q for O1 for these two pairs in terms of the Cayley-
Klein coordinates of the targ&(«,, ). Comparisons for
02 have been omitted as they cannot be cast into a compact
form within the confines of a table.

In the tables below, the factor of 1/2 in the paksB of
Step 4 of AlgorithmV has been dropped, becausg that
factor is present in both pairs and thus does not affect the
comparison, andii) the formulas presented in Table Il are

then easier to extrapolate for examples WALIB replaced by
pA andgB for p,q>0.

(1) Cumulative radial coordinates are, by definition,
S N=3 1 Vaj+ by

(2) The number of free evolution factors for the, ,io,
pair is 3 if a# 7/2.

While Algorithm V works for generalAB it has the fol- (3) The (io,,ioy) pair, typically has lower cumulative
lowing disadvantagesi) For the case wheA,B arei times  pulse area, i.eE&llbkl. Comparisons for this criteria have
Pauli matrices(which are already orthogonalthe second been omitted, since the formulas fdw] for (ioy,ioy) have
step of AlgorithmV is substantially more complicated, com- considerable liberty, thereby rendering upper bounds quite
putationally, than representing via Cayley-Klein param- conservative.
eters and using a factorization lilk2. (ii) If AB were not (4) The angless,, k=1, ...,4 in thesecond column are
orthogonal to begin with, then this method requires the apehosen to satisfy the stated constraints and also to be in the
plication of a preliminary constant control. In certain situa-range(sr, 27). See the Algorithnd in Sec. Il A.
tions whereAB are not orthogonal, this preliminary step  According to the first table, thé ¢,,io,) performs better
may be undesirable. On the other hand, intrinsic approacheban the {0 ,io,) pair in all categories except for cumula-
may be able to address nonorthogonal pairs without prelimitive radial coordinates. Having a lower value for the cumu-
nary controls(see Remarks 3.2 and 3.4, for instandéi ) lative radial coordinate is useful because it indicates the abil-
The problem of meetin@1 andO2 has been “transferred” ity to prepare the target in a better fashion with respect to
to the pairs of Sec. Ill A or Il B. Thus, the resultant choice simultaneously minimizing total time and total pulse area.

factorization T=TIQ_, expla, A+bB) with a,>0 and |by|
=<C, k=1, ... Q for the given boundC.
(5) Then, we have

S=¢(T)= [ 11 ,eaA 0u®)]
:HkQ=1¢[e(akA+bké)] (as ¢ a homomorphism
=11 e@A P ®) as p(e)=eV], (3.9

Thus thesamechoice ofa, ,b,, k=1, ... Q that worked for
the matrixT, also works forSand therebyexplicitly provides
01 and O2 for the target S(R) matrix Sand the given pair
of su2) matrices.

TABLE II. (ay,by) for O1.

. . T a
(ak,by) (ioy,ioy) (iO’z,iO'y), a#i (iO’Z,i(Ty), a=>
T T {tu {tu w {+twp
a.,b - — 2 =6,— A .
(a1,by) ( 25|n01,2cos,01), 5Tt Oyt ( 5 4,) ( 5 4,0)
+
(ay,b,) (—gsin 02%00302 , gTM—ﬂ-=01—02+rr (lz-rcosmgsina) (l_l)
22 222
3
(as.bo) (a0) 5o (L,L)
V2 2V2
a.b Ting, T Ll cpm fn,m
(a4,bg) ( 23|n03,200563), 5= 03— Oyt T +2:0 5+ 70
(as,bs) (—gsin04,gcosa4), g_T'u—w=63—64+w N.A. N.A.
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The values for cumulative radii were arrived at as follows.pairs, is the fact that its starting poiR2 unlike R2, uses
For the (o ,ioy) pair, use is made of the fact that aBigan  both Pauli matrices in all its facto(gf. Remark 2.1 of Sec.
be prepared by five factors, four of which have radial coor-l1 B).
dinates equal tar/2 and the fifth the factor corresponding to
V(%) in Eq.(3.11)] has radial coordinate equal to(see the D. Systems Evolving on S@B)

Algorithm | in_ Sec. lllA or Table 1). Since a</2, the In this section, the achievement 61 and 02 on SU?2)
uplp;irr t;k?gré?rlsilgd)eeg(i:}/i)l. orithm Il or Table Il clearl will be used to achieve the same for systems ori33Qhe

. z:10y) pair, AlgO y group of proper three dimensional rotations. This facilitated
yield cumulative radial coordinates of+ f + 3(7/2) + /2. by the following facts:

Now, d=(+p)/2—m/4, f=({—p)/2+ m/4 (see Sec. || B (1) The transformation Ry :su2—su?2), Ry(A)

By taking £ t0 be 27— (€>0), £=0, we see that the Cu- _ jz ;=1 \when viewed as a transformation frdd to R3

mulative radial coordinates can be made arbitrarily close to . .
4. Note it may be tempting to write the angifeas —e and 's an element of S@) [27]. This leads to a Lie groupo-

thus hope to get lower values dfandf. While this lowersf momorph|sm¢:SU_(2)—>SO(3), with .¢(U) N 5.0(3)' Fur-
IR, s . . thermore, the entries of the $2) matrices, which map to a
(if €is smal), it rendersd negative, thus requiring the rep- iven SG3) matrix, can be explicitly described

resentation ofd as a positive numbefto meetO1). This 9 h L . F; Y 0& .h' f
rewriting gives the same value far+f. (2) There is a Lie algebra isomorphism from

Finally, note that at the cost of reducing the number of"b:SL(z)_’so(s)’ defined according taj:su2)—sa(3), de-

free evolution factors, the cumulative radial coordinate forflned according t¢25]

the (io,,ioy) pair can be reduced tor3(by virtue of Re- 0 —-c¢c b
mark 3.3. Likewise the cumulative radial coordinate for the —i

other pair can be reduced terdy a different factorization, Y| 5 (aoy+boy+coy) | =| C 0 -a
which however is not amenable to analyzi®g. -b a 0

Remark 3.4, Preliminary Orthogonalization Not Always
NeededAnother advantage of the pair of Sec. Ill A deserves  (3) An explicit calculation shows thaip(eX)=e’"),
attention. Supposé and B are not orthogonal. It is often whereK=i(ao,+bao,+co,) is a general element of &).
possible to handle these cases without Step 1 of AlgorithnThis is shown by using Eq(2.2) in conjunction with the
V. One such example is provided iy and B being two  Rodrigues’ formula for the exponential of an arbitrary ele-
linearly independent combinations iaf, i, . (See Remark mentV of sa3):
3.2) This example can be used to handle other cases also.
For example, letA=a(i/2)oy+b(i/2)o,; B=c(i/2)oy
+a(i/2)o, with the vectorga,b) and(c,d) linearly indepen-
dent, but not orthogonal. We now use Algorithimwith the

following changes. Step 1 is omitted. Define the Lie algebrdn the above formula is the vector inR® associated to the
isomorphism,y, through: elementV e sa3) andvv " is the outer product o andov .

See[28] for Rodrigues’ formula.
The above items can now be assembled to solve the prob-

sin(HvII)V 1-cod|vl))

Vv .
o] lol®

e’=cogv|)ls+

y i_U =i_0 _ i_U =i_a - i_a z_i_a lem of attaining anyO e SO(3) via controls with bounded
2°Y) 27y 2% 2% 2% 2% pulse area as follows. Given a system evolving on the group
SQ(3):
Define ¢ via ¢ as before,¢(eX)=e?X) and use this new U=AU+BUU(), ABcsdd) (3.10

definition of ¢ in Steps 3 and 5 of AlgorithnV. In Step 4,

choose A and B as a(i/l2)oy+b(i/2)oy and c(i/2)oy,  and a desired final staf®, we associate to it a system evolv-
+d(i/2)0,2 and then use RemafB.2) to to meetO1l or 02  ing on SU2) and a final stateSe SU(2):

for A andB and targefl of the new Step 3. Then, just as in o .

Step 5 of AlgorithmV, the samea, ,b, prepare the targed U=AU+BU, A,Besu?2), (3.11
for A and B. In other words, the key difference is using )

(i/2)o, and (/2)c, and notA,B (which are not orthogonpl ~HereCesu2) is 4 '(C) andSe SU(2) is any element of
to definey, and then using Remark 3.2 to filag ,b, . SU(2) such that¢(S)=0.

Thus, the only cases that seem to require a preliminary 10 PrepareO, we find the controls that would prepage
control are A=ay(i/2)o,+by(i/2)oy+cy(i/2)ax, B This means factoring as a producilQ_ ;e PnB) with
=a,(i/12)0,2+by(i/2)oy+Cy(i/2)0y, with the vectors a,>0 and|b|<C, k=1,... Q. Then thesamechoice of
(ay,bq,cq) and (@,,b,,c5) nonorthogonal and such that ei- a,,b,, k=1, ...,Q achievesD1 andO2 for O. This can be
ther (i) at least one of the two vectors has all componentshown by a calculation analogous to that in Step 5 of Algo-
nonzero ox(ii) if certain components of one of these vectorsrithm V.
are zero then at least one of the corresponding components of The difference between this subsection and the previous
the other is nonzero. In retrospect, the main feature of theubsection, regarding the homomorphigiris as follows. In
ioy,ioy case which allows us to address nonorthogonathis sectione is already given, and we only verified that it
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satisfies the important propertyp(e¥)=e?®), for K  magneton is 1. Her8,, B,, andB, are components of the
esu2). On the other hand, in the previous sectighwas  Magnetic field along the, y, andz axes. So the Hamiltonian
defined viag(eX) =" and this leads, in conjunction with ©f the system is given by

Eqg. (2.4), to an explicit expression fop. H=0,+B,(t)o,.

V. MOTIVATING EXAMPLES This is Casdc) of the example on page 84 of RgE]. If the
daim is to prepare a specific coherent superposition of the
spin-up and spin-down states, then the same can be achieved
VA\fby preparing the unique SP) matrix S that conveys the
nitial state to the desired coherent superposifivere, use is
eing made of the fact that given 2 vectarsv on the

; . _three-dimensional sphere, there is a uniqug2puhatrix S
Example 1.The decompositiort1.1), amounts to produc such thatSu=v]. This leads to studying a system of the

ing piecewise constant controls for the control of a two level )
: form:
guantum system. Given such an externally controlled two
level system, we can express the evolution of the corre-
sponding unitary generator via Schrodinger’s equataiter

absorbing the factor into the matrice#\ andB) whereu(t)=B,(t). This is of the form of Eq. (1.2) with A
=—io,, B=—li0y. Hence the results, which are relevant to
this example belong to Sec. Ill C. The other cases considered
in this example of Ref[5] correspond to the easier case of
the control ofdriftless systems.
9 Example 3:Another class of problems that requires the
creation of a final unitary matrix arises from quantum com-
spin or (ii) it amounts to only neglecting an overall phase putat|on[6—$]. In these examples, it 'S requwgd not only to
'prepare desired states, but also desired unitary generators.

which is physically irrelevant. As an illustration of the latter X .
possibility, consider a two level atom with nondegenerate'vIOSt physical systems suggested for quantum computation

energy levelsE, , k=1,2 irradiated with an electromagnetic consist of independently addressable two-level systems.

i . . . ; Controlling such systems via a sequence of constant controls
T e e 1 i AaCIVe f hey have fong uau Ifetmes.
9 P P Example 4:01 andO2 are also relevant for both systems

and u is the nonzero matrix element of the dipole operator.With “more” than two levels and controls which are “not”

Then after some manipulation we are lead to a system of thSiecewise constant. First, theoretically it may be shown that

form of Eq.(1.2: any control can be approximated by piecewise constant con-
E.—E trols [29,10. Second, controls such as sinusoidal controls
U =i( 2 1) o, U+iuoUu(t). (4.1 may be reduced to the piecewise constant case via approxi-
2 mations such as the rotating wave approximation or averag-
ing theory. In Ref.[11] an N “level” atom/molecule with
well separated spectrum was considered. Under some addi-
tional assumptions, it was shown that the system can be con-

The basic problem set out in the Introduction is motivate
by many examples in quantum and classical control. A fe
of them are briefly reviewed here. Examples 1 through
addresgquantummechanical examples, whereas Example
discusseglassicalsystems.

U=—io,U—ia,Uu(t),

U=AU+BUu(t), (0)=I,.

It is assumed thad,B belong to s(2). The assumption thak
andB are anti-Hermitian with zero trace as opposed to bein
just anti-Hermitian is appropriate because eitfigrthat is
already the caséas in the case of the control of electron

The system(4.1) differs from the actual evolution of the
unitary generator only via an overall phase factor of

el(E1TEx)21) . . i . .
. . . . trolled by addressing only pairs of levels via sinusoidal
Thus, in this example it holds that=A(E;—E,)/20%  ises resonant with the corresponding energy difference.
ar)d B=|,.wa_. Hence, the results of Sec. Ill C are relevant toUsing the rotating wave approximation it was then shown
this application. = that any desired unitary generator could then be factored as a
Now if Eq. (1.2) is probed by a sequence of controls ,,q,ct of direct sums dfy_, and SU2) matrices with spe-

u(t)="f, k=1,... L each for a duratiom,, respectively, g structure. Specifically, this special structure was
then the unitary generator aftey+...+t, units of time is

given byIl_,edA 0B with a, =t ; b,=ft,. Since, the, S=TI}_, exdi (— Im yo,+ Reyay)].

have to be positivdunless the correspondinig=0), it is

necessary thatl,>0. The requirement that thé, be The polar coordinatesi(, ¢y) of the complex numbers

bounded in absolute value is of importance both theoreticallyy, are related to th&th sinusoidal pulse as follows, is the

and practically. Indeed, there may be practical constraints opulse area of th&th pulse andp, is phase of théth pulse.

the power of the pulse. Such bounds are also required forhus, the requiremer, >0 now translates into the phase of

neglecting other levels and physical processes of the systethe pulse being located in certain ranges. Likewise, other

being studied. approximations call for structures which involve the other
Example 2:A second example is given on page 84 of Ref.Pauli matrices. Thus, under additional assumptions on the

[5]. Consider the control of the spin of an electron W&  spectrum of the quantum system being studied, multilevel

=0 andB,=1. By(t) is available for manipulation and thus systems can be studied by using techniques for two-level

is the controlu(t). Assume for simplicity thajcg, the Bohr  systems.
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An alternative approximation comes from averagingstants related to the circuit elements. Thus this system can be
theory[30]. For instance, when the systdi?) is probed by  handledexactly(not approximately, as in Reff15]) by using
a sinusoidal pulseu,(t)=a, sin(wt+¢y), the evolution of either Remark 3.2 in Sec. IllA or by the methods of Sec.
the unitary operator is, under the averaging approximationill C. The former is preferable since no preliminary orthogo-
approximated by nalization is then called for.

U=AU+BUu,, .
av K V. CONCLUSIONS

Hereu,, \ is the average of thkth sinusoidal pulse. In this In this paper an explicit procedure for factoring every
case the correspondirg, andb are related to the duration  gy2) matrix into a decomposition of the forfa. 1), respect-
and average of the pulse. This] is once again necessary, g requirement1 and 02, was provided. This factoriza-
while O2 amounts to requiring that the dc component of theyjqp js motivated by quantum and classical control studies. In

field be small. _ _ _particular, two-level ant-level quantum systems controlled
Example 5:Many classical mechanical systems have ei s hiecewise constant or piecewise sinusoidal external fields

ther part or all of their evol_utlon on the group of rotations, are addressed by these results. A unified approach, which

SO@3). Examples are satellites controlled via internal rotorSre quires the knowledge of a solution @1 and O2 for one

and aerospace systems with zero angular momentum that &g 4 constructively address the case of arbitragnd B,
controlled via internal rotors. Thus, the methods of Sec. Il Dwas provided. Varying the former pair, leads to different

are relevant for these applications. A different example, qiorizations that meeb1 and O2 for AB. It is useful to
comes from energy transfers between dynamic storage elgz e as many factorizations that me&t and O2 as pos-
ments in switched electrical networks used in power CONVerginia For instance. in many applications it is also useful to
sion applicationg14,15. Such networks play an important ’

e i :cation devi Such bl lead repare a given target matri® in minimal time. For in-
role in many communication devices. Such problems lead t tance, in nuclear magnetic resonance applications it is use-

systems that evolve on an Euclidean space. The differentig|,, 1, finish the entire control action before relaxation pro-

equations which model these systems are bilinear, i.e., haiggses hecome significant. In general, it is important to finish

the form: all the control action before the given quantum system deco-

%=Ax+Bxu(t), xeRk. hereq 8]. This is a problem that is worth addressing. Another
aspect of the results of this paper is that they could poten-

Herek is the number of circuit elements in the network. Thetially generalize toN level systems. Indeed, one of the en-

state x usually represents inductor currents and capacito@bling factors of this paper is that products of exponentials

voltages. When no power sources/loads are added, the as$gn be explicitly described. We believe that the same is true

ciated equation for the “unitary generatoff.e., the transi- for N>2. If this generalization can be achieved, tifevel

tion matrix) can be frequently modeled as a system evolvingsystems can be studied without reducing the analysis to two-

on SO), the group of propek dimensional rotationg14]. level systems. This could help in removing assumptions

This reflects the conservation of energy. The particular exabout the well separatedness of spectrum of the system being

ample considered in Ref15] hask=3, and the authors of Studied[11].

Ref. [15] pass to the associated driftless system to achieve

_appr_oximateenergy transfer. Since the “unitary” generator ACKNOWLEDGMENTS

in this example evolves on $8), we can use the results of
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