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Control of a coupled two-spin system without hard pulses
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Constructive techniques for preparing a specific unitary generator from a coupled two-spin system, via
bounded amplitude radio frequency selective single spin pulses, are presented. The frequency of any pulse in
the sequence is one of the two Larmor frequencies, while the phase takes one of two values. The fact that the
amplitude is bounded implies that the Larmor frequency separation between the two spins need not be large to
maintain selectivity. In addition, the contribution of theJ coupling term to single spin evolution is not ne-
glected, but instead plays a crucial role. The procedure is based on a certain decomposition of SU~4! available
in the literature. A method for determining the parameters entering this factorization, in terms of the entries of
the target unitary generator, is also provided.
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I. INTRODUCTION

The inverse problem of producing pulse sequences
will prepare any desired unitary generator has attracted c
siderable interest in various ‘‘quantum’’ communities@1–16#.
One impetus for this question stems from problems in qu
tum computation and cryptography, where several imp
mentation issues are explicitly cast in the form of prepar
desired states and unitary generators@17,18,19,11,8,20–
22,23#. In these applications accurate preparation of the
sired generator is a key requirement. Any form of avoida
inaccuracy is undesirable since it might call for increased
of error correction schemes or may not be amenable to ex
error correction techniques@24#. In principle, every quantum
objective amounts to preparing prescribed states and gen
tors. For instance, it is shown in Refs.@25–27# that all one-
dimensional ~1D! and 2D nuclear magnetic resonan
~NMR! spectra can be explicitly parametrized by such u
tary generators. In such applications also minimizing
proximations is useful.

In this paper, the problem of producing an explicit prot
col for a radio frequency pulse—delay sequence that
prepare exactly a specific unitary generator, when applie
a pair of coupled spin12 particles, is studied. The usage of th
word ‘‘exactly’’ is, of course, within the model supposed b
this work. Briefly, we suppose selective excitation and
weak coupling limit in keeping with the universal practice
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liquid NMR quantum information processing@11,12,5# but,
in contrast to the usual practice,do not neglectthe contribu-
tion of J coupling to single spin evolutions. Thus, one k
contribution of this paper is the exact treatment of theJ
coupling whilesimultaneouslyensuring the limits believed to
be sufficient for the selectivity requirement~viz., effective
radio frequency amplitude much lower than Larmor sepa
tion!. This, in turn, is effected via a new factorization o
single spin exponentials~see Appendix A!, which could also
be implemented in the laboratory in techniques differe
from the one suggested here.

A coupled system of two spins is probably the mo
widely examined system in nuclear magnetic resonan
since it is the lowest dimensional system that exhibits ess
tial phenomena present in all systems. The Hamiltonian c
sen is the standard Hamiltonian, dominating much of liqu
NMR, which describes a pair of spin12 particles coupled byJ
coupling and being interrogated selectively by a sequenc
radio frequency fields@28–34,12#,

H5HB0
1HJ1HRF, ~1.1!

whereHB0
describes the interaction with the static magne

field, HJ models theJ coupling interaction between the tw
particle, andHRF provides the interaction with the radio fre
quency field. Further details concerning this Hamiltonian
in Sec. III.

The starting point of this approach is the following ‘‘Eu
ler’’ angle type factorization of any 434 special unitary ma-
trix:
©2002 The American Physical Society05-1
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S5)
k51

Q

exp~2 i t kMk!. ~1.2!

In this factorization theMk are each one of the operato
I 1zI 2z ,I i j , i 51,2; j 5x,y ~see Sec. II and the Appendixe
for more on this factorization!. The steps involved then ar
the following.

Step R1. The application of a sequence of radio frequen
fields whose frequencies and phases are chosen so as to
der the dynamics in a suitable rotating frame to have a c
stant timesI 1zI 2z as the free Hamiltonian, while the intera
tion Hamiltonian transforms into a constant times one of
I i j , i 51,2, j 5x,y. The constant in these Hamiltonians d
pends on the duration and amplitude of the pulses.

Step R2. The determination of the amplitudes and du
tions of the pulses explicitly, assuming thetk in Eq. ~1.2! are
known, so that the targetS is prepared exactly within ou
model. It is also shown how to constructively incorpora
any prespecified amplitude bound. This means that selec
single spin excitation is possible even if the Larmor fr
quency separation is quite low. In the process certain ma
exponentials for two spin systems are explicitly comput
which may be of interest in its own right. Indeed, these c
culations facilitate a factorization~see Appendix A!, which
represent the innovation enabling the exact treatment of tJ
coupling term in single spin evolutions.

Step R3. The specification of an algorithmic procedure f
finding thetk from the entries of the targetS.

The idea of using factorizations of unitary matrices
prepare unitary generators is not new. For instance, Ref@3#
studies the constructive and exact generation of unitary g
erators in two level systems in this way. In Ref.@5# a similar
decomposition is used to prepare unitary generators
coupled spin systems. Inherent in Ref.@5# were, however,
approximations due to the use of hard pulses. Such pu
only prepare the unitary generator approximately~with the
error introduced not being of the phase error type! but also
require a very wide separation of frequencies. In addition
crucial step, viz., the determination of the parameterstk , was
not provided. Sincetk provide essential information abou
the pulse sequence in their approach also, such an algor
is vital. In this paper we provide a complete solution to th
problem without resorting to such approximations and a
provide an algorithm to findtk .

This paper is organized as follows. In the following se
tion some notation is provided. Section III derives the rot
ing frame and shows how to determine frequencies
phases of the pulses in the sequence to obtain the de
target. Section IV provides an algorithm that yields the a
plitude and duration of the requisite pulse sequence. Sec
V discusses an example. Some conclusions are offere
Sec. VI. Finally, two appendixes are included. The fi
proves a proposition on which the algorithm in Sec. IV
based. The second shows how to findtk of Eq. ~1.2!.

II. NOTATION AND TERMINOLOGY

The Pauli matrices will be denoted by

sx5S 0 1

1 0D ,
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sy5S 0 2 i

i 0 D ,

and

sz5S 1 0

0 21D .

The following notation will be used throughout:I 1k5sk
^ I 2 ; I 2k5I 2^ sk , k5x,y,z.

Note. The customary factor of12, in the definition of the
Pauli matrices, has been omitted to minimize the book ke
ing in Appendix B. It does not affect any of the results belo

Phraseology. To prevent circumlocution, the following
convention is employed.~i! Hard pulse will mean any
scheme that neglectsJ coupling during a selective rf pulse
~ii ! Soft pulse will be reserved for the pulse scheme propo
by us. ~iii ! Throughout, unless explicit mention is made
the contrary, ‘‘NMR’’ will refer only to liquid NMR.

III. DETERMINATION OF THE FREQUENCIES
AND PHASES

Consider a pair of coupled spins in the weak coupli
limit @28,29,31–33,11#. Thus, theJ coupling constant satis
fies uv12v2u@2pJ, wherev1 andv2 are the Larmor fre-
quencies of the two particles. It is not assumed that the
romagnetic ratios of the two spins,g1 andg2 are different.
Since, typically, the two particles experience different shie
ing effects,v1Þv2 even if g15g2 . This system is probed
by a radio frequency field sequence, tuned to one of the
Larmor frequencies. It is assumed that selective excitatio
possible, i.e., off-resonant effects can be neglected. T
means that the effective amplitude of the fields, i.e., am
tude times the respective gyromagnetic ratio, has to be m
smaller than the Larmor separation of the two partic
@28,29,31,32,11,12#. This possibility is universally suppose
in liquid NMR quantum information processing@11,12,5#.
Since, it will be shown that any bound on the amplitude c
be accommodated, the selectivity assumption poses no
ther restrictions on the frequency separation itself.

Suppose that the radio frequency field is tuned to ex
the first particle, and as usual, is linearly polarized along
x axis. Thus, the field is 2c cos(v1t1f), where 2c andf are
the amplitude and phase of the field. Then the Hamilton
describing the system is a sum of three terms,H5HJ
1HB0

1HRF, where

HJ5
Jp

2
I 1zI 2z , HB0

5 1
2 ~v1I 1z1v2I 2z!,

HRF5
cg1

2
@ I 1x cos~v1t1f!1I 1y sin~v1t1f!#.

This is precisely the familiar Hamiltonian describing a pa
of J coupled, spin1

2 particles being interrogated selective
by a radio frequency field@28,29,31–33,11,12#. Note that
5-2
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CONTROL OF A COUPLED TWO-SPIN SYSTEM . . . PHYSICAL REVIEW A65 063405
some of the constants in the Hamiltonian appear differ
from the standard expression. This is due to the absenc
1
2 in our Pauli matrices.

Functional form of HJ . The weak coupling limit, used in
liquid NMR quantum information processing work
@11,12,5#, ensures this form ofHJ . In this regime, the inter-
action between the two spins in liquid state is to great pre
sion given byHJ , with the scalar terms in thex,y directions
neglected@28,29,31,11,12#. SinceJ is at most in kHz~for
instance, the highest value ofJ to be found in Ref.@33#
occurs for a phosphorus-platinum single bond and is equa
4.64 kHz!, while with current static magnetic fields the La
mor separation runs from tens to hundreds of megahertz
thus 2pJ!uv12v2u, this assumption is quite valid. Situa
tions that are not susceptible to this include, of cour
equivalent spins and coherence transfer experiments in
tropic mixing. It should be pointed out that for weak co
pling an extra requirement, viz., radio frequency amplitu
much lower than static field, is needed too. This work e
sures this.

Functional form of HRF . Our truncated expression fo
HRF is identical to the one in Refs.@11,12,5#. Besides the
selective excitation assumption~i.e., off-resonant effects neg
ligible!, it supposes the usual fact that the field may be s
into two components, one of which~the counter-rotating
term! can be neglected if the amplitude of the field is mu
smaller than the static magnetic field@28,29,31,32#. Since the
approach will allow any amplitude bound, this is a va
approximation. Effects such as the Bloch-Sieget shift will
negligible in our approach. If it is possible to apply tw
independent radio frequency fields in thex andy directions
then the expression forHRF is exact~within the selectivity
assumption, of course! if the field in the x direction is
c cos(v1t1f) and it isc sin(v1t1f) in the y direction.

If the second particle is being interrogated the only diff
ence in the Hamiltonian would be the replacement ofI 1 j , j
5x,y by I 2 j , j 5x,y andv1 by v2 .

Passing to a rotating frame,U(t)5etFV(t) with

F5
i

2
~v1I 1z1v2I 2z!

yields, for the first particle, the following dynamics:

U̇52
i

2
~JpI 1zI 2z!U2

icg1

2
~D ^ I 2!U, ~3.1!

with

D5S 0 e2 if

eif 0 D .

By choosing the phasef50, D is sx and if we setf
5p/2, D is sy . A similar calculation reveals that thesame
rotating framecan be used to address the other spin to ob

U̇52
i

2
~JpI 1zI 2z!U2

icg2

2
~ I 2^ D!U. ~3.2!
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This implies that by choosing the frequency of the field
be resonant with one of the spins and by choosing the ph
appropriately, passing to a rotating frame, yields the follo
ing system controlled by constant inputs:

U̇52
i

2
AU2

i

2
dBU, UPSU~4!, ~3.3!

with A5Jsz^ sz and B one of the matricesI 1x , I 2x , I 1y ,
I 2y whereI 1 j5s j ^ I 2 , j 5x,y andI 2 j5I 2^ s j , j 5x,y. The
constantd is related to the amplitude of the field and oth
constants of the system. This is useful because the decom
sition, Eq.~1.2!, consists precisely of the exponentials of o
of I 1zI 2z ,I i j , i 51,2, j 5x,y.

IV. DETERMINING THE AMPLITUDES AND DURATIONS

Recall Eq.~1.2!, S5Pk51
Q e2 i t kMk. Suppose for the mo-

ment that the constantstk are known. Note thattk , whatever
they are, may be supposed to be in@0, 2p!, though this is not
necessary. To generate factors for whichMk is I 1zI 2z , free
evolution for time 2tk /Jp suffices. Preparing the remainin
factors is equivalent to factorizing the exponentials,e2 iLJi j ,
i 51,2, j 5x,y for any LP@0,2p) in the form

e2 iLI i j 5)
k51

R

e~2 iakI 1zI 2z2 ibkI i j !, i 51,2, j 5x,y ~4.1!

satisfying ~i! condition O1, ak.0 and ~ii ! condition O2,
ubk /aku<C, k51, . . . ,R. Up to constants,ak is the duration
of the kth pulse andbk /ak its amplitude. This explains the
conditions O1 and O2. Obtaining such a factorization is
dressed by Proposition 1 in Appendix A. The proof of th
Proposition leads to the following algorithm.

Note. ~i! The following algorithm supposes thatJ.0.
Geminal and vicinal couplings often have negativeJ. For
such situations condition O1 must be modified toak,0. It is
possible to modify the proof of Proposition 1 to ensure th
The details are omitted in the interest of brevity.~ii ! In the
algorithm below whenever the amplitude turns out to
negative, one must addp to the corresponding phase to e
sure its positivity.~iii ! The algorithm is written in a form tha
addresses the preparation of each factor ofS in Eq. ~1.2!.
When S itself is prepared, many free evolution terms co
lesce to either disappear or become free evolution terms
shorter durations~keep in mind the periodicity ofI 1zI 2z and
e2 ipI 1zI 2z52I 4!. ~iv! From this point on,c is taken to be the
amplitude. If the the rotating wave approximation is used
arriving at HRF then the amplitude should be twice that r
ported.

Algorithm I

Step 1. Determine, using Appendix B, the parameterstk in
the factorization ofS in Eq. ~1.2!.

Step 2. If for somek, Mk5I 1zI 2z switch off the field and
let the system evolve for 2tk /Jp.

Step 3. If Mk5I 1x , first determine if cos(tk) is ~i! positive,
~ii ! negative, or~iii ! zero. If cos(tk).0, apply the following
pulse sequence. First, switch off the field for 1/2J units of
5-3
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time. Next, apply a pulse with frequencyv1 , phase 0, dura-
tion cos(tk)/J, and amplitude given by (22Jp/g1)tan(tk). Fi-
nally, switch off the field for 13/2J units of time.

If cos(tk),0, apply the following sequence. First, let th
system evolve freely for 3/2J units of time. Next, tune the
frequency tov1 , set the phase 0, amplitude (2Jp/g1)tan(tk),
and duration2cos(tk)/J. Follow this with free evolution for
9/2J units.

If cos(tk)50 and sin(tk)51, use the following sequence
First, let the system evolve freely for 1/2J units. Next, apply
a field with frequencyv1 , phase 0, amplitude 2Jp/g1 , and
duration 1/&J units. Next, apply another pulse with th
same frequency, phase, and duration, but with amplit
21/&J. Finally, let the system evolve freely for 7/2J units.

If cos(tk)50, but sin(tk)521, proceed as in the precedin
case except that the second and third pulses are intercha

Step 4. If Mk5I 1y , determine if cos(tk) is ~i! positive,~ii !
negative, or~iii ! zero. If cos(tk).0, first switch off the field
for 7/2J units. Next, apply a field with frequencyv1 , phase
3p/2, duration cos(tk)/J, and amplitude (2Jp/g1)tan(tk). Fi-
nally, let the system evolve freely for 7/2J units of time.

If cos(tk),0, first let the system evolve freely for 9/2J
units of time. Next, switch on the field with the same fr
quency and phase as in the preceding step, but with dura
2cos(tk)/J units, with amplitude (2Jp/g1)tan(tk). If cos(tk)
50, proceed as in the cos(tk)50 subcases in step 3, exce
that the first free evolution is executed for 7/2J units, while
the last requires 1/2J units.

Step 5. If Mk is I 2x (I 2y), follow step 3~step 4!, except
that the frequency should now bev2 .

Step 6. If an amplitude boundD is given, first findtk for
the factors for whichMkÞI 1zI 2z . For such factors, translat
the boundD into a boundutan(tk)u<C. If tk does not satisfy
this bound, then factor exp(2itkMk) as P l 51

r exp(2itk
l Mk)

with eachtk
l satisfying this bound. Then generate every fa

tor exp(2itk
l Mk) using step 3~or step 4 or 5, depending o

what Mk is!.
Motivation for pulse sequence. The principal difference

between our pulse sequence and that in Ref.@5# is that the
former prepares one spin generator, i.e., exponentials o
I i j , i 51,2, j 5x,y accurately by actively using theJ cou-
pling term, whereas the second views the Hamiltonians,I i j ,
as just the control coupling in the rotating frame, and th
proposes approximate generation of its exponential via h
pulses, thereby ignoring the difficulty posed by these ter
not commuting with theJ coupling term. TheJ coupling
term, in control theoretic parlance, is the drift. Its presenc
known to be a challenge for the problem of explicit and ex
preparation of states@35#. In this work, theI i j are viewed as
an iterated commutator of theJ coupling term with the cor-
respondingI i j . In this commutator theJ coupling term oc-
curs twice. This inspired us to look for a pulse sequence
which there are two free evolution term sandwiching a c
trol pulse, thereby enabling the exact preparation ofS. Note
that factors for whichMk5I 1zI 2z terms require free evolu
tion in either technique. Factors with no suchMk’s are tensor
products and cannot create additional entanglement.
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Omitting certain terms. If the objective is to control the
expectation value of an observable and the initial state c
tains no coherences, thenS andSD for any diagonal matrix
D will yield the same performance. Sincee2 iLI 1zI 2z is diag-
onal for any realL one may, for such an objective, omit th
first free evolution in generating the last factor,e2 i t QMQ in
the decomposition equation~1.2! of S.

Frequency spread. If a pulse is applied for too short a
time, then selectivity is compromised by virtue of the unc
tainty principle~this is a potential difficulty, though less po
tent in comparison to the problems caused by high am
tudes, in the hard pulse regime!. In the setting of this paper
selectivity issues associated to short durations can arise
if J/cos(tk) is comparable to the Larmor separation. Heretk
is the corresponding coefficient of suchMk , in Eq. ~1.2!,
which necessitate control pulses. Step 6 of the algorithm
be used to fix this problem too. Since such a circumstanc
likely only whentk is close to eitherp/2 or 3p/2, one should
simply factore2 i t kMk into factors with smaller coefficients.

V. EXAMPLE AND DISCUSSION

To illustrate the pulse sequence, consider a two spin s
tem with J5200 Hz, g15267.5163106 rad T21 s21 and
g2567.26403106 rad T21 s21. We takev15500 MHz and
v25125.7215 MHz. This corresponds to a static field of a
proximately 12 T. Such a system could, for instance, arise
a H1-C13 ~single! bond. TheJ for such a bond is reported t
be in the 110 to 270 Hz range in Ref.@33#. The remaining
data are also from Ref.@33#, except that our Larmor frequen
cies are bigger in keeping with current static fields. Howev
in the discussion below we will indicate the effect of usin
lower strength magnetic fields. Since the principal differen
between the approach here and the hard pulse approac
curs in the preparation of single spin evolutions, the tar
chosen isS5exp@i(p/4)I 1y#.

Pulse sequence. If the effect of the rotating frame is un
important~see below! then the following sequence prepar
S. First, let the system evolve freely for 0.7531022 s. Next,
apply a field of frequency 500 MHz, phasep/2, amplitude
4.69731026 T for 3.53631023 s. Finally, switch off the
field for 0.7531022 s. The total duration is 18.536 ms. Th
sequence uses the factorization ofe2 iLI 1y introduced in this
paper,togetherwith the observation that forL52p/4, the
two delay terms sandwiching the pulse term each conta
e2 ipI 1zI 2z52I 4 factor in them. The two2I 4’s can be dis-
pensed to yield a shorter duration than that suggested
generalL ~cf., the comment just prior to the algorithm in th
preceding section!.

Undoing the rotating frame. If S has been prepared inTS
units of time in the rotating frame then the actu
unitary generator prepared is V(TS)5e2TSFS.
Since e2TSF5diag(ei(TS/2)(2v12v2), ei (TS/2)(2v11v2),
ei (TS/2)(2v21v1), ei (TS/2)(v11v2)), this introduces phase error
in each entry ofS. SinceS ande2TSFS are not similar ma-
trices, they do not represent the same linear transforma
acting on the two qubits. Depending on the application, t
difference may be undesirable. This problem is present in
hard pulse method too. For targets that are not tensor p
5-4
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ucts of SU~2! matrices there will be at least one exponent
of I 1zI 2z in the decomposition equation~1.2!. Since these are
generated by free evolution in either technique,TS cannot be
made negligibly small. Indeed, even for single spin evo
tions in the hard pulse approach the additional error in
duced by thee2TSF factor is not negligible. For instance, i
this example the hard pulse technique would need a tim
the nanosecond or shorter regime for the error to be ne
gible ~sincev i are in the 108 Hz regime!. However, this will
require amplitudes that will make the implicit approxim
tions invalid. For brevity, it is left to the reader to verify th
the putative remedy of following the pulse sequence t
preparede2TSFS ~via calculations in the rotating frame! by a
delay ~in the laboratory frame! to prepareeTSF is fraught
with problems and will in general not work even approx
mately. In other words, except for special targets one can
neglect theJ coupling’s contribution to the delay and eve
when it can~e.g., via direct neglection ofHJ or decoupling
methods—which themselves use implicit approximation!,
the method introduces no further errors only ifv11v2 is
rotationally related tov12v2 .

To rectify this problem we propose the preparation of
targeteT0FS for a parameterT0.0 such that the total time
taken to prepareeT0FS in the rotating frame isT0 itself ~i.e.,
using the algorithm of Sec. IV foreT0FS instead ofS!. This
will lead to the preparation ofS in T0 units of time in the
laboratory frame.T0 is found by solving a transcendent
equation. This equation can be shown to be solvable. We
e

he
b
th

r
e

th
lly

at
y

ea
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The equation to be solved is

T05
1

J F51
5&

2
1cosS T0v1

2 D1cosS T0v2

2 D G , ~5.1!

with the above values forJ, v i , i 51,2. This equation was
obtained by concatenating free evolution terms ineT0F andS.
If such concatenation is not used a different equation resu
which can be also used for the same purpose~which, how-
ever, will require more time!.

The solution to this equation was found by implementi
line search with Newton-Raphson iteration on Matlab@36#.
An accuracy of order 10211 was used as a convergence c
terion so that the phase errors in the target produced sh
be of order 1023 in the exponent, since thev i are in the
108 regime ~which is indeed the case, see below!. The
corresponding solution turns out to be T0
50.043 101 501 284 331. The value of the right-hand side
Eq. ~5.1! with this T0 turns out to be TR
50.043 101 501 282 614 7 s. This difference between
two values is 3.662310211, which is in the regime expected
This accuracy, can of course, be increased to any des
limit.

Due to the transcendental nature of Eq.~5.1!, there is of
course some residual error in the prepared target. Spe
cally, the pulse sequence given by the algorithm of Sec.
~not shown for brevity! yields the unitary generatorSP in the
laboratory frame:
SP5S 0.70711 i0.0081 0 0.70711 i0.0081 0

0 0.70711 i0.0048 0 0.70711 i0.0048

20.70711 i0.0048 0 0.70712 i0.0048 0

0 20.70711 i0.0081 0 0.70712 i0.0081

D .S5expS i
p

4
I 1yD .
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Figure 1 shows the entries ofSandSP ~note the scales on th
x and y axes are different!. SP coincides withS, except for
phase factors stemming from the difference betweenT0 and
TR @the right-hand side of Eq.~5.1!#. This error is much
smaller than what would be the situation if the effect of t
rotating frame was not rectified. Further, this error can
made as small as desired by improving the accuracy to
solution for Eq.~5.1!.

Discussion. The cumulative time is roughly of the orde
of 43 ms~just 18.5 ms if the error due to the rotating fram
is ignored!. Further, the amplitudes~even without using step
6 of the algorithm! are at most of the order of 1024 T ~at
most 1026 T if the effect of the rotating frame is ignored!,
which renders all the approximations used in arriving at
system model valid. This cumulative time is substantia
shorter than even theT2 relaxation times~T1 relaxation
times are typically longer! of many spin systems. Since,
least for quantum information processing, the chemical s
tem is at the designer’s disposal, this suggests that the gr
e
e

e

s-
ter

time our technique takes is compensated for by its gre
accuracy, without running into problems with relaxation~this
suggestion is system and target dependent and shoul
used on a case by case basis!.

Of course, depending on the system and the target th
will be situations where hard pulses should be used.
this connection, it is worth noting that targets not
SU(2)^ SU(2) even the hard pulse approach will consum
finite amount of time, which is in theJ21 regime, i.e., not
orders of magnitude shorter than the times consumed by
technique. The maximum possible accuracy in the hard p
method, due to neglecting theJ coupling term’s contribution,
even if the rotating frame’s effect is ignored, is limited b
two factors. First, the amplitude cannot be made infinit
large, which directly limits the minimum time taken. Les
prominently, the minimum time is also limited by the time
energy uncertainty principle, which precludes selectivity
the pulse is too short. In our technique, there is no error if
rotating frame is ignored. Even if it cannot be ignored, t
5-5
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only error is due to the transcendental nature of Eq.~5.1!,
and thus can be rendered, in principle, nil~though there are
limitations in the laboratory due to inherent lack of reso
tion, beyond a certain limit, in timing devices!.

Low Larmor separation. While the example chosen is he
eronuclear, it is obvious that the technique here extend
systems that have very low separation of Larmor frequ
cies, in particular homonuclear systems. Consider, for
stance, the toy system of a homonuclear pair withv1
5500 MHz, gyromagnetic ratio equal to 267.51
3108 rad T21 s21, J5200 Hz, but with Larmor separatio
only 0.013 MHz. Then the pulse sequence, described ea
would still prepare the targetS ~ignoring the rotating frame!
without recourse to step 6 of the algorithm. If one uses
rule of thumb thatX@Y stands forY being no more than
one-tenth ofX, then the weak coupling limit is still operative
Selective excitation requires that the effective amplitude
the radio frequency field be at most 1300 Hz. This cor
sponds to an amplitude bound of 531026 T ~which is in-
deed the case with the pulse sequence proposed!. This am-
plitude bound is also that which would apply for the ha
pulse regime. Since in this technique the total time take
determined by the maximum amplitude, it follows that t
time taken would be roughlyp52 31022 s. However, now the
J coupling term is no longer negligible and thus, in effe
the hard pulse technique would be inapplicable in suc
situation.

FIG. 1. The 16 entries ofS and SP , where SP is the target
prepared by the pulse sequence, which rectifies the deviation d
the rotating frame. As mentioned in the text, Eq.~5.7! is a transcen-
dental equation that can be solved to desired accuracy and
determines theT0 needed to nullify the effects of the rotation fram
For example, a tolerance of 10211 was chosen as the convergen
criterion for solving Eq.~5.7!. With this criterion the difference
betweenS andSP should be phase factors with 1023 in the expo-
nent. The figure shows that many of the entries ofSandSP overlap.
For instance, the eight zeroes ofSare represented by the star at t
origin. The corresponding eight entries ofSP are also zero, which is
depicted by the circle at the origin. The rest of the figure should
self-explanatory. Note that the scales on thex andy axes are quite
different, and thus the predicted near equality ofSP with S is re-
flected by the figure.
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Static magnetic fields. High static fields have their pro
and cons. For instance, higher static fields lead to higherS/N
ratio, but also enhance chemical shift anisotropy induced
laxation. They also require expensive instrumentati
Therefore, it is worth noting that our technique typical
does not require high static magnetic fields~though the
choice of high versus low should be made on a case by c
basis, keeping in mind the pros and cons!. Indeed, as long as
the static field ensures that the coupling between the
particles may be modeled byHJ , much of the technique
goes through. This is because the radio frequency stren
yielded by the technique, even without recourse to step 6
the algorithm of Sec.~IV !, would typically still be lower than
the modified Larmor separation. Further, if the rotati
frame’s effect is ignored, the cumulative times do not depe
on the Larmor frequencies~and thus, on the static field!. If
the correction to the rotating frame is taken into accou
then the cumulative time does not change much@this is be-
cause, the only fashion in which the Larmor frequencies
fect the time consumed is via factors of the for
ucos(viT0)/Ju—this follows from an analysis of the algo
rithm#.

The above discussion suggests that except for the com
nation of a system with adequate Larmor separation, w
low J values, low relaxation times and a tensor product t
get, the technique proposed here is a viable alternative
methods that ignore the effect of theJ coupling term. Since,
at least for quantum information processing purposes,
specific chemical system chosen can be quite arbitrary,
results here suggest one promising technique to generate
gets very precisely. While the algorithm in Sec. IV provid
one pulse sequence to generate targetsS, it is emphasized
that the key enabling factor is the factorization of single s
evolutions provided by Appendix A. This factorization cou
possibly be implemented by different pulse sequences
thus provides new means to generate single spin evoluti
Of course, ingenious NMR techniques themselves use t
approximations. In this context, the value of our work is th
the factorization in Appendix A is exact~independent of
modeling assumptions! and thus the additional error, stem
ming from neglectingJ coupling in single spin exponentials
is not present.

VI. CONCLUSIONS

In this paper, a technique for the preparation of arbitra
two-spin evolutions via a tailored pulse-delay sequence
selective radio frequency fields was introduced. The pro
dure is fully constructive and depends on a certain factor
tion of any arbitrary matrix in SU~4!. Methods to evaluate
the real parameters in this factorization were also provid
and thus this work is of significance to hard pulse techniq
to control two-spin systems too. Constructive incorporat
of any desired amplitude bounds is a feature of this wo
which, in addition to being favorable for instrumentation i
sues, renders the usual approximations in arriving at
models valid. The most significant innovation is the gene
tion of single spin evolutions exactly through the use of thJ
coupling, in contrast to hard pulse methods that ignore

to

at

e
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coupling for single spin evolutions and thus generate s
evolutions only approximately.

There are several interesting questions that stem from
construction. The first is to use the techniques proposed
in conjunction with the learning procedure@37#, to overcome
uncertainties in the system’s Hamiltonian, inaccuracies
implementing the pulse-delay sequence, etc. Such a stu
of relevance regardless of which technique one uses to
trol spin systems, since such uncertainties are a reality in
laboratory. A different alternative is to examine feedba
techniques such as those proposed in Ref.@38#. To correct
small deviations from the target. Second, it may be inter
ing to explore other pulse sequences that will implement
factorization of single spin evolutions in Appendix A, whic
played a big role in our pulse sequence. The relevanc
Appendix A, for whichever method one uses for prepar
targets, is that it is exact, independent of modeling assu
tions. Extensions to other Hamiltonians in spin systems
obviously of interest. Solid state NMR is a promising can
date for the kind of scaling required for quantum compu
tion. Solid state spins have exceedingly long coherence
times. For instance, Ref.@8# quotes figures of 104 s for some
nuclear spins, while estimates as high as 1010 s have been
reported in ideal situations~of course, spin-spin relaxatio
times are much lower!. In principle, it should be possible t
produce bounded amplitude pulse sequences to generat
unitary generator. This follows from the abstract control
bility studies of quantum systems@39–44,27,45#. Factoriza-
tions analogous to Eq.~1.2! should also exist. The real hurdl
is carrying out of the analog of the calculation in Append
B. To appreciate this the reader should notice the prodigi
effort involved for even two-spin systems in Appendix B.
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APPENDIX A: VERIFYING O1 AND O2
CONSTRUCTIVELY

The algorithm of Sec. IV is based on the following prop
sition.

Proposition 1. exp(2iLI1x), LPR, can be factored explic
itly as Pk51

3 exp(2iakI1zI2z2ibkI1x) with ak.0,k51, . . . ,3
and b1505b3 if cos(L)Þ0. If cos(L)50, four factors are
required, withb1505b4 . This decomposition can be re
fined constructively to satisfyubk /aku<D, for any boundD.
Similar statements hold for the exponentials ofI 2x , I 1y , and
I 2y with appropriately differentak’s andbk .

Proof. Only the proof forI 1x will be given ~the others
being similar!. The first key step is the following:
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exp~2 iLI 1x!5expS 2 i
7p

4
I 1zI 2zDexp~2 iLsy^ sz!

3expS 2 i
p

4
I 1zI 2zD . ~A1!

This factorization is possible since each matrix expon
tial involved is explicitly found. The motivation for it come
from the commutator structures of the free Hamiltonian a
the coupling Hamiltonian in the rotating frame. Thus, for t
preparation of exp(2iLI1x) free evolution may be used fo
the first and third factors in this equation. So it remains
prepare the middle factor. Now the matrix (2 iakI 1zI 2z
2 ibkI 1x) is, when squared, also2I 4 up to a positive con-
stant. This facilitates the expression~which was also inspired
by the commutator structure referred to before!

exp~2 iLsy^ sz!5)
k51

2

exp~2 iakI 1zI 2z2 ibkI 1x!,

~A2!

where theak ,bk are determined byL as follows
The case cos L.0. Denote by l i5Aai

21bi
2, i 51,2.

Choosel15(3p/2); l25(p/2). Then Eq.~A2! holds if one
picks a153p/2,b150,b252(p/2)sinL,a25(p/2)cosL.

The case cos L,0. Now pick l15p/25l2 . Then Eq.
~A2! holds if one setsa152(p/2)cosL, b152(p/2)sinL,
a25p/2, b250.

The case cos L50. Once again letl15p/25l2 . If
sinL51, pick a15l1 /&,b152l1 /&,a25l2 /&,b2
5l2 /&, if sin L521, then pick a15l1 /&,b15l1 /&,
a25l2 /&, b252l2 /&.

Concatenating these pulses with the delay terms in
~A1! gives the stated number of factors for condition O1.
meet condition O2, one needs to consider only the terms
are not delay terms in the factorization for condition O
since only such terms have amplitudes which are not nil
cosLÞ0, theubk /aku of a nondelay term is preciselyutanLu.
So to meet condition O2,L has to be such that tanL<D. This
amounts to saying thatL has to be within a prescribed de
viation from 0. If L does not already meet this, facto
exp(2iLI1x) asPk51

r exp(2iLkI1x) with eachLk being within
the given deviation—this can clearly be always done.
cosL50, first factor exp(2iLI1x) as exp@2i(L/2)I 1x#

2 and
proceed as in the cosLÞ0 cases.

APPENDIX B: DETERMINING THE ‘‘ tk’’ IN EQ. „1.2…

Both the hard pulse and soft pulse methods require
the tk in Eq. ~1.2! be known. To that end, note first that E
~1.2! stems from a Cartan decomposition of SU~4! in terms
of SU(2)^ SU(2). Expanding the SU(2)̂ SU(2) factors in
this decomposition in their~x,y! Euler angles leads to th
following factorization of anySPSU(4):
5-7
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S5eiD 1I 1xeiE1I 1yeiF 1I 1xeiD 2I 2xeiE2I 2yeiF 2I 2xe2 i ~p/4!I 1ye2 i ~p/4!I 2ye2 iu1I 1zI 2ze2 i ~7p/4!I 1ye2 i ~7p/4!I 2ye2 i ~7p/4!I 1xe2 i ~7p/4!I 2x

3e2 iu2I 1zI 2ze2 i ~p/4!I 1xe2 i ~p/4!I 2xe2 iu3I 1zI 2zeiD 3I 1xeiE3I 1yeiF 3I 1xeiD 2I 2xeiE2I 2yeiF 2I 2x. ~B1!
-

ty
s

en-
This is in the form of Eq.~1.2! itself. However, the deter
mination of thetk from this directly is quite futile and may
itself call for a functional quantum computer. The difficul
is that the 16 equations obtained by equating the entrie
both sides lack any discernible structure.

To overcome this we will first factorize the givenS in a
Givens type decomposition,S5P i 51

6 Si with each Si ,i
51, . . . ,6 determined by a single SU~2! matrix. Specifi-
cally, S6 is a tensor product, viz., S65ei (p/4)sy

^ S(a6 ,z6 ,m6), where S(a6 ,z6 ,m6) is the unique SU~2!
matrix ~written in Cayley-Klein coordinates—see Ref.@3#
for notation! that takes the vector (d1 ,d2) to the vector
(i(d1 ,d2)i ,0), with d1 ,d2 the first two entries of the fourth
column of S† ~the inverse ofS!. The matrix S(a6 ,z6 ,m6)
can be explicitly determined. The remainingSi ,i 51, . . . ,5
are, up to permutation, block matrices with blocks equal toI 2
and anexplicitly determinedSU~2! matrix, S(a i ,z i ,m i). The
next step then is to determine thetk for each of theSi ,i
51, . . . ,6, which is simpler than determining thetk for S
itself.

To execute this the remainingSi will be described first.
The unique SU~2! matrix, S(a i ,z i ,m i) in each Si ,i
51, . . . ,5 can bedeterminedexplicitly from S, almost ver-
batim, in the fashion described in Ref.@28#. Therefore, we
will only describe the structure of theSi with these SU~2!
matrices left floating:
n

06340
of

S55S I 2 0

0 S~a5 ,z5 ,m5!
D ,

Sk5S S~ak ,zk ,mk! 0

0 I 2
D for k51,3,

S45S cosa4ei z4 0 0 sina4eim4

0 1 0 0

0 0 1 0

sina4ei ~p2m4! 0 0 cosa4e2 i z4

D ,

S25S 1 0 0 0

0 cosa2ei z2 sina2 0

0 sina2ei ~p2m2! cosa2e2 i z2 0

0 0 0 1

D .

Determining the tk for the Si . For brevity we will deter-
mine certain parameters related to thetk instead of thetk
themselves. Specifically, the Cartan decomposition m
tioned before shows that everyTPSU(4) can be factorized
in the form
T5K1^ K2e2 i ~p/4!I 1ye2 i ~p/4!I 2ye2 iu1I 1zI 2ze2 i ~7p/4!I 1ye2 i ~7p/4!I 2ye2 i ~7p/4!I 1xe2 i ~7p/4!I 2xe2 iu2I 1zI 2ze2 i ~p/4!I 1x

3e2 i ~p/4!I 2xe2 iu3I 1zI 2zK3^ K4 , ~B2!
n-

so
one

ion.
with the Kl ,l 51, . . . ,4PSU(2) and uk ,k51, . . . ,3PR.
Expanding theKl in their ~x,y! Euler angles~which is explic-
itly doable! leads to Eq.~B1!. So we will specify theKl and
the following three parameters related to theuk :

P5
u12u2

4
, Q5

u3

4
, R5

u11u2

4
.

S6 . There is nothing to do sinceS6 is itself a tensor prod-
uct.

S1 ,S3 ,S5 . These matrices have a similar structure a
hence we will show the calculations forS5 and the modifi-
cations needed forS1 andS3 .

Pick K15I 2 and chooseK25S(a,z,m) with these param-
eters to be determined. ChooseP5R50, Q to be deter-
mined. ThenS55VK3^ K4 with
d

V5S S~a,z2Q,m1Q! 0

0 S~a,z1Q,m2Q!
D .

Now pick K35I 2 ,K45S(a,z2Q,m1Q)21. This then
yields the following underdetermined system for the u
knowns (Q,a,z,m) in terms of the knowns (a5 ,z5 ,m5):

Acos2 Q1cos2 a sin2 Q5cosa5 ;2cos 2a tan 2Q

5tanz5 ;2cot~m1z!5tanm5 .

Note that the first two involve only two unknowns and
standard numerical procedures can be used for them. The
parameter degree of freedom comes from the third equat
5-8
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For S1 ,S3 the procedure is very similar, except thatK4 will
be chosen to be the inverse of the bottom block of the ma
which results from multiplying all but the last six factors
Eq. ~B2!.

S2 ,S4 . The procedure forS2 will be shown and the modi-
fications forS4 will be given. ForS2 , first setP5Q50,R
5a2 . ChooseKl5eih1sz,l 51,2,4;K35I 2 for some real pa-
rametersh l satisfying a system of three equations,
ys

s

ir

in

s

in

y,

o
,

in
es
,

ci
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h12h22h35m21
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2
.

Since (a2 ,z2 ,m2) is known beforehand, this completes th
determination of thetk for S2 . For S4 the only modification
needed in this procedure isR50,P5a4 .
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