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Control of a coupled two-spin system without hard pulses
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Constructive techniques for preparing a specific unitary generator from a coupled two-spin system, via
bounded amplitude radio frequency selective single spin pulses, are presented. The frequency of any pulse in
the sequence is one of the two Larmor frequencies, while the phase takes one of two values. The fact that the
amplitude is bounded implies that the Larmor frequency separation between the two spins need not be large to
maintain selectivity. In addition, the contribution of tdecoupling term to single spin evolution is not ne-
glected, but instead plays a crucial role. The procedure is based on a certain decompositiof) efvSilable
in the literature. A method for determining the parameters entering this factorization, in terms of the entries of
the target unitary generator, is also provided.
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I. INTRODUCTION liguid NMR quantum information processirig1,12,3 but,
in contrast to the usual practicgg not neglecthe contribu-
The inverse problem of producing pulse sequences thdton of J coupling to single spin evolutions. Thus, one key
will prepare any desired unitary generator has attracted corgontribution of this paper is the exact treatment of the
siderable interest in various “quantum” communit{ds-16]. coupIing yvhilesimultaneouslgnsuring the Iim.its believgd to
One impetus for this question stems from problems in quanbe sufficient for the selectivity requireme(itiz., effective
tum computation and cryptography, where several implefadio frequency amplitude much lower than Larmor separa-
mentation issues are explicitly cast in the form of preparingion)- This, in turn, is effected via a new factorization of
desired states and unitary generat§l¥,18,19,11,8,20— Single spin exponentialsee Appendix A which could also
22,23, In these applications accurate preparation of the deP® implemented in the laboratory in techniques different
sired generator is a key requirement. Any form of avoidabldTom the one suggested here.
inaccuracy is undesirable since it might call for increased use A coupled system of two spins is probably the most
of error correction schemes or may not be amenable to extaNfidely €xamined system in nuclear magnetic resonance,
error correction techniqud®4]. In principle, every quantum Since it is the lowest dimensional system that exhibits essen-

objective amounts to preparing prescribed states and generd@! Phenomena present in all systems. The Hamiltonian cho-
tors. For instance, it is shown in Ref@5-27 that all one-  S€n is the standard Hamiltonian, dominating much of liquid

dimensional (1D) and 2D nuclear magnetic resonance NMR, which describes a pair of spbparticles coupled by
(NMR) spectra can be explicitly parametrized by such uni-coupling and being interrogated selectively by a sequence of

tary generators. In such applications also minimizing apfadio frequency field$28-34,13,
proximations is useful.
In this paper, the problem of producing an explicit proto- H=Hgy+HytHge, 1.9)

col for a radio frequency pulse—delay sequence that will . ) ] ) ) ]
prepare exactly a specific unitary generator, when applied twhereH By describes the interaction with the static magnetic
a pair of coupled spig particles, is studied. The usage of the field, H; models thel coupling interaction between the two
word “exactly” is, of course, within the model supposed by particle, andH g provides the interaction with the radio fre-
this work. Briefly, we suppose selective excitation and thequency field. Further details concerning this Hamiltonian are
weak coupling limit in keeping with the universal practice in in Sec. Ill.

The starting point of this approach is the following “Eu-

ler” angle type factorization of any %44 special unitary ma-
*Email address: vish@utdallas.edu trix:
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Q 0 —i
S=[] exp—itM,). (1.2) oyz(. :
k=1 i 0
In this factorization theM are each one of the operators g,
I, 15, 1=1,2; j=x,y (see Sec. Il and the Appendixes
for more on this factorization The steps involved then are 1 0
the following. o,= ( ) )
Step R1The application of a sequence of radio frequency 0 -1

fields whose frequencies and phases are chosen so as to ren-

der the dynamics in a suitable rotating frame to have a conthe following notation will be used throughoul;,= o
stant timed 1,1 ,, as the free Hamiltonian, while the interac- ®1,; |,,=1,® 0y, k=X,y,z

tion Hamiltonian transforms into a constant times one of the Note The customary factor o, in the definition of the

lij, 1=1,2,j=x,y. The constant in these Hamiltonians de- pauli matrices, has been omitted to minimize the book keep-
pends on the duration and amplitude of the pulses. ing in Appendix B. It does not affect any of the results below.

_ Step R2The determination of the amplitudes and dura- “ppraseology To prevent circumlocution, the following
tions of the pulses explicitly, assuming thein Eq.(1.2) are  conyention is employed(i) Hard pulse will mean any

kno(;/vrln ISO. th"’I‘t thehtargesh is prepared eXaC“)I/ within OUr * gcheme that neglectscoupling during a selective rf pulse.
model. It Is also shown how to constructively Incorporate iy g nyise will be reserved for the pulse scheme proposed
any prespecified amplitude bound. This means that selectiv,

inal X L o0 bl if the L f us. (iii) Throughout, unless explicit mention is made to
single spin excitation is possible even if the Larmor fre-, contrary, “NMR” will refer only to liqguid NMR.
guency separation is quite low. In the process certain matrix
exponentials for two spin systems are explicitly computed,
which may be of interest in its own right. Indeed, these cal- IIl. DETERMINATION OF THE FREQUENCIES
culations facilitate a factorizatiofsee Appendix A which AND PHASES

represent the innovation enabling the exact treatment of the . . L .
coupling term in single spin evolutions. Consider a pair of coupled spins in the weak coupling

Step R3The specification of an algorithmic procedure for limit [28,29,31-33,1]L Thus, theJ coupling constant satis-
finding thet, from the entries of the targ& fies |w;— wo|>2mJ, wherew; and w, are the Larmor fre-
The idea of using factorizations of unitary matrices toduencies of the two particles. It is not assumed that the gy-
prepare unitary generators is not new. For instance, [Rgf. romagnetic ratios of the two sping, and y, are different.
studies the constructive and exact generation of unitary gersince, typically, the two particles experience different shield-
erators in two level systems in this way. In RE8] a similar  ing effects,w,# w, even if y;=1v,. This system is probed
decomposition is used to prepare unitary generators foby a radio frequency field sequence, tuned to one of the two
coupled spin systems. Inherent in RES] were, however, Larmor frequencies. It is assumed that selective excitation is
approximations due to the use of hard pulses. Such pulsgsossible, i.e., off-resonant effects can be neglected. This
only prepare the unitary generator approximatelfth the  means that the effective amplitude of the fields, i.e., ampli-
error introduced not being of the phase error fybet also  tyde times the respective gyromagnetic ratio, has to be much
require a very wide separation _of frequencies. In addition, &maller than the Larmor separation of the two particles
crucial step, viz., the determination of the parametgrsvas [28,29,31,32,11,12 This possibility is universally supposed
not provided. Since, provide essential information about j, liquid NMR quantum information processing.1,12,5.
the pulse sequence in their approach also, such an algorithgjnce. it will be shown that any bound on the amplitude can
is vital. In this paper we provide a complete solution to thispe accommodated, the selectivity assumption poses no fur-
prob.lem without.resortin.g to such approximations and alsqner restrictions on the frequency separation itself.
provide an algorithm to find, . _ Suppose that the radio frequency field is tuned to excite
This paper is organized as follows. In the following sec-the first particle, and as usual, is linearly polarized along the
tion some notation is provided. Section Ill derives the rotaty gxis. Thus, the field is @cos(wt+¢), where 2 and ¢ are
ing frame and shows how to determine frequencies anghe amplitude and phase of the field. Then the Hamiltonian
phases of the pulses in the sequence to obtain the des"ﬁéscribing the system is a sum of three terris=H,
target. Section IV provides an algorithm that yields the am- Hg +Hge, Where
plitude and duration of the requisite pulse sequence. Section °
V discusses an example. Some conclusions are offered in 3
Sec. VI. Finally, two appendixes are included. The first HJ=_7T|12|22, Hg = (@1l 1,+ ol ),
proves a proposition on which the algorithm in Sec. IV is 2 0
based. The second shows how to fipdbf Eq. (1.2).

Cy1 .
Il. NOTATION AND TERMINOLOGY Hee=—5"[11,COS 1t + §) + 11y Sin(wst+ ).

The Pauli matrices will be denoted by
This is precisely the familiar Hamiltonian describing a pair
o 2(0 1) of J coupled, spin; particles being interrogated selectively
* 11 0) by a radio frequency field28,29,31-33,11,12 Note that
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some of the constants in the Hamiltonian appear different This implies that by choosing the frequency of the field to
from the standard expression. This is due to the absence bk resonant with one of the spins and by choosing the phase

2 in our Pauli matrices.

Functional form of H. The weak coupling limit, used in
liquid NMR quantum information processing works
[11,12,5, ensures this form dfl ;. In this regime, the inter-
action between the two spins in liquid state is to great preci
sion given byH ;, with the scalar terms in they directions
neglected[28,29,31,11,1R SinceJ is at most in kHz(for
instance, the highest value dfto be found in Ref[33]

appropriately, passing to a rotating frame, yields the follow-
ing system controlled by constant inputs:

. i i
U=-5AU-5dBU, UeSu4),

5 (3.3

with A=Jo,® o, and B one of the matrices,,, 4, 11y,
I,y wherelj=0;®1,, =X,y andl,j=1,® 0, j=X,y. The

occurs for a phosphorus_p|atinum Sing'e bond and is equa' tgonstantd is related to the amplitude of the field and other

4.64 kH2, while with current static magnetic fields the Lar-

constants of the system. This is useful because the decompo-

mor separation runs from tens to hundreds of megahertz arftion, Eq.(1.2), consists precisely of the exponentials of one

thus 2rJ<|w,— w,|, this assumption is quite valid. Situa-

of IlZ'Zleijl i=1,2,j=X,y.

tions that are not susceptible to this include, of course,
equivalent spins and coherence transfer experiments in isd¥. DETERMINING THE AMPLITUDES AND DURATIONS

tropic mixing. It should be pointed out that for weak cou-

pling an extra requirement, viz., radio frequency amplitude

much lower than static field, is needed too. This work en
sures this.

Functional form of K. Our truncated expression for
Hge is identical to the one in Ref§l11,12,5. Besides the
selective excitation assumptidine., off-resonant effects neg-
ligible), it supposes the usual fact that the field may be spli
into two components, one of whicfthe counter-rotating

term) can be neglected if the amplitude of the field is much

smaller than the static magnetic fi¢@B,29,31,32 Since the
approach will allow any amplitude bound, this is a valid

approximation. Effects such as the Bloch-Sieget shift will be

negligible in our approach. If it is possible to apply two
independent radio frequency fields in tkendy directions
then the expression fddge is exact(within the selectivity
assumption, of courgeif the field in the x direction is

C CoSqt+ ¢) and it isc sin(wqt+ ¢) in they direction.

If the second patrticle is being interrogated the only differ-
ence in the Hamiltonian would be the replacement9f |
=X,y by Iy, j=x,y andw, by w,.

Passing to a rotating framé),(t) =e'"V(t) with

i
F=5 (01l wol3)
yields, for the first particle, the following dynamics:

. | iC’yl
U=~ 512U~ — (Ao15)U,

a=( g %5 )

By choosing the phasé=0, A is o, and if we set¢
=m/2, A'is o,. A similar calculation reveals that treame

(3.

with
e i¢
0

0
el

Recall Eq.(1.2), S=IIY ;e Mk Suppose for the mo-
ent that the constantg are known. Note that, , whatever
they are, may be supposed to bg0n 277), though this is not
necessary. To generate factors for whih is 1,l,,, free
evolution for time 2, /Jr suffices. Preparing the remaining
factors is equivalent to factorizing the exponentias'-Jii,

m

{'=1,2,j=x,y for anyL €[0,27) in the form

R
e Lii=J] e-ladidaibdip) =12 j=xy (4.1)
k=1

satisfying (i) condition O1,a,>0 and (ii) condition O2,
|b./a|<C, k=1, ... R. Upto constantsg, is the duration

of the kth pulse andb,/a, its amplitude. This explains the
conditions O1 and O2. Obtaining such a factorization is ad-
dressed by Proposition 1 in Appendix A. The proof of this
Proposition leads to the following algorithm.

Note (i) The following algorithm supposes thdt>0.
Geminal and vicinal couplings often have negatiieFor
such situations condition O1 must be modifiechte<O. It is
possible to modify the proof of Proposition 1 to ensure this.
The details are omitted in the interest of brevify) In the
algorithm below whenever the amplitude turns out to be
negative, one must add to the corresponding phase to en-
sure its positivity(iii ) The algorithm is written in a form that
addresses the preparation of each factoSaf Eq. (1.2).
When S itself is prepared, many free evolution terms coa-
lesce to either disappear or become free evolution terms with
shorter durationgkeep in mind the periodicity off;,l,, and
e 'mid2z= —| ). (iv) From this point ong is taken to be the
amplitude. If the the rotating wave approximation is used in
arriving atHgg then the amplitude should be twice that re-
ported.

Algorithm |

Step 1 Determine, using Appendix B, the parametgrim
the factorization ofSin Eq. (1.2).
Step 2 If for somek, M =14,l,, switch off the field and

rotating framecan be used to address the other spin to obtaifet the system evolve fort/J.

ic
(J’7T|1Z| ZZ)U_ %(Iz@A)U

u 3 3.2

Step 31If M =14, first determine if cod) is (i) positive,
(i) negative, or(iii) zero. If cost)>0, apply the following
pulse sequence. First, switch off the field for 1/@nits of
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time. Next, apply a pulse with frequenay, , phase 0, dura- Omitting certain termslf the objective is to control the
tion cosf)/J, and amplitude given by 2J=/y,)tangy). Fi-  expectation value of an observable and the initial state con-
nally, switch off the field for 13/2 units of time. tains no coherences, th&and SD for any diagonal matrix

If cos(t)<0, apply the following sequence. First, let the D will yield the same performance. Sinee‘“_-'lz'_zz is diag-
system evolve freely for 3Runits of time. Next, tune the ©onal for any real. one may, for such an objective, omit the
frequency taw;, set the phase 0, amplitudeX®/ y,)tant),  fIrst free evolution in generating the last facter,"eMe in

and duration— cos¢)/J. Follow this with free evolution for ~the decomposition equatidd.2) of S
9/2] units. Frequency spreadif a pulse is applied for too short a

time, then selectivity is compromised by virtue of the uncer-
tainty principle(this is a potential difficulty, though less po-

. . . tent in comparison to the problems caused by high ampli-
a f|eI(_j with freque_ncyul, phase 0, amplitude 2/, _and tudes, in the hard pulse regijén the setting of this paper,
duration 1/2J units. Next, apply ar_10ther puls_e with t_he selectivity issues associated to short durations can arise only
same frequency, phase, and duration, but with amplitudg ;,005¢,) is comparable to the Larmor separation. Hgre
—1W2J. Finally, let t_he system evolve free_ly for Z]/Ilnlts._ is the corresponding coefficient of suh,, in Eq. (1.2),

If cos(t) =0, but sinf)=—1, proceed as in the preceding \hich necessitate control pulses. Step 6 of the algorithm can
case except that the second and third pulses are interchangeg used to fix this problem too. Since such a circumstance is

Step 41f My=1,,, determine if cog() is (i) positive,(ii) likely only whent, is close to eitherr/2 or 3m/2, one should
negative, oiii) zero. If cos)>0, first switch off the field simply factore™ "M« into factors with smaller coefficients.
for 7/2J units. Next, apply a field with frequenay,, phase
3m/2, duration cog()/J, and amplitude (2#/vy,)tangy). Fi-
nally, let the system evolve freely for Zinits of time.

If cos(t,)<O, first let the system evolve freely for &2 To illustrate the pulse sequence, consider a two spin sys-
units of time. Next, switch on the field with the same fre-tem with J=200 Hz, y,=267.516<10° rad T 's™* and
quency and phase as in the preceding step, but with duratioh.=67.2640<10° rad T *s™*. We takew, =500 MHz and
— costy)/J units, with amplitude (27/y,)tanty). If cos(y) w2=_125.7215 MHz. This corresponds to a static field Of ap-
—0, proceed as in the cdgi=0 subcases in step 3, except pr0)l<|m%tel)_/ 12 T. Such a system could, for m_stance, arise in
that the first free evolution is executed for I/@nits, while & H-C " (single bond. TheJ for such a bond is reported to
the last requires 1/Punits. be in the 110 to 270 Hz range in R¢B3]. The remaining

Step 51f My is 15, (1,y), follow step 3(step 4, except d_ata are a_lso frc_Jm Re[f33], except that our Larmor frequen-
that the frequency should now bey. cies are_b|gge_r in keeping Wlth_ current static fields. Howe_ver,

. £ ) . in the discussion below we will indicate the effect of using

Step 61f an amphtude bound is given, first findt, for lower strength magnetic fields. Since the principal difference
the factors fqr whichM # 1,1 5,. For such factors, tran§late between the approach here and the hard pulse approach oc-
the boundD into a bound|tanfy)|<C. If t rdoes not_slausfy curs in the preparation of single spin evolutions, the target
th.IS boundl, thgn factor_ exp(tiMy) as I1j_; exp(-ittMy)  chosen isS=exdi(#/4)l 1yl . _
with eacht, satisfying this bound. Then generate every fac- Pulse sequencdf the effect of the rotating frame is un-
tor exp(—itLMk) using step 3or step 4 or 5, depending on important(see below then the following sequence prepares
what M, is). S First, let the system evolve freely for 0.%30 2 s. Next,

Motivation for pulse sequenc&@he principal difference apply a field of frequency 500 MHz, phas#2, amplitude
between our pulse sequence and that in R&fis that the 4.697<10°° T for 3.536<10° s. Finally, switch off the
former prepares one spin generator, i.e., exponentials of tHéeld for 0.75< 102 s. The total duration is 18.536 ms. This
lij, 1=1,2,j=x,y accurately by actively using th& cou-  sequence uses the factorizationeof-'1y introduced in this
pling term, whereas the second views the Hamiltoniags, paper,togetherwith the observation that fot = — 7/4, the
as just the control coupling in the rotating frame, and thugwo delay terms sandwiching the pulse term each contain a
proposes approximate generation of its exponential via haré~' ™ 12'2z= — 1, factor in them. The two-1,’s can be dis-
pulses, thereby ignoring the difficulty posed by these termpensed to yield a shorter duration than that suggested for
not commuting with thel coupling term. TheJ coupling  generall (cf., the comment just prior to the algorithm in the
term, in control theoretic parlance, is the drift. Its presence igreceding section
known to be a challenge for the problem of explicit and exact Undoing the rotating framelf S has been prepared s
preparation of statg85]. In this work, thel;; are viewed as units of time in the rotating frame then the actual
an iterated commutator of thecoupling term with the cor- unitary ~ generator  prepared s V(Tg)=e 'sFs.
respondingl; . In this commutator the coupling term oc-  Since e 's"=diag@92(" 17 02), (T92(—w;+w)),
curs twice. This inspired us to look for a pulse sequence ire'(Tg2 (- @2t 1) @l (Tg2) (w1t w2)) this introduces phase errors
which there are two free evolution term sandwiching a con4in each entry ofS. SinceSande™ "s"S are not similar ma-
trol pulse, thereby enabling the exact preparatios.dflote  trices, they do not represent the same linear transformation
that factors for whichM=14,l,, terms require free evolu- acting on the two qubits. Depending on the application, this
tion in either technique. Factors with no sudh’s are tensor  difference may be undesirable. This problem is present in the
products and cannot create additional entanglement. hard pulse method too. For targets that are not tensor prod-

If cos(t,)=0 and sin{)=1, use the following sequence.
First, let the system evolve freely for 2inits. Next, apply

V. EXAMPLE AND DISCUSSION
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ucts of SU2) matrices there will be at least one exponentialillustrate this procedure for the example being considered.
of 1,,1,, in the decomposition equatidf.2). Since these are The equation to be solved is

generated by free evolution in either techniglig cannot be 1 53 T oo
made negligibly small. Indeed, even for single spin evolu- Tozj 5+T+cos< 02 1)+cos< 02 z)
.with the above values fal, w;, i=1,2. This equation was

tions in the hard pulse approach the additional error intro-
duced by thee™ TsF factor is not negligible. For instance, in
this example the hard pulse technique would need a time igained by concatenating free evolution termelitf andS:
the nanosecond or shorter regime for the error to be neglif gch concatenation is not used a different equation results,
gible (sincew; are in the 18 Hz regime. However, this will  \yhich can be also used for the same purpoeeich, how-
require amplitudes that will make the implicit approxima- ever, will require more timpe
tions invalid. For brevity, it is left to the reader to verify that ~ The solution to this equation was found by implementing
the putative remedy of following the pulse sequence thafine search with Newton-Raphson iteration on Mat|&6].
preparece” 's"S (via calculations in the rotating framby a  An accuracy of order 10t was used as a convergence cri-
delay (in the laboratory frameto preparee’s" is fraught terion so that the phase errors in the target produced should
with problems and will in general not work even approxi- be of order 10° in the exponent, since the; are in the
mately. In other words, except for special targets one canndt®® regime (which is indeed the case, see beJowhe
neglect theJ coupling’s contribution to the delay and even corresponding  solution turns out to beT,
when it can(e.g., via direct neglection dfi; or decoupling =0.043 101501 284 331. The value of the right-hand side of
methods—which themselves use implicit approximatipns Eq. (5.1) with this T, turns out to be Tg
the method introduces no further errors onlywif+w, is  =0.0431015012826147s. This difference between the
rotationally related tav; — w,. two values is 3.662 10 %, which is in the regime expected.
To rectify this problem we propose the preparation of theThis accuracy, can of course, be increased to any desired
targete’oF'S for a parametei,>0 such that the total time limit.
taken to prepareo"S in the rotating frame i itself (i.e., Due to the transcendental nature of E8.1), there is of
using the algorithm of Sec. IV foe'o"S instead ofS). This  course some residual error in the prepared target. Specifi-
will lead to the preparation o in T, units of time in the cally, the pulse sequence given by the algorithm of Sec. IV
laboratory frame.T, is found by solving a transcendental (not shown for brevityyields the unitary generat@; in the
equation. This equation can be shown to be solvable. We willaboratory frame:

. (5.

0.7071+10.0081 0 0.7074i0.0081 0
0 0.7071i0.0048 0 0.707410.0048 e
Sp=| _0.707%+10.0048 0 0.707%10.0048 0 =S= eXp(' 7! 1y> '
0 —0.7071+i0.0081 0 0.707%i0.008

Figure 1 shows the entries 8fandS; (note the scales on the time our technique takes is compensated for by its greater
x andy axes are different Sp coincides withS, except for  accuracy, without running into problems with relaxatitms
phase factors stemming from the difference betwEgand  suggestion is system and target dependent and should be
Tgr [the right-hand side of Eq(5.1)]. This error is much used on a case by case basis
smaller than what would be the situation if the effect of the Of course, depending on the system and the target there
rotating frame was not rectified. Further, this error can bewill be situations where hard pulses should be used. In
made as small as desired by improving the accuracy to ththis connection, it is worth noting that targets not in
solution for Eq.(5.1). SU(2)® SU(2) even the hard pulse approach will consume a
Discussion The cumulative time is roughly of the order finite amount of time, which is in thé ! regime, i.e., not
of 43 ms(just 18.5 ms if the error due to the rotating frame orders of magnitude shorter than the times consumed by our
is ignored. Further, the amplitude@ven without using step technique. The maximum possible accuracy in the hard pulse
6 of the algorithm are at most of the order of I8 T (at  method, due to neglecting tlecoupling term’s contribution,
most 10 © T if the effect of the rotating frame is ignorgd even if the rotating frame’s effect is ignored, is limited by
which renders all the approximations used in arriving at thewo factors. First, the amplitude cannot be made infinitely
system model valid. This cumulative time is substantiallylarge, which directly limits the minimum time taken. Less
shorter than even th&@, relaxation times(T; relaxation prominently, the minimum time is also limited by the time-
times are typically longgrof many spin systems. Since, at energy uncertainty principle, which precludes selectivity if
least for quantum information processing, the chemical systhe pulse is too short. In our technique, there is no error if the
tem is at the designer’s disposal, this suggests that the greatetating frame is ignored. Even if it cannot be ignored, the
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O PrepmedSice Static magnetic fieldsHigh static fields have their pros
0008l © “2) a3 o and cons. For instance, higher static fields lead to higher
ratio, but also enhance chemical shift anisotropy induced re-
laxation. They also require expensive instrumentation.
Therefore, it is worth noting that our technique typically
does not require high static magnetic fieldbough the
choice of high versus low should be made on a case by case
basis, keeping in mind the pros and cpriedeed, as long as
the static field ensures that the coupling between the two
particles may be modeled bil;, much of the technique
~o00a} 1 goes through. This is because the radio frequency strengths
@ e yielded by the technique, even without recourse to step 6 of
the algorithm of Seq(lV), would typically still be lower than

0.006

o @31 (2.2), 24) ©
0.004 l

0.0021

imaginary axis
=3
E
*

-0.002 1

-0.006

~0.008 44 o 1 the modified Larmor separation. Further, if the rotating
. ‘ ‘ ‘ l ‘ frame's effect is ignored, the cumulative times do not depend

& 06 04 02 0 0% 04 06 0B on the Larmor frequencie@nd thus, on the static fieldIf
oter v obate o g sl s 1o difereas than nat of the maginary axs. the correction to the rotating frame is taken into account,

) ) then the cumulative time does not change mlibiis is be-
FIG. 1. The 16 entries 06 and Sp, whereSp is the target  cayse, the only fashion in which the Larmor frequencies af-
prepared by the pulse sequence, which rectifies the deviation due g+t the time consumed is via factors of the form

the rotating fr_ame.As mentioned in the text, I_Eﬁ;.?) is a transcen- oS Ty)/d|—this follows from an analysis of the algo-
dental equation that can be solved to desired accuracy and th Ehm]

determines th@, needed to nullify the effects of the rotation frame.
For example, a tolerance of 18 was chosen as the convergence
criterion for solving Eq.(5.7). With this criterion the difference
betweenS and Sp should be phase factors with 1®in the expo-

The above discussion suggests that except for the combi-
nation of a system with adequate Larmor separation, with
low J values, low relaxation times and a tensor product tar-

nent. The figure shows that many of the entrieSahdS; overlap. get, the techmque proposed here is a v_lable alterr_1at|ve to
For instance, the eight zeroes ®fre represented by the star at the Methods that ignore the effect of tecoupling term. Since,
origin. The corresponding eight entriesf are also zero, which is @t léast for quantum information processing purposes, the
depicted by the circle at the origin. The rest of the figure should beSPecific chemical system chosen can be quite arbitrary, the
self-explanatory. Note that the scales on thendy axes are quite e€sults here suggest one promising technique to generate tar-
different, and thus the predicted near equalitySafwith Sis re-  gets very precisely. While the algorithm in Sec. IV provides
flected by the figure. one pulse sequence to generate tar@ts is emphasized

. that the key enabling factor is the factorization of single spin
only error is due to the transcendental nature of &ql),  gyolutions provided by Appendix A. This factorization could
and thus can be rendered, in principle, (tifough there are ,qqiphly be implemented by different pulse sequences and
limitations in the laboratory due to inherent lack of resolu-,[hus provides new means to generate single spin evolutions.

tlorl?o?ve{g?rﬂoar ggrtglzt:g?l{}\’/r;ri]letltmhlengxianclischosen is het- Of course, ingenious NMR techniques themselves use tacit
b P approximations. In this context, the value of our work is that

eronuclear, it is obvious that the technique here extends t&e factorization in Appendix A is exadindependent of
systems that have very low separation of Larmor frequen- pp P

cies, in particular homonuclear systems. Consider, for inmpdeling assumpFiomsand thus_ thg additiqnal error, stem-
stance, the toy system of a homonuclear pair with ming from neglectingl coupling in single spin exponentials,
=500 MHz, gyromagnetic ratio equal to 267.516 'S notpresent.
x10° rad T ts !, J=200 Hz, but with Larmor separation

only 0.013 MHz. Then the pulse sequence, described earlier,

would still prepare the targed (ignoring the rotating frame

without recourse to step 6 of the algorithm. If one uses the In this paper, a technique for the preparation of arbitrary
rule of thumb thatX>Y stands forY being no more than two-spin evolutions via a tailored pulse-delay sequence of
one-tenth olX, then the weak coupling limit is still operative. selective radio frequency fields was introduced. The proce-
Selective excitation requires that the effective amplitude otdure is fully constructive and depends on a certain factoriza-
the radio frequency field be at most 1300 Hz. This corretion of any arbitrary matrix in SUY}). Methods to evaluate
sponds to an amplitude bound o030 © T (which is in-  the real parameters in this factorization were also provided,
deed the case with the pulse sequence propo3éis am-  and thus this work is of significance to hard pulse techniques
plitude bound is also that which would apply for the hardto control two-spin systems too. Constructive incorporation
pulse regime. Since in this technique the total time taken i®f any desired amplitude bounds is a feature of this work,
determined by the maximum amplitude, it follows that thewhich, in addition to being favorable for instrumentation is-
time taken would be roughly X 10”2 s. However, now the sues, renders the usual approximations in arriving at the
J coupling term is no longer negligible and thus, in effect, models valid. The most significant innovation is the genera-
the hard pulse technique would be inapplicable in such aon of single spin evolutions exactly through the use ofihe
situation. coupling, in contrast to hard pulse methods that ignore this

VI. CONCLUSIONS
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coupling for single spin evolutions and thus generate such 7
evolutions only approximately. exp(—iLl 1x)=eXF{ —i 22) exp(—iLoy®o,)

There are several interesting questions that stem from this
construction. The first is to use the techniques proposed here
in conju_nc_tion.with the learning proc_edt[r_@?], t.o overcome Xex;{ —j K I, 22)_ (A1)
uncertainties in the system’s Hamiltonian, inaccuracies in
implementing the pulse-delay sequence, etc. Such a study is
of relevance regardless of which technique one uses to con- This factorization is possible since each matrix exponen-
trol spin systems, since such uncertainties are a reality in thgal involved is explicitly found. The motivation for it comes
laboratory. A different alternative is to examine feedbackfrom the commutator structures of the free Hamiltonian and
techniques such as those proposed in IR&8). To correct the coupling Hamiltonian in the rotating frame. Thus, for the
small deviations from the target. Second, it may be interestpreparation of exptiLl,,) free evolution may be used for
ing to explore other pulse sequences that will implement théhe first and third factors in this equation. So it remains to
factorization of single spin evolutions in Appendix A, which prepare the middle factor. Now the matrix-{ayl .l 2,
played a big role in our pulse sequence. The relevance of ibkl1x) is, when squared, alse |, up to a positive con-
Appendix A, for whichever method one uses for preparingStant. This facilitates the expressi@mhich was also inspired
targets, is that it is exact, independent of modeling assumg?y the commutator structure referred to bejore
tions. Extensions to other Hamiltonians in spin systems is
obviously of interest. Solid state NMR is a promising candi-
date for the kind of scaling required for quantum computa-
tion. Solid state spins have exceedingly long coherence life-  €Xp(—iLoy® Uz)zkﬂl exp(—iayl 12l 2, =10yl 1),
times. For instance, Refi8] quotes figures of 10s for some N (A2)
nuclear spins, while estimates as high as®k0have been
reported in ideal situationéof course, spin-spin relaxation

times are much Iowerln principle, it should be possible to where thea, ,b, are determined by as follows
produce bounded amplitude pulse sequences to generate any.

unitary generator. This follows from the abstract controlla- The case COS%O' _Denote by A= vaj +bj, i1=1,2.
bility studies of quantum systeni89—-44,27,4% Factoriza- Qhoose?x_l—(3vr/2)_, )‘2__(77/2)' Then Eq(fZ) holds if one
tions analogous to Eq1.2) should also exist. The real hurdle p'c_lk_f’] ar= 377/2’b1;8'b§|_ - (7.7/?;”]_"’3‘/22__()\77/2)_??"' E

is carrying out of the analog of the calculation in Appendix A2) r?olfjassiei‘ gr?g ceta SN_ (p7I::IZ)clo_sL77 b_= i'(WIZF;Zqu'
B. To appreciate this the reader should notice the prodigiou 1 e '

. . . . 2= 77/2, b2:O
effort involved for even two-spin systems in Appendix B. The case cosk0. Once again let\,=m/2=X\,. If

sinL=1, pick a;=\{/v2,b;=—N\{/V2,a,=\,/V2,b,
=N\, /v2, if sinL=-1, then picka;=\/v2,b;=\;/v2,
ay= N\, /V2, by=—\,IV2.
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since only such terms have amplitudes which are not nil. If
cosL#0, the|b,/a,| of a nondelay term is preciselyanL|.
So to meet condition O2, has to be such that tar<D. This
amounts to saying thdt has to be within a prescribed de-
APPENDIX A: VERIEYING O1 AND O2 viation from 0. If L does not already meet thiS, factor
CONSTRUCTIVELY exp(—iLlyy) aslI_, exp(—iLyly,) with eachL being within
the given deviation—this can clearly be always done. If

The algorithm of Sec. IV is based on the following propo- cosL=0, first factor expfilLly,) as exp—i(L/2)I]? and
sition. proceed as in the cds~0 cases.

Proposition 1 exp(—iLl,,), L e R, can be factored explic-
ity as IT3_, exp(—iayl 1], —ibd 1) with a,>0k=1,...,3
and b;=0=b, if cos(L)#0. If cos()=0, four factors are
required, withb;=0=h,. This decomposition can be re-  Both the hard pulse and soft pulse methods require that
fined constructively to satisfyb, /a,|<D, for any boundD. thet, in Eq. (1.2) be known. To that end, note first that Eq.
Similar statements hold for the exponentiald gf, 1,,, and (1.2 stems from a Cartan decomposition of @Vin terms

2

APPENDIX B: DETERMINING THE “ t” IN EQ. (1.2

I,y with appropriately differengy’s andb,. of SU(2)® SU(2). Expanding the SU(2)» SU(2) factors in
Proof. Only the proof forl,, will be given (the others this decomposition in theifx,y) Euler angles leads to the
being similaj. The first key step is the following: following factorization of anySe SU(4):
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S= i1l 1xgiE1l1yaiF 1l 1xai D2l 2xpi E2l 2y@iF 2l ax@~ (T4 1y @~ 1 (T4 2y @ = 101117 270~ 1 (T7IA) 1y =1 (TTIA) 5y =1 (T4 10— 1 (TI4)] 55

X @ 102117 220 1 (1A 1~ 1 (714) 2~ 1031 1) 2561D 31 150 E 3l 1y@iF 3l 1x@iD 2l 2xgiE2l 2y@iF 2l 2x (B1)

This is in the form of Eq(1.2) itself. However, the deter- I, 0
mination of thet, from this directly is quite futile and may 55:( 0 )
itself call for a functional quantum computer. The difficulty Slas,{s,us)
is that the 16 equations obtained by equating the entries of

both sides lack any discernible structure. S(ag,lk, ) O
To overcome this we will first factorize the givehin a Sk:( 0 | ) for k=1,3,
Givens type decompositionSsz’= 1S with each S,i 2
=1,...,6 determined by a single SB) matrix. Specifi- _ _
cally, S; is a tensor product, viz., Sg=e!(™y cosase'®s 0 0 sinase's
®S(ag,{6,m6), Where S(ag,{s,ue) IS the unique S2) 0 1 0 0
matrix (written in Cayley-Klein coordinates—see Ré¢B] S,= 0 0 1 0 ,
for notation that takes the vectord(,d,) to the vector .
(/l(dy,d,)|[l,0), with d;,d, the first two entries of the fourth sina,e' ™ #4) 0 0 cosaue ¢
column of S' (the inverse ofS). The matrix $ag,ls,i6)
can be explicitly determined’he remainingS;,i=1,...,5 1 0 0 0
are, up to permutation, block matrices with blocks equabto )
and arexplicitly determined®U(2) matrix, S(«; ,¢; , ;). The 0  cosae'‘ sina; 0
next step then is to determine thg for each of theS,i S2= 0 sina,e(™#2 cosa,e”¥2 0
=1,...,6,which is simpler than determining thg for S
itself. 0 0 0 1
To execute this the remaining will be described first.
The unique S) matrix, S(a;,{,un;) in each §,i Determining the t for the S. For brevity we will deter-
=1,...,5 can baleterminedexplicitly from S, almost ver- mine certain parameters related to theinstead of thet,

batim, in the fashion described in R¢R8]. Therefore, we themselves. Specifically, the Cartan decomposition men-
will only describe the structure of thg with these SW2)  tioned before shows that evellye SU(4) can be factorized
matrices left floating: in the form

T=K,®K, e (Tl1yg=i(m9l 210111 2= (Tm14) 1o =i (Tm14) oy =i (Tm14) 15~ (T714) oxg =121 171 22 =i (W14 1

X e 1 (Tlaxg 1031 22K L0 K, (B2)
|

with the K;,I=1,...,4e SU(2) and 6, ,k=1,...,3eR. S(a,{—Q,u+Q) 0

Expanding the| in their (x,y) Euler anglegwhich is explic- V= B )

itly doable leads to Eq(B1). So we will specify theK; and 0 S(@,{+Q.u=Q)

the following three parameters related to #he

Now pick Kz=1,,K,=S(a,{—Q,u+Q) L. This then
0,0, 03 01106, yields the following underdetermined system for the un-
T4 Q= 4 R= 4 knowns @Q,«a,{,x) in terms of the knownsds, {5, us):

Ss. There is nothing to do sincg; is itself a tensor prod- JcoZ Q+ cof a sirf Q=cosas: — cos 2 tan 2Q
uct. ’

S1,$5,S5. These matrices have a similar structure and =tan{s;—cot(u+{)=tanus.
hence we will show the calculations f& and the modifi-
cations needed fd®, and S;.

PickK,;=1, and choos&,=S(«, {, ) with these param- Note that the first two involve only two unknowns and so
eters to be determined. Choo®=R=0, Q to be deter- standard numerical procedures can be used for them. The one
mined. ThenS;=VK;® K, with parameter degree of freedom comes from the third equation.
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For S;,S; the procedure is very similar, except théat will Mt ot 73=0, 91— mt P3=1{>,
be chosen to be the inverse of the bottom block of the matrix

which results from multiplying all but the last six factors in T

Eqg. (B2). M2 3T Mot 5

S,,S,. The procedure fo%, will be shown and the modi-
fications forS, will be given. ForS,, first setP=Q=0R  Since (a,,{>,u,) is known beforehand, this completes the
=a,. ChooseK,=¢€'7172|=1,2,4;K;=1, for some real pa- determination of the, for S,. For S, the only modification
rametersy, satisfying a system of three equations, needed in this procedure B=0,P=qa,.
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