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Abstract. We propose what we believe to be a novel approach to performing calculations for
rational density functions using state-space representations of the densities. By standard results from
realization theory, a rational probability density function is considered to be the transfer function of
a linear system with generally complex entries. The stable part of this system is positive-real, which
we call the density summand. The existence of moments is investigated using the Markov parameters
of the density summand. Moreover, explicit formulae are given for the existing moments in terms
of these Markov parameters. Some of the main contributions of the paper are explicit state-space
descriptions for products and convolutions of rational densities.

As an application which is of interest in its own right, the filtering problem is investigated for
a linear time-varying system whose noise inputs have rational probability density functions. In
particular, state-space formulations are derived for the calculation of the prediction and update
equations. The case of Cauchy noise is treated as an illustrative example.
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1. Introduction. We are going to consider the filtering problem for the first
order system

xt+1 = ftxt + ηt,

yt = htxt + εt,

t = 0, 1, 2, . . . , where ft, ht are assumed to be known real numbers and, for ease
of exposition, are assumed to be such that ft �= 0 and ht > 0, t ≥ 0. The noise
sequences {ηt}t≥0 and {εt}t≥0 are assumed to be mutually independent sequences of
independent random variables whose probability density functions are rational. The
initial state x0 is also assumed to be a random variable which is independent of the
noise sequences and also has a rational density. No assumption is made that any of
the random variables are identically distributed.

This filtering problem with non-Gaussian noise has applications in econometrics,
for example in the analysis of financial time series. Studies have shown that the
quantities that are encountered there often do not admit a Gaussian distribution ([7],
[5], and see also [12]), since these distributions have “heavy tails.” As one of the
consequences, higher order moments may not exist. It has therefore been proposed
(see, e.g., [11]) that these distributions be modelled by rational densities, both because
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they do have “heavy tails” and because of the richness of the class of distributions.
Examples of rational probability densities which have been used in the literature are
Cauchy densities and Student densities with odd number of degrees of freedom.

The state filtering problem is defined as the problem of finding the best estimate
x̂t of xt for the quadratic loss function given knowledge of the distribution of x0 and
the values of y0, y1, . . . , yt. Since

x̂t =

∫ ∞

−∞
xp(x)xt|yt,yt−1,...,y0

dx,

this estimate can be found if the conditional density pxt|yt,yt−1,...,y0
of xt is known and

the first moment exists, given the measured values of yt, yt−1, . . . , y0 and knowledge
of the distribution of x0.

In principle, the calculation of the conditional densities is not difficult. The un-
normalized conditional densities, denoted by ρ instead of p, are given by the following.

Update step. For t = 0,

ρx0|Y0
(x) = ρx0|y0

(x) = ρy0|x(y0)ρx0(x) = ρε0(y0 − h0x)ρx0(x);

for t ≥ 1,

ρxt|Yt
(x) = ρyt|x(yt)ρxt|Yt−1

(x) = ρεt(yt − htx)ρxt|Yt−1
(x),

x ∈ �.
Prediction step. For t ≥ 0,

ρxt+1|Yt
(x) = (ρftxt|Yt

∗ ρηt)(x) =

∫ ∞

−∞
ρxt|Yt

(
ξ

ft

)
ρηt(x − ξ) dξ, x ∈ �.

Here we have set Yt to be the collection of observations yt, yt−1, . . . , y0.
In [11] it was noted that the various probability densities occurring in the filtering

problem are all rational functions if the noise variables and the initial state have ra-
tional probability densities and if explicit formulas are given. The practical problem
in doing these calculations for large numbers of observations is that the conditional
densities are fairly complicated to calculate. To alleviate this problem we propose the
use of state-space techniques for these calculations. Since by assumption the initial
state and the noise sequences have rational densities, this is indeed possible. For
this purpose we are going to develop a “state-space calculus” for rational probability
density functions. We believe that the use of linear system theory to analyze ratio-
nal probability densities is novel and may be of relevance beyond the application to
non-Gaussian filtering as discussed here. Since the approach is valid in general, we
develop the state-space approach for general probability density functions as well as
for conditional probability density functions.

Let ρ be a not necessarily normalized rational probability density, i.e., ρ(x) is
a rational function in the independent variable x, such that ρ(x) ≥ 0, x ∈ �, and
0 <

∫∞
−∞ ρ(x)dx < ∞. This implies that ρ is strictly proper, i.e., lim|x|→∞ ρ(x) = 0.

To speak of a not necessarily normalized or unnormalized probability density function
is an abuse of the standard notion of a probability density function, since this term
implies that its integral is 1. For ease of notation we use the notion of a not necessarily
normalized or unnormalized density function to imply that all properties of a density
function are given, with the possible exception of the normalization of its integral.
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By standard realization theory there exists a minimal state-space realization such
that

ρ(x) = c(ixI − A)−1b, x ∈ �.

In particular, we will present here state-space formulae for the translation, scaling,
product, and convolution of rational probability density functions. Most of our re-
sults will be formulated in terms of state-space realizations for the density summand,
which is defined to be the “stable” part of the probability density function. One rea-
son for doing this is that in this way the dimensions of the realizations are typically
half of what they would be otherwise. For actual implementations of our results,
this could lead to significant computational advantages, in particular when repeated
applications are necessary such as can be expected for the filtering case. Moreover,
we will investigate the existence of moments from the state-space point of view and
give state-space formulae for the existing moments in terms of the Markov parame-
ters of the density summand. A major part of the investigation will be built on a
careful analysis of the connections between impulse responses, transfer functions, and
characteristic functions of the various objects. In a result that may be of independent
interest, a state-space formula is given for the system whose impulse response is the
product of impulse responses of two systems.

2. Notation and preliminaries. The symbol C stands for the complex field,
and the symbol � stands for the real field. If (A, b, c) is a linear state-space system, we

also often use the notation ( A b
c 0

). If M is a complex matrix, M∗ denotes the adjoint

matrix. If G is a rational function, G∗ is defined by G∗(s) = (G(−s̄)), s ∈ C. If G has
the realization (A, b, c) (i.e., G(s) = c(sI − A)−1b for s ∈ C\σ(A), where σ(A) is the
spectrum of A), then G∗ has the realization (−A∗, c∗,−b∗). We call a system (A, b, c)
stable if all eigenvalues of A are in the open left half plane. Note that such systems
are often also called asymptotically stable. A rational function G is called strictly
proper if lim|s|→∞ G(s) = 0. An unnormalized probability density function ρ is a

nonnegative integrable function on � such that
∫∞
−∞ ρ(x)dx > 0, but not necessarily

1. Then p = ρ/
∫∞
−∞ ρ(x)dx is a normalized density function. The set of functions P

is defined in section 3.

3. State-space representations of rational densities. If ρ is not a neces-
sarily normalized rational probability density function, then ρ is strictly proper, i.e.,
lim|x|→∞ ρ(x) = 0. Therefore, by standard realization theory (see, e.g., [4, Section
2.1], [10, Sections 10–11]), there exists a minimal linear state-space system (A, b, c)
such that

ρ(x) = c(ixI − A)−1b, x ∈ �.

It should be noted that the system matrices A, b, c will be, in general, complex
matrices. A rational probability density function which is symmetric with respect to
0, however, could be realized with real system matrices.

Note also that we have set up the realization in such a way that we consider the
rational function to be defined on the imaginary axis. While in principle the choice
of axis is arbitrary, it is convenient to choose the imaginary axis since then standard
realization theoretic methods can be adopted without having to change the axis. In
particular, we will be using the formal analogy of methods developed for spectral
densities which are most naturally considered to be defined on the imaginary axis. To
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make this convention clear, set

Φ(ix) := ρ(x), x ∈ �.

Since Φ is a rational function defined on the imaginary axis, it can be extended as a
rational function to the whole complex plane. This rational function has the following
properties.

1. Φ(s) = Φ∗(s), s ∈ C.
2. Φ has no poles on the imaginary axis.
3. Φ(ix) ≥ 0, x ∈ �.
4. lim|s|→∞Φ(x) = 0.

The set of rational functions that satisfies properties 1, 2, 3, and 4 is denoted by P.
Many of our calculations are going to be based on the following well-known additive
decomposition (see Lemma 3.1) of Φ:

Φ(s) = Z(s) + Z∗(s), s ∈ C,

where Z is a stable rational function, i.e., all poles of Z are in the open left half plane.
This decomposition is unique if we assume that Z(∞) = 0, which can be done since
Φ(∞) = 0. The function Z is called the spectral summand or Φ. We will also call Z
the density summand of ρ.

In the following lemma some elementary and standard state-space properties are
collected concerning this additive decomposition of Φ. For the sake of completeness,
a short proof is added for this standard result.

Lemma 3.1. Let Φ ∈ P. Then there exists a stable rational function Z such that

Φ = Z + Z∗.

Let (A, b, c) be a minimal realization of Φ, i.e., Φ(s) = c(sI − A)−1b, and (A, b, c) is
minimal. There exists an equivalent realization


A1 0 b1

0 A2 b2

c1 c2 0




of (A, b, c) such that all eigenvalues of A1 are in the open left half plane and all
eigenvalues of A2 are in the open right half plane. The state-space system (A1, b1, c1)
is a minimal realization of Z, and (A2, b2, c2) is a minimal realization of Z∗.

Moreover, (A2, b2, c2) is equivalent to (−A∗
1, c∗1,−b∗1). In particular, there exists a

minimal realization of Φ such that


A1 0 b1

0 −A∗
1 c∗1

c1 −b∗1 0


 .

Proof. Let Φ = Zs + Zu be a stable-unstable partial fraction decomposition of
Φ, i.e., the partial fraction decomposition of Φ such that Zs is stable, meaning that
all its poles are in the open left half plane, and Zu is unstable, meaning that all its
poles are in the open right half plane. Note that this decomposition is unique. Let
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(A1, b1, c1) be a minimal realization of Zs, and let (A2, b2, c2) be a minimal realization
of Zu. Then 


A1 0 b1

0 A2 b2

c1 c2 0




is a minimal realization of Φ and hence equivalent to (A, b, c). Set Z := Zs. We need
to show that Zu = Z∗. Now consider Zs + Zu = Φ = Φ∗ = (Zs + Zu)

∗ = Z∗
s + Z∗

s .
Note that Z∗

s has all its roots in the open right half plane, and Z∗
u has all its roots in

the open left half plane. By the above-mentioned uniqueness of the stable-unstable
partial fraction decomposition, we have that Zu = Z∗

s = Z∗. The remaining parts of
the lemma follow immediately.

Example. As a special case we are going to consider the Cauchy density, which
was suggested, for example in [7], as a suitable density to study financial time series.
The normalized Cauchy density is defined as

p(x) =
1

π

k

(x − x0)2 + k2
, x ∈ �,

where x0 ∈ � and k > 0. A state-space realization of Φ(ix) := p(x), x ∈ �, is given
by

[
AΦ bΦ

cΦ 0

]
:=




−k + ix0 0 1
2π

0 k + ix0 1

1 − 1
2π 0


 .

The density summand of p is

Z(s) =
1

2π

1

s − (−k + ix0)
,

which has one pole at −k + ix0. A state-space realization of Z is given by

[
A b

c 0

]
:=


 −k + ix0

1
2π

1 0


 .

4. Fourier transforms, moments, and Markov parameters. In order to
obtain state space formulae for the moments of probability density functions and for
the convolution of such densities, we need to employ the Fourier transform. The main
tool will be to interpret the density summand as the Fourier transform of the impulse
response of a stable linear state-space system. Actually, we introduce the Fourier
transform as the Laplace transform evaluated on the imaginary axis. For a general
reference on Fourier transforms see, e.g., [9], [6]. This way of proceeding is of course
closely related to the use of the characteristic function in statistics, but there are a
few more minor technical differences.

For an integrable function f on � define the Fourier transform as usual by

(F(f))(iw) =
∫ ∞

−∞
f(t)e−iwtdt, iw ∈ i�.
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If (A, b, c) is a stable system, let m+(t) := cetAb for t ≥ 0, and m+(t) := 0 for t < 0.
Then the Fourier transform of m+ is given by

(Fm+)(iw) =

∫ ∞

0

cetAbe−itwdt = c(−iwI +A)−1e(−iwI+A)t|∞0 b = c(iwI − A)−1b

=: G(iw), iw ∈ i�.

If we set m−(t) := b∗e−tA∗
c∗ for t < 0 and m−(t) := 0 for t ≥ 0, then the Fourier

transform of m− is given by

(Fm−)(iw) =
∫ 0

−∞
b∗e−tA∗

c∗e−itwdt = b∗(−iwI − A∗)−1e(−iwI−A∗)t|0−∞c∗

= −b∗(iwI − (−A)∗)−1c∗ = G∗(iw), iw ∈ i�.

The lth derivative of m+ at t > 0 is given by (m+)(l)(t) = cAletAb. Hence the
right-hand side limit of the lth derivative at 0 is given by (m+)(l)(0+) = cAlb. The
lth derivative of m− at t < 0 is given by (m−)(l)(t) = b∗(−A∗)le−tA∗

c∗. Hence the
left-hand side limit of the lth derivative at 0 is given by (m−)(l)(0−) := b∗(−A∗)lc∗ =
(−1)l(cAlb)∗ = (−1)l((m+)(l)(0+))∗, l ≥ 0.

Assume now that (A, b, c) is a realization of the spectral summand Z of the
function Φ ∈ P. Then (Fm+)(iw) = Z(iw), (Fm−)(iw) = Z∗(iw), and for m :=
m+ +m− we have that (Fm)(iw) = Φ(iw), iw ∈ i�. Hence m is the inverse Fourier
transform of Φ. Note that m is l times continuously differentiable at t = 0, l ≥ 0, if
and only if cAkb = (−1)k(cAkb)∗, k = 0, 1, . . . , l.

If G is a strictly proper rational function on C, then G admits a Laurent expansion
around ∞ such that

G(s) =

∞∑
n=1

M(n)
1

sn

for s ∈ C with |s| large enough. The parameters M(n), n = 1, 2, . . ., are the Markov
parameters of G (see, e.g., [10, p. 194]). If (A, b, c) is a realization of G, then

G(s) = c(sI − A)−1b =
1

s
c

(
I − A

s

)−1

b =
1

s
c

∞∑
k=0

(
1

s
A

)k

b =

∞∑
n=1

1

sn
cAn−1b.

Hence the Markov parameters of G are given by

M(n) = cAn−1b, n = 1, 2, 3, . . . .

The Markov parameters of a rational strictly proper function of P and its spectral
summand are easily determined.

Lemma 4.1. Let Φ be a strictly proper rational function in P with spectral sum-
mand Z. If (A, b, c) is a realization of Z, then

1. the Markov parameters of Z are given by

cAn−1b, n = 1, 2, 3, . . . ,

2. the Markov parameters of Z∗ are given by

(−1)nb∗(A∗)n−1c∗ = (−1)n(cAn−1b)∗, n = 1, 2, 3, . . . , and
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3. the Markov parameters of Φ are given by

cAn−1b − (−1)n−1(cAn−1b)∗, n = 1, 2, 3, . . . .

In the following lemma, a basic result on the integrability of rational functions is
summarized.

Lemma 4.2. Let G = n
d with n and d as a pair of coprime polynomials. Then∫ ∞

−∞
|G(x)|dx < ∞

if and only if degree(n) ≤ degree(d)− 2 and d(x) �= 0 for all x ∈ �.
If G is as defined in the lemma, then degree(d)− degree(n) is called the codegree

of the rational function G. Therefore, G is integrable if and only if the codegree of G
is greater than or equal to 2. This lemma also implies that if the random variable X
has the rational probability density function p = n

d , then the moments EXk exist for
k = 0, 1, 2, . . ., codegree(p)− 2.

Let k be such that M(n) = 0 for n = 1, 2, . . . , k − 1 and M(k) �= 0. Then the
codegree of G is k [10, p. 254].

Summarizing the previous remarks, we obtain the following proposition.
Proposition 4.1. Let Φ be a strictly proper rational function in P with spectral

summand Z. Let (A, b, c) be a minimal realization of Z. Let m(t) := cetAb for t ≥ 0
and m(t) := b∗e−tA∗

c∗ for t < 0. Then the following hold.
1. The codegree of Φ is k if and only if M(n) = 0 for all n ∈ {1, . . . , k − 1} and

M(k) �= 0, where M(n) is the nth Markov parameter of Φ.
2. The codegree of Φ is k if and only if

cAn−1b = (−1)n−1(cAn−1b)∗

for all n ∈ {1, . . . , k − 1} and

cAk−1b �= (−1)k−1(cAk−1b)∗.

3. m is k−1 times continuously differentiable at 0 if and only if the first k Markov
parameters of Φ are zero.

4. Φ has codegree k if and only if m is k − 2 times continuously differentiable but
not k − 1 times continuously differentiable at 0.

The following theorem provides important results concerning moments of a ran-
dom variable with rational probability density.

Theorem 4.1. Let X be a random variable with unnormalized rational probability
density function ρ. Let (A, b, c) be a realization of the density summand Z of ρ. Then
the following hold.

1. The codegree of ρ is k if and only if

cAn−1b = (−1)n−1(cAn−1b)∗

for all n ∈ {1, . . . , k − 1} and cAk−1b �= (−1)k−1(cAk−1b)∗.
2. The lth moment EX l of X with l a nonnegative integer exists if and only if

l ∈ {0, 1, . . . , k − 2}.
3. EX l = (−i)l cA

lb
cb for all l ∈ {0, 1, . . . , k − 2}.

Proof. (1) The proof follows immediately from Proposition 4.1.
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(2) Recall that the lth moment of X is given by

EX l =
1

R

∫ ∞

−∞
xlρ(x) dx,

where R :=
∫∞
−∞ ρ(x) dx. The codegree of the integrand is k − l. By Lemma 4.2 the

integrand is integrable if and only if its codegree is greater than or equal to 2. Hence
the claim.

(3) Let 0 ≤ l ≤ k − 2. Set Φ(ix) := ρ(x), x ∈ �, and use the notation of
Proposition 4.1. Then m is k − 2 times continuously differentiable at 0 and therefore
on �. Since the codegree of ρ is greater than or equal to 2, m is continuous on �.
Since ρ and m are continuous and integrable, we have by the inversion theorem for
Fourier transforms (see, e.g., [6, Theorem 60.1, p. 296]) that

m(t) =
1

2π

∫ ∞

−∞
Φ(iw)eiwtdw, t ∈ �.

Note that differentiation up to order k − 2 under this integral is justified by the
usual argument (see, e.g. [6, Theorem 53.5, p. 268]) as |ωlΦ(iω)eiωt| = |ωlΦ(iω)| is
integrable for each t ∈ � and 0 ≤ l ≤ k − 2. Hence for t ∈ �,

dl

dtl
m(t) =

1

2π

∫ ∞

−∞
Φ(iw)

dl

dtl
eiwtdw = (i)l

1

2π

∫ ∞

−∞
wlΦ(iw)eiwt dw.

Evaluating at t = 0, we have

dl

dtl
m(t)|t=0 =

1

2π
(i)l

∫ ∞

−∞
wlΦ(iw)eiwtdw|t=0 = R(i)l

1

2π
EX l.

Since dl

dtl
m(t)|t=0 = cAlb, l = 0, . . . , k − 2, we have that

EX l =
2π

R
(−i)lcAlb.

The constant R is determined by considering this equation for l = 0. Since EX0 = 1,

we have that R = 2πcb. Hence EX l = (−i)l cA
lb

cb .
In most of this paper we will be dealing with unnormalized rational probability

densities ρ. If (A, b, c) is a state-space realization of the density summand of ρ,
the normalized probability density function is given by p := ρ/

∫∞
−∞ ρ(x)dx. By the

above proposition
∫∞
−∞ ρ(x)dx = 2πcb, which provides a state-space formula for the

normalization constant.
If X is a random variable with rational probability density function ρ whose

density summand has the state-space realization (A, b, c), then the first moment exists
if the codegree of ρ is at least 3. This is the case if and only if

cb = (cb)∗

and

cAb = −(cAb)∗.

If the first moment, i.e., the mean, exists, then by the theorem it is given by

EX = −i
cAb

cb
.



732 BERNARD HANZON AND RAIMUND J. OBER

In the above discussion we gave a state-space construction for the inverse Fourier
transform m of a not necessarily normalized rational probability density function ρ,
i.e.,

m(t) =
1

2π

∫ ∞

−∞
ρ(ω)eiωtdω, ω ∈ �.

In the statistical literature an important object is the characteristic function of a
random variable X which is defined by E(eitX), t ∈ �. If X has the unnormalized
probability density function ρ, then

E(eitX) =
1∫∞

−∞ ρ(x)dx

∫ ∞

−∞
eitxρ(x)dx =

2π∫∞
−∞ ρ(x)dx

m(t), t ∈ �.

Hence up to a (known) scaling factor the function m is identical to the characteristic
function.

Example continued. We continue the discussion of the Cauchy density from sec-
tion 3. Note that for all x0 ∈ � and k > 0

cAb =
1

2π
(−k + ix0) �= −1

2
(−k − ix0) = −(cAb)∗.

Hence by the theorem the mean EX does not exist. This is of course also directly
evident by consideration of the integral

∫∞
−∞ xp(x)dx.

If m+(τ) := 1
2π eτ(−k+ix0) for t ≥ 0 and m+(τ) := 0 for t < 0, then F(m+)(iw) =

1
2π

1
iw−(−k+ix0)

, iw ∈ i�. If m−(τ) := 1
2π e−τ(−k−ix0) for t < 0 and m−(τ) := 0 for

t ≥ 0, then F(m−)(iw) = 1
2π

1
iw+(k−ix0)

, iw ∈ i�. With m := m++m−, we have that
m is continuous at 0. The derivative is given by

d

dt
m(t) =

1

2π
(−k + ix0)e

τ(−k+ix0), τ > 0,

d

dt
m(t) =

1

2π
(k + ix0)e

−τ(−k−ix0), τ < 0.

Note that the left-hand side limit and the right-hand side limit do not agree at 0.
Hence m is not differentiable at 0. As the codegree of p is 2, this is in agreement with
Proposition 4.1. The first two Markov parameters of Φ are

cΦbΦ = 0, cΦAΦbΦ =
−k

π
.

Hence the second Markov parameter is nonzero, which is also in agreement with
Proposition 4.1.

5. Operations on probability densities. In this section we are going to dis-
cuss state-space formulations of operations on rational probability densities. Given
state-space realizations for the density summands of two probability densities, we
will give state-space realizations for the density summand of the translation, scaling,
product, and convolution of the densities.

5.1. Translation and scaling of a probability density. In the next straight-
forward lemma the effect of translation and scaling of a random variable on the state-
space realization of the density is considered.
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Lemma 5.1. Let X be a random variable with unnormalized rational density ρ.
Let (A, b, c) be a minimal realization such that ρ(x) = c(ixI − A)−1b, x ∈ �.

Let x0 ∈ �. Then the random variable X + x0 has an unnormalized probability
density function q(x) = ρ(x − x0), which has a realization (A+ ix0I, b, c), so

q(x) = c(ixI − (A+ ix0I))−1b, x ∈ �.

Let a ∈ �, a �= 0; then the random variable aX has the unnormalized probability
density function q(x) = 1

aρ( x
|a| ) which has a realization (aA, b, a

|a|c), so

q(x) =
a

|a|c(ixI − aA)−1b, x ∈ �.

In the following lemma, we are going to write down the analogous results for the
case when a state-space realization is given for the density summand of the probability
density. The proof is elementary.

Lemma 5.2. Let X be a random variable with unnormalized rational density ρ.
Let (A, b, c) be a realization of the density summand Z of ρ.

Let x0 ∈ �; then the random variable X + x0 has the unnormalized probability
density function q(x) = ρ(x − x0), x ∈ �, whose density summand has a realization(

A+ ix0I b

c 0

)
.

Let a ∈ �, a �= 0; then the random variable aX has the unnormalized probability
density function q(x) = 1

|a|ρ(
x
a ), whose density summand has a realization

(
aA b

c 0

)

if a > 0 and (
−aA∗ c∗

b∗ 0

)

if a < 0.

5.2. Product of two rational probability densities. In the update step of
the filtering problem, it is necessary to calculate the product of two density functions.
We are going to do this also by state-space techniques using the decomposition into
density summands. The following lemmas will be useful.

Lemma 5.3. Let G1 and G2 be two stable strictly proper rational functions with
minimal state-space realizations (A1, b1, c1) and (A2, b2, c2). Then the product G∗

1G2

can be decomposed as

G∗
1G2 = F +H∗,

where F , H are stable strictly proper rational functions such that F has the realizations
given by (

A2 b2

b∗1T1 0

)
,

(
A2 T2c∗1
c2 0

)
,
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and H∗ has the realizations given by(
−A∗

1 T1b2

−b∗1 0

)
,

(
−A∗

1 −c∗1
c2T2 0

)
,

where T1 is the unique solution to the Sylvester equation

A∗
1T1 + T1A2 + c∗1c2 = 0

and T2 is the unique solution to the Sylvester equation

A2T2 + T2A∗
1 + b2b∗1 = 0.

Proof. Note that a realization of G∗
1 is given by

(−A∗
1, c∗1,−b∗1),

and a realization of G∗
1G2 is given by


−A∗

1 c∗1c2 0

0 A2 b2

−b∗1 0 0


 .

Performing a state-space basis transformation with transformation matrix ( I T1

0 I
), we

obtain the equivalent realization


−A∗
1 A∗

1T1 + T1A2 + c∗1c2 T1b2

0 A2 b2

−b∗1 b∗1T1 0


 =




−A∗
1 0 T1b2

0 A2 b2

−b∗1 b∗1T1 0




since T1 is such that A∗
1T1+T1A2+c∗1c2 = 0. Note that such a T1 exists and is unique

since both A∗
1 and A2 have all their eigenvalues in the open left half plane (see, e.g.,

[1, Vol. I, p. 225]). This representation implies the first set of realizations. The other
set of realizations follows analogously by considering the state-space formula which
corresponds to G2G∗

1.
Remark. A method to generate explicit formulas for the solutions of Sylvester

equations is presented in [3].
We can now derive the desired representation for the density summand of the

product of two rational probability density functions.
Proposition 5.1. Let ρ1 and ρ2 be two unnormalized rational probability density

functions with density summands Z1 and Z2. Let (Ai, bi, ci) be a minimal realization
of Zi, i = 1, 2. Then the density summand Z of the unnormalized rational probability
density function ρ = ρ1ρ2 has a realization given by


A1 b1c2 T ∗

2 c∗2
0 A2 b2

c1 b∗1T1 0


 ,

where T1, T2 are the unique solutions to the Sylvester equations

A∗
1T1 + T1A2 + c∗1c2 = 0,

A2T2 + T2A∗
1 + b2b∗1 = 0.



A STATE-SPACE CALCULUS FOR RATIONAL DENSITIES 735

Proof. We have that

ρ = ρ1ρ2 = (Z1 + Z∗
1 )(Z2 + Z∗

2 ) = Z1Z2 + Z1Z∗
2 + (Z1Z∗

2 )
∗ + (Z1Z2)

∗.

By Lemma 5.3 a state-space realization for the stable part of this expression is given
by




A1 b1c2 0 0 0

0 A2 0 0 b2

0 0 A1 0 T ∗
2 c∗2

0 0 0 A2 b2

c1 0 c1 b∗1T1 0


 ,

where T1 is the unique solution of the equation

A∗
1T1 + T1A2 + c∗1c2 = 0

and T2 is the unique solution of the equation

A2T2 + T2A∗
1 + b2b∗1 = 0.

Performing a state-space basis transformation with transformation matrix

T =




I 0 0 0

0 I 0 0

0 0 I 0

0 −I 0 I


 ,

we obtain the equivalent realization




A1 b1c2 0 0 0

0 A2 0 0 b2

0 0 A1 0 T ∗
2 c∗2

0 0 0 A2 0

c1 b∗1T1 c1 b∗1T1 0


 ,

which is equivalent to 


A1 b1c2 0 0

0 A2 0 b2

0 0 A1 T ∗
2 c∗2

c1 b∗1T1 c1 0


 .

On this realization perform another state-space basis transformation with transfor-
mation matrix

T =


 I 0 I

0 I 0

0 0 I
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to obtain 


A1 b1c2 0 T ∗
2 c∗2

0 A2 0 b2

0 0 A1 T ∗
2 c∗2

c1 b∗1T1 0 0


 ,

which is equivalent to 


A1 b1c2 T ∗
2 c∗2

0 A2 b2

c1 b∗1T1 0


 .

It was noted before that the codegree of a rational probability density function
is at least 2. Therefore, the product of two such probability density functions has
codegree at least 4. Hence for a random variable whose density is given by such a
product, at least the first and second moments exist. This will be used in the next
section to show the existence of a conditional mean and variance.

5.3. Convolution of probability densities. We now come to determine a
state-space formulation for the convolution of two probability densities. Recall that
if X and Y are two random variables with rational probability densities ρX and ρY ,
then the probability density of X + Y is given by the convolution ρX ∗ ρY .

Let ρ1 and ρ2 be two unnormalized rational probability functions with correspond-
ing spectral summands Z1 and Z2. Let (Ai, bi, ci) be a realization of Zi, i = 1, 2. Let,
for i = 1, 2,

m+
i (τ) :=

{
cie

τAibi, τ ≥ 0,

0, τ < 0,

m−
i (τ) :=

{
b∗i e

−τA∗
i c∗i , τ < 0,

0, τ ≥ 0.

Then (Fm+
i )(iw) = Zi(iw), (Fm−

i )(iw) = Z∗
i (iw), iw ∈ i�, and

(ρ1 ∗ ρ2)(w) =

∫ ∞

−∞
Φ1(iw − iν)Φ2(iν)dν = F

(
F−1

∫ ∞

−∞
Φ1(iw − iν)Φ2(iν)dν

)

= F((F−1Φ1)(F−1Φ2))(iw) = F((F−1(Z1 + Z∗
1 ))(F−1(Z2 + Z∗

2 )))(iw)

= F((m+
1 +m−

1 )(m
+
2 +m−

2 ))(iw) = F(m+
1 m+

2 +m−
1 m−

2 )(iw)

= F(m+
1 m+

2 )(iw) + F(m−
1 m−

2 )(iw).

It follows that the spectral summand Z of ρ1 ∗ρ2 is given by Z(iw) = F(m+
1 m+

2 )(iw).
In the following proposition we are going to give the state-space formulae for the

product of the impulse responses of two single-input single-output state-space systems.
This will be the key step to determine a state-space realization for the convolution of
two rational probability density functions.

Proposition 5.2. Let m+
i (τ) := cie

τAibi for τ ≥ 0, and m+
i (τ) := 0 for τ <

0, where (Ai, bi, ci) is an ni-dimensional single-input single-output system, i = 1, 2.
Then

m+(τ) := m+
1 (τ)m

+
2 (τ), τ ≥ 0,
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has a realization m+(τ) = ceτAb for τ ≥ 0 and m+(τ) = 0 for τ < 0, where

A = A1 ⊗ In2 + In1 ⊗ A2,

b = b1 ⊗ b2,

c = c1 ⊗ c2.

(Here ⊗ denotes the Kronecker product.)
Proof. This follows immediately from basic rules on the Kronecker product (see,

e.g., [8]), since for τ ≥ 0

m+(τ) = ceτAb = (c1 ⊗ c2)e
τ(A1⊗In2+In1

⊗A2)(b1 ⊗ b2)

= (c1 ⊗ c2)(e
τA1 ⊗ eτA2)(b1 ⊗ b2) = c1eτA1b1 ⊗ c2eτA2b2 = c1eτA1b1c2eτA2b2

= m+
1 (τ)m

+
2 (τ).

The proposition is of interest in its own right, as it allows one to find state-space
formulas for products of impulse response functions.

Summarizing, we have the following result.
Proposition 5.3. Let ρ1 and ρ2 be unnormalized rational probability densities

whose spectral summands Z1 and Z2 have the n1-dimensional and n2-dimensional
state-space realizations (A1, b1, c1) and (A2, b2, c2). Then the density summand Z of
the convolution ρ = ρ1 ∗ ρ2 has the state-space realization(

A1 ⊗ In2
+ In1

⊗ A2 b1 ⊗ b2

c1 ⊗ c2 0

)
.(1)

Proof. Suppose Z has the realization (1). Then the inverse Fourier transform of
Z is m+

1 m+
2 , showing that Z is the spectral summand of ρ.

Note that the state-space dimension of this realization is n1n2, which implies that
the McMillan degree of Z is at most n1n2.

6. State-space expressions for the filtering equations. We are now in a
position to derive state-space expressions for the unnormalized conditional densities
in the filter equations which were discussed in the introduction.

Theorem 6.1. Assume the notation and assumptions for the filtering problem
as presented in the introduction.

Let t ≥ 0, and let (Axt|t−1
, bxt|t−1

, cxt|t−1
) be a minimal nxt-dimensional state-

space realization of the density summand of the unnormalized conditional density
ρxt|Yt−1

. For t = 0, set ρxt|Yt−1
:= ρx0

, the density of the initial state x0. Let
(Aηt , bηt

, cηt) be a minimal nηt-dimensional state-space realization of the density sum-
mand of the unnormalized rational density ρηt of the noise random variable ηt, and
let (Aεt , bεt , cεt) be a minimal ηεt-dimensional state-space realization of the density
summand of the unnormalized rational density ρεt of the noise random variable εt,
t ≥ 0.

Let T1 be the unique solution to the equation(
1

ht
Aεt + iytI

)
T1 + T1Axt|t−1

+ bεtcxt|t−1
= 0,

and let T2 be the unique solution to the equation

Axt|t−1
T2 + T2

(
1

ht
Aεt + iyt

)
+ bxt|t−1

cεt = 0.



738 BERNARD HANZON AND RAIMUND J. OBER

Then the density summand of the unnormalized density ρxt|Yt
has state-space realiza-

tion

(
Axt|t bxt|t

cxt|t 0

)
=




1
ht

A∗
εt − iytI c∗εtcxt|t T ∗

2 c∗xt|t
0 Axt|t txt|t

b∗εt cεtT1 0


 .

The density summand of ρxt+1|Yt
has state-space realization(

Axt+1|t bxt+1|t

cxt+1|t 0

)

=

(
ftAxt|t ⊗ Inηt

+ Inεt+nxt
⊗ Aηt bxt|t ⊗ bnηt

cxt|t ⊗ cηt 0

)
if ft > 0,

=

( −ftA
∗
xt|t ⊗ Inηt

+ Inεt+nxt
⊗ Aηt c∗xt|t ⊗ bnηt

b∗xt|t ⊗ cηt
0

)
if ft < 0.

Proof. Since by assumption ht > 0, the density summand of the density q(x) =
ρεt(yt − htx), x ∈ �, has the realization(

1
ht

A∗
εt − iytI c∗εt
b∗εt 0

)
.

As

ρxt|Yt
(x) = ρεt(yt − htx)ρxt|Yt−1

(x), x ∈ �,

by Proposition 5.1 the density summand of ρ has the realization


1
ht

A∗
εt − iytI c∗εtcxt|t−1

T ∗
2 c∗xt|t−1

0 Axt|t−1
bxt|t−1

b∗εt cεtT1 0


 ,

where T1 is the unique solution to the equation(
1

ht
A∗

εt − iytI

)∗
T1 + T1Axt|t−1

+ bεtcxt|t−1

=

(
1

ht
Aεt + iytI

)
T1 + T1Axt|t−1

+ bεtcxt|t−1
= 0,

and T2 is the unique solution to the equation

Axt|t−1
T2 + T2

(
1

ht
A∗

εt − iytI

)∗
+ bxt|t−1

cεt

= Axt|t−1
T2 + T2

(
1

ht
Aεt + iytI

)
+ bxt|t−1

cεt = 0.

To obtain a state-space formula for the prediction step

ρxt+1|Yt
= ρftxt|Yt

∗ ρηt ,
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we use Proposition 5.3. We need to introduce two cases depending on the sign of ft.
If ft > 0, the density summand of ρftxt|Yt

has the realization(
ftAxt|t bxt|t

cxt|t 0

)
.

If ft < 0, the density summand of ρftxt|Yt
has the realization( −ftA

∗
xt|t c∗xt|t

b∗xt|t 0

)
.

The remaining parts of the result now follow by Proposition 5.3.
It should be noted that the presented state-space realizations are data depen-

dent and, in particular, dependent on Yt. As the formulae that use Kronecker prod-
ucts show, the dimensions of the state-space representation can potentially grow very
quickly as the number of data points increases. It should be pointed out, however,
that the growth in complexity is inherent in the use of random variables with rational
densities (see also [11]). If, however, the density summand corresponding to ηt has
only McMillan degree 1, i.e., ηt has Cauchy distribution, then the Kronecker products
reduce to standard multiplication and the prediction step does not lead to an increase
in dimension. Also, if the density summand corresponding to εt has McMillan degree
1, i.e., εt has Cauchy distribution, then the matrix equations can be solved explicitly
to give

T1 = −bεtcxt|t−1

((
1

ht
Aεt + iyt

)
I +Axt|t−1

)−1

,

T2 = −
((

1

ht
Aεt + iyt

)
I +Axt|t−1

)−1

bxt|t−1
cεt .

Note that the inverse exists, since Axt|t−1
has all eigenvalues in the open left half

plane and 1
ht

Aεt + iyt has negative real part, because of the stability of Aεt and since
ht > 0. From the remark after Proposition 5.1, it follows that the conditional mean
E(xt|Yt) and the corresponding conditional variance E(xt − E(xt|Yt)

2|Yt) exist and
can be calculated from the density summand realization (Axt|t , bxt|t , cxt|t) using the
formulas given in Theorem 4.1.

Note that prediction is also possible using the formulas presented here. For ex-
ample, the unnormalized rational conditional probability density of the output vari-
able at time t + 1, given the observations of the output until time t, is equal to
ρyt+1|t(y) = ρht+1xt+1|t ∗ ρεt+1 , and the spectral summand of this density can be cal-
culated using the formulas of section 5.

7. Conclusions. State-space formulae have been developed for various opera-
tions on rational density functions, and it is shown how this can be used to treat the
filtering problem in the case of a first order linear stochastic model with stochastically
independent noise variables with rational probability densities and stochastically in-
dependent initial state with rational probability density. This makes such filters easy
to program on present-day computers, using, e.g., a linear algebra package. If the
number of observations is not very small, however, the order of the conditional ratio-
nal densities will tend to grow quickly. Therefore, various schemes of order reduction
for positive real functions may be of relevance in practical applications (see, e.g.,
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[2]). The formulae presented can also be used for further theoretical research in the
behavior of the optimal filter. It follows, for example, that the conditional mean of
the present state, given present and past observations, is a rational function of the
present and past observations, which could be further investigated. The formula that
is presented for the realization of the product of impulse response functions appears
to be important in its own right.
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