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Abstract: Constructive procedures for the exact control of a class of molecular and 
spin systems with sinusoidal pulses are described. It is shown that the phases of these 
fields plays a crucial role. It is also shown that the fields can be bounded in amplitude 
and that the number of phases required to be at the disposal of the experimenter is 
quite small. The fact that the amplitudes can be bounded in advance means, amongst 
other things, that the conditions needed for the underlying model to be valid, can be 
guaranteed to hold. Copyright © 2001 [FAC 
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1. INTRODUCTION 

One often hears the adage that, while an overall 
phase is irrelevant in quantum mechanics, relative 
phases are important for a wide swathe of quan­
tum phenomena. Therefore, it is reasonable to 
expect that by a suitable choice of phase in an ex­
ternal, sinusoidal field , a quantum system may be 
controlled to great finesse. In this paper two exam­
ples which confirm this expectation are provided. 
The first example comes from molecular control 
and the second from NMR spectroscopy. These 
systems play an important role in many tech­
nologies. See Butkovsky and Samoilenko (1980); 
Rabitz et al., (2000) and Silverman (2000). 

Though the two examples address different phys­
ical phenomena, they share some similar features . 
First, both examples may be thought of as sys­
tems of interconnected oscillators. The proposed 
control methodology in both cases consists of ad-
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dressing each oscillator in the system individually, 
via a sinusoidal field tuned to the frequency of the 
oscillator in question. For this to be successful, 
two ingredients are required. First, there should 
be no resonances amongst the various oscillators. 
Secondly, the pulse area (which is the integral 
of the field) should be much smaller than the 
frequency of the oscillator in question. It is known 
experimentally for both systems that, under these 
assumptions, each individual oscillator may in­
deed be addressed separately with negligible in­
terference from the others. In this paper external 
sinusoidal fields whose pulse area can be bound­
ed arbitrarily will be devised. The next point of 
similarity is that the phase of the sinusoidal field 
plays a crucial role in the efficacy of the control. 
The final point of similarity is that the key mathe­
matical constructs are structured decompositions 
of the unitary matrices. In this paper most proofs 
are omitted. They may be found in Ramakrishna 
et al. , (1999) and Ramakrishnaet al. , (2oo0b) . Be­
fore finishing this introductory section, it is worth 
stressing an important point about the second 
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example. Mathematically, the problem reduces to 
the control of a single input system with drift on 
SU(4). One technique to to control such system­
s consists of extremely high amplitudes applied 
for very short times. Such pulses are called hard 
pulses. From a controls point of view, a hard pulse 
argument is an argument which neglects the drift 
at the cost of approximate state steering. Not only 
is this arduous to implement in the laboratory, 
but it is leads to violation of the basic model as 
the amplitude is increased in a desire to improve 
accuracy. In contrast, in this paper we will achieve 
bounded pulse area via fields whose amplitudes 
are not large and the state is nevertheless exact­
ly prepared. We are able to do this because the 
structure of the drift is utilized in the field design. 

Notation: It is assumed that the reader is fa­
miliar with the Pauli matrices, o-i,i = x,y,z. 
Related to these are the following tensor products: 
1ik = o-k ® 12 ;12i = h ® O-k, i = x,y,z 

2. THE MOLECULAR EXAMPLE 

Consider the generation of any desired special 
unitary transformation within a single N -level 
atom/molecule, or more generally a single par­
ticle, interacting with an electromagnetic field 
which is treated semi-classically. The evolution 
of the system is described by (; = AU + 
BUE(t); U E U(N) Here A is a diagonal matrix 
diag( iAl, ... , iAN ). The frequencies of the system 
are given by the differences, Ai - Aj. B is the 
matrix representation of the dipole operator and 
is a skew-Hermitian. Further assumptions on the 
molecule are as follows. i) There are no resonances 
amongst the frequencies of the system. ii) The en­
tries of B are purely imaginary and all its diagonal 
entries are zero. ill) If selection rules (see Silver­
man, 2000) preclude a certain level being accessed 
directly from another, then there must be a ladder 
of levels linking the two, so that the two states can 
be accessed from each other indirectly. This can 
be restated as follows. Consider the undirected 
graph, G = (V, E), whose vertex set, V, consists 
of N indices {1, ... , N} and two vertices i and j 
are connected by an edge iff the (i,j)th entry of 
B is non-zero. The assumption, then, is the same 
as requiring that the undirected graph, G, is con­
nected. Under these assumptions, it was shown in 
Ramakrishna et al., (1999) that if such an N-level 
atom was subjected to a series of Q coherently 
locked sinusoidal fields, Ek(t) = Ak(t) COS(Wkt+4>k) 
with (slowly varying) amplitude Ak(t), frequency, 
Wk, resonant with a pair of levels and phase, 4>k, 

applied for T = h + t2 + ... tQ units of time, 
then under the rotating wave approximation (see 
Silverman, 2000) its unitary generator after T 
units of time is given by 

The N x N matrices Vk are, after a suitable 
permutation, block matrices whose top (N - 2) x 
(N - 2) block is the (N - 2) x (N - 2) identity 
matrix and the remaining 2 x 2 block is an SU(2) 

matrix of the form: V (rk) = (i~k i~k) The 

complex number, rk, is related to the kth pulse 
. via, rk = -ibnmei4>~ak where 4>k and ak are the 

phase and the pulse area of the kth pulse, while 
bnm is the matrix element of B corresponding 
to the pair of levels addressed by the kth pulse. 
Since the times ti can be chosen subject only to 
the restriction that the pulse area, Io tkAdt)dt 
is not too sensitive to them, it is clear that the 
matrix e-iAT is known in advance. Thus, the 
preparation of a desired unitary generator reduces 
to the question of whether every unitary matrix 
can be decomposed into a product of matrices 
of the form VCri). Since the matrices VCri) are 
special unitary, it would seem that only those 
U E U(N) such that eiATU is in SU(N) can 
be so prepared. However, every unitary matrix 
is an overall phase factor times a special unitary 
matrix, and such phase factors are experimentally 
irrelevant, unless detecting such a phase, when 
the N level particle is viewed as part of a larger 
system, was the purpose of the experiment, ( cf., 
Silverman, 2000 ). Thus, the question of preparing 
a desired unitary generator reduces to being able 
to factor every matrix in SU(N) as a product of 
VCrk)'S. This question was answered affirmatively 
and constructively in two steps in Ramakrishna et 
al., (1999): i) SI: First it was shown that every 
SU(N) matrix can be decomposed into a product 
of block matrices which are the identity matrix, 
except in a 2 x 2 block, where they are some SU(2) 
matrix. In the absence of selection rules that this 
is a standard fact. The novelty in Ramakrishna 
et al., (1999) was to show how to obtain such 
a decomposition while simultaneously respecting 
forbidden transitions imposed by the selection 
rules. ii) S2: The main step was to show that every 
SU(2) matrix could be factored as a product of 
3 matrices of the form VCrk). Note that, as the 
complex numbers, rk need not be either purely 
real or purely imaginary, this decomposition is not 
the usual Euler decomposition. Further, explicit 
formulae were given for the complex numbers, rk, 
in terms of the entries of S E SU(2) represented 
in polar coordinates. Since, the absolute value and 
phase of the numbers, rk, are themselves the pulse 
area and the phase of the incident fields, a com­
pletely constructive procedure for preparing any 
desired unitary generator was thereby obtained. 
Thus, in summary any unitary generator could 
be prepared by sinusoidal pulses, resonant with a 
pair of levels, each with pulse area no more than 
~ as long as the means to prepare any phase is at 
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the experimenter's disposal. The bound, I' on the 
pulse area of a single pulse, comes from the details 
in Ramakrishna et al., (1999). The requirement 
that any phase be at the experimenter's disposal 
arises from the fact that the 2 x 2 block in SI, 
could in principle, be any 5U(2) matrix. Thus, 
for a wide class of atoms/molecules - those which 
meet the conditions imposed in Ramakrishna et 
al., (1999) - there is a simple, but explicit, pro­
cedure to generate any unitary transformation 
via interaction with sinusoidal pulses. The second 
step, S2, can be viewed as constructive path plan­
ning for a driftless two input system on 5U(2), 
viz., V = iO"zVUI(t) + iO"yVU2(t), V E 5U(2). 
Indeed, the matrix VC'Y) is the exponential of a 
suitable (real) combination of iO"z and iO"y. How­
ever, it is important to realize that UI and U2 
have nothing to do with the actual controls in the 
physical problem. Similarly, the coefficients of iO" z 

and iO"y in this exponential have no relation to the 
time and magnitude of the control applied to the 
actual system. 

Bounding the Pulse Area and Minimizing the 
Number of Phases: Since there is a bound of I 
on the pulse area of an individual pulse in Ra­
makrishna et al., (1999). methodology could not 
be directly applied to atoms whose energy levels 
were not widely separated. This is because, the 
rotating wave approximation which was invoked 
in Ramakrishna et al., (1999) requires, in addition 
to the no resonance condition, that the pulse area 
be much lower than the frequency of the oscil­
lator addressed,( see Silverman, 2000). However, 
the first author showed, in Ramakrishna, (2000a), 
how not only the pulse area could be bounded 
arbitrarily but also the number of phases required 
could be chosen to be atmost four. This signifi­
cantly increases the class of molecules to which 
the control strategy proposed in Ramakrishna et 
al., (1999). can be applied, while at the same time 
minimizes the resources (for phase creation) re­
quired. The proof of this was achieved by proving 
constructively a bang-bang result for the following 
system: V = iO"yV + iO"zVu(t), V E 5U(2) This 
is a system with drift (if one preferred to deal 
with the driftless system in the previous remark, 
then the number of phases needed by this strategy 
would be six). Once again, u(t), is not the control 
actually applied. The same construction can be 
modified to achieve arbitrary pulse area bounds. 
This is done by applying the same value of the 
bang-bang control to this system on 5U(2) for 
short periods of time, instead of applying this 
value for a longer time at one shot (e.g., apply 
the control, U = 1, for ten times for one minute in­
stead of one time for ten minutes!). This may seem 
counterintuitive. However, it is worth emphasizing 
that the duration of the control, u(t), for this last 
5U(2) system is not really the duration of the 

actual control. Rather, it is related to the pulse 
area of the actual control. Thus, minimizing pulse 
area of a control pulse for the actual system turns 
out to be equivalent to minimizing the duration 
an individual piece of the fictitious bang-bang 
control, u(t), for the above 5U(2) system. 

3. THE SPIN EXAMPLE 

Technical details which are omitted here for brevi­
ty may be found in Ramakrishnaet al., (2000b). It 
is assumed that there are no resonances amongst 
the two Larmor frequencies of the two spins. Un­
der this assumption it is possible to address each 
spin indvidually with negligible contribution from 
the other spin, as long as the amplitude of the 
field can be bounded (see Evans, 2000). A com­
mon model for the evolution of such a system is 
V = -~(AV +uI(t)BI V +u2(t)B2 V), V E 5U(4) 

Here, A is WIO"z ® 12 + w212 00"z + JO"z ® o"z, and 
the interaction Hamiltonians are BI = bl1lz and 
B2 = blhy. The bi , i = 1,2 (bz appears below) 
are constants related to the gyromagnetic ratios, 
and the Wi, i = 1,2 are the Larmor frequencies. 
J is also a constant. We take Ul (t) = c cos ( wt + 
1» and U2(t) = csin(wt + 4». The amplitude, c, 
frequency, w and phase, 4> are eacl1 to be designed 
in a piecewise constant manner. The frequency 
will always be taken to be WI (or W2, if the other 
spin is being addressed). The above equation was 
derived assUllling that the first spin was being 
addressed. IT the second spin is being addressed, 
then Bb B2 would be replaced by bzlzz and bz12lJ 
respectively, while the frequency, w, of the field 
would be replaced by W2. 

Now passing to a rotating frame, U(t) = etFV 
with F = ~(w2lz 00"z + WIO"z ® 12 ) and choosing 
the phase, 4>, to be 0 yields if = -t(JhzI2z)U­
~(cbWz 012 )U If, on the other hand, the phase of 
the incident fields, 4>, was equal to I' one would 
have had if = -~(Jl1z12z)U - t(cblO"Y ® lz)U. 
Similarly, the same rotating frame can be used to 
address the other spin (with the frequency of the 
field, W = 12) to obtain the following equation 
if = -t(JI1zI2z )U - t(cb2I2 ®az)U if the phase, 
1> equals O. Choosing 4> = I similarly yields 
if = -t(JhzI2z)U - HcbzI2 00"y)U. Thus, by 
choosing the frequency of the field to be one of 
the Larmor frequencies and by choosing the phase 
in an appropriate manner to equal one of a few 
valuesi and then passing to a unique rotating 
frame leads to the following system, which is 
controlled by constant inputs: if = - tAU -
~dBU,U E 5U(4) with A = JO"z ® O"z and B 
one of the matrices hz, I2z , Ily , 1211 , The constant, 
d, is related to the amplitude of the field, c, and 
other constants of the system. So, to complete the 
constructive control methodology all that remains 
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is to specify the duration and the amplitude, c, 
of the control fields Ul(t) and U2(t). For this, it 
suffices to provide the duration and the amplitude 
d. Indeed, using the Cartan decomposition of 
SU(4) in terms of SU(2)0SU(2), it can be shown 
that every matrix in SU(4) can be written in the 
following form: 

S = II~=l exp( -itkAk) (2) 

The Ak are one of 11z12z ,h:r,I2:r, 11", 12". One 
specific form of Equation (2) was given in Khaneja 
and Glaser (2000), whereby S E SU(4) was 
represented as a product of 21 such factors. Of 
these 15 were parametrized by 15 parameters, 
(Di,Ei,Fi) and Ok,i = 1, ... ,4;k = 1, ... ,3. 
Without providing any technique for finding these 
15 parameters, it is suggested in Khaneja and 
Glaser (2000) that, this decomposition can be 
used to control the system with piecewise constant 
hard pulses to account for the exponential of 
the control coupling and by free evolution for 
exponential of the drift. 

In Rarnakrishna et al., (2000b) there are three 
significant innovations. First, phases are used to 
design piecewise sinusoidal fields whose ampli­
tudes will be the piecewise constant controls for 
the system in the rotating frame. This is in con­
trast to assuming that the system is already in a 
rotating frame. Mere passage to a rotating frame 
will not suffice - the correct choice of phase is ab­
solutely essential. Secondly, instead of using high 
ampliutde pulses to generate the exponentials of 
the 1ij , i = 1, 2, j = x, y controls whose ampli­
tude can be bounded arbitrarily were provided 
for such factors. These amplitudes were provid­
ed explicitly, assuming that the real parameters, 
(Di,Ei,Fi),i = 1, ... ,4 and Bk,k = 1, ... ,3 are 
already available. Third, these parameters were in 
fact constructively determined in terms of S. This 
third step, which is needed if any control tech­
nology based on the Cartan decomposition is to 
be completely constructive, makes an unexpected 
contact with the mathematics of the molecular 
example. Indeed, the target matrix S was first 
factored into a Givens decomposition of the type 
in SI described in the previous section (with some 
appropriate modifications). Then the parameters 
(Di,Ei,Fi),i = 1, ... ,4 and Bk,k = 1, ... ,3 were 
determined explicitly for the factors in the Givens 
decomposition. The advantage over working di­
rectly with S is twofold. First, each of the Givens 
factors is easy to compute from the entries of S. 
Second, the only non-trivial part of a Givens ma­
trix is a 2 x 2, SU(2) submatrix. SU(2) matrices 
admit several easily computed parametrizations 
in sharp contrast to SU(4) matrices and thus, 
the determination of the (Di, E i , Fi), i = 1, ... ,4 
and Ok, k = 1, ... ,3 for a Givens matrix can be 
carried out in closed form. The first of these three 

innovations was described above in detail. The 
remaining may be found in Rarnakrishna et al., 
(2000b). 

4. CONCLUSIONS 

Relative phases are all important in quantum 
mechanics. In this paper two physically impor­
tant situations, wherein one can completely and 
constructively control quantum systems, via si­
nusoidal external fields whose phases played an 
important role, were given. While the ability to 
create these phases exists in laboratories, it was 
also shown that the number of phases needed 
constitute a very small list. Equally importantly it 
was shown that the amplitude and pulse areas of 
the fields can be bounded a priori. The signifcance 
of this goes beyond minimizing expense. It means, 
crucially, that the basic assumptions which go into 
the model can be met. In other words, there is no 
analogue of the spillover effect in contrast to hard 
pulse techniques. Furthermore, the techniques of 
these paper are an improvement over these latter 
techniques because the former provide exact path 
planning. 
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