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ABSTRACT 

This paper shows how the Fisher information matrix of a 
given two-dimensional (2D) data set can be expressed us- 
ing the matrices that determine the 2D system that generates 
the data set. For uniformly sampled data it is shown how 
the Fisher information matrix can he expressed through the 
solutions of Lyapunov equations. The novel techniques are 
demonstrated with an example arising from nuclear mag- 
netic resonance spectroscopy. 

1. INTRODUCTION 

Data that can be considered to he generated by a two- 
dimensional (2D) linear continuous system appears in many 
areas of applications. For example, in nuclear magnetic res- 
onance (NMR) spectroscopy it can be shown ( [I]) that the 
data of a so-called 2D NMR experiment typically has the 
form 

y(t i , t2)  = C ~ e ~ ” ~ ’ A i z e ~ ~ ~ ~ ~ B z ,  t l , t z  2 0, ( I )  

where A I ~ , A ~ ~ , A z ~ , C ~ , B ~  are matrices of compatible 
sizes. The fundamental problem in NMR spectroscopy is 
that the system matrices are dependent on parameters (e.g. 
the resonant frequencies of the magnet spins) which need to 
he estimated through the experiment. 

Estimation of parameters that determine dynamic data 
is a frequently encountered problem in many areas of ap- 
plications. The question therefore naturally arises as to the 
accuracy with which these parameters can be estimated. The 
Cramer Rao lower bound (CRLB) gives a lower bound for 
the covariance of the parameter estimates of an unbiased es- 
timation procedure for a given data set [2,3]. The CRLB is 
in fact typically calculated as the inverse of a matrix called 
the Fisher information matrix. The relevance of this result 
is not only to evaluate a panicular estimation procedure but 
can also give guidance for an appropriate design of an ex- 
periment to collect data (see e.g. [41). 

Various methods have been suggested for the computa- 
tion of the CRLB for the parameter estimation problem of 
2D undamped exponential signals with additive noise [5]. 
However, to our best knowledge, a closed form expression 
for the CRLB for the parameter estimation problem for 2D 

damped exponential signals is not available in the litera- 
ture. In [4] the Fisher information matrix was derived for 
a concrete problem arising in NMR spectroscopy. How- 
ever the approach taken there uses the ‘hand calculation’ to 
derive the analytical expression, which is time-consuming 
and cumbersome. Recently, a systematic investigation of 
the CRLB or Fisher information matrix for the case of one- 
dimensional (ID) deterministic dynamic systems corrupted 
by measurement noise is presented in [6]. In this paper, we 
generalize the results of [6] to 2D data described by ( l ) ,  us- 
ing 2D system theoretic methods. This generalization is, 
however, not a straightforward extension of the results in [6] 
due to the significantly more intricate structure of 2D sys- 
tems. 

To derive a systematic approach to data sets described 
in (1) we consider a 2D complex single-input single-output 
continuous system with a separable denominator using 
Roesser’s model (RM) 

where tl 2 0 ,  t:! 2 0, All,  AI2 ,  Azz,  B1,  B2, 
CI and C2 are complex matrices of appropriate dimen- 
sions depending on the unknown parameter vector 0 := 

[ 81 B K  ] , $( t l ,  t z ) ,  and zi( t1,  t2) are hor- 
izontal and vertical state vectors respectively, u(tl,  t 2 )  is 
the input, and & denotes partial derivative with respect to 
t, ( j  = 1 , Z ) .  The boundary conditions are given by 

T 
02 . . . 

zsh(0,tzL 4 ’ ( t I , O ) ,  t l  2 0,  tz 2 0 

In the following lemma we characterize the input-output 
description of such a system. See [7] for a proof. 

Lemma 1.1 The ourput of the above 2D continuous 
separable-denominator system is given by 

Y d t i . t z )  = vs ( t i , t z )  + qe(ti,tz), t i  2 0, t2 2 O 
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Here vs(t1,tz) is the system response due to non-zero 
boundary conditions and ys(t1, t z )  is the system response 
due to system input. which are given by 

and 

. .  

. eA11(t1-T1)A1*eA22(tz~r2)B~~(~1, Tz)dTldTz. 

Note that the data model that motivated our study in (1) 
can be seen to he the output of such a system if we set 
u( t l ,  t 2 )  = 6 ( t l , t z ) ,  which is the 2D unit impulse func- 
tion, z;(t1,0) = 0, z i (0 ; tz)  = 0, B1 = 0 and C, = 0. 
For simplicity, the remainder of this paper is based on this 
assumption for the data model in (1). 

Assume that we have'acquired noise corrupted samples 
se(n,m)(n = 0 , l ; .  . . , N-1;  m = 0,1,. . . ; h l - l ) o f t h e  
measured output of a 2D continuous separable-denominator 
system at various points (tin, tzm), i.e. 

ss(n>m) =Ys( t ln , tZm)  +w(n:m), 

where ys(tln,t2,) is the noise free data acquired at the 
sampling point ( t in ,  tzm) and w(n, m) is the measurement 
noise component assumed to be complex Gaussian with zero 
mean. The real and imaginary parts of w(n ,  m)  are assumed 
to have variance U:,,, and to be independenduucorrelated, 
i.e. var(Re{w(n,m)})= var(Im{w(n,m)}) = of,, and 
E(Re{.w(n, m)}Im{w(n; m)})= 0. 

By the Cramer Rao Lower bound, any unbiased estimate 
6 of 0 has a variance (provided certain regularity conditions 
hold) such that 

where var(6) 2 I - ' ( @ )  is interpreted as meaning that the 
matrix (var(0) - I - ' (@))  is positive semidefinite [2]. Here 
I ( 0 )  is the Fisher information matrix given by 

va r (6 )  2 

where 0 is the unknown K x 1 parameter vector, S is the 
measured data set, p ( S ;  0) is the probability density func- 
tion of the measurements and E(.) is the expected value with 
respect to the underlying probability measure. 

With the above background, the next section discusses 
the derivation of the Fisher information matrix for the 2D 
data set given by (1). For the special hut important case of 
uniformly sampled data we show in Section 3 that the com- 
putation of the Fisher information matrix can he reduced to 

the computation of solutions to certain Lyapunov equations. 
Proofs can he found in [7]. An NMR example is given in 
Section 4. 

We denote by diag ( A l l ,  hI2,.  . . , M,) the block diago- 
nal matrix whose diagonal block entries are hIl, M 2 ,  . . . , MT, 
and all other block entries are zero matrices. 

2. FISHER INFORMATION MATRIX 

With the Gaussian noise model discussed in Section I the 
probability density function is given by 

. e  - =?z (Re(s~(n.m)]-Re{yn(tl,,L2,)jiZ 

- [lm{.e(n,m)}-tmiye(t,",t~,")}l'  . e  

In the following lemma we are going to collect some basic 
results on the Fisher information matrix adapted to the par- 
ticular data model that we consider (see e.g. [ 2 ] ) .  

Lemma 2.1 I . )  For 1 5 s, t 5 K 

where (.)* denotes complex conjugate 

Then 

N-1M-1 . 

where.(.)H denotes complex conjugate transpose. 

In order to calculate the Fisher information matrix it is 
necessary to compute the derivative aYa(~;;t2m) of the out- 
put with respect to the element 8, of the parameter vector 0, 
s = 1:. . . , K .  

Lemma 2.2 For the 2 0  conrinuous separable-denominator 
systemwirhimpulseinput2L(tl,t2) = b( t l , t z ) ,  andB1 = 0, 
e, = 0, 22;(t1,0) = 0, .;CO, t*) = 0, 
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Here 

a,c, := [ 2 Cl ] 
In the following theorem we summarize the previous re- 

sults and state the general expression for the Fisher infor- 
mation matrix for the data set corresponding to the output of 
the 2D continuous separable-denominator system. 

Theorem 2.1 Consider the augmented derivative system 
given by 

DA,, := diag(diAll,azAll, . . . ,aKAl l ) ,  

D A ~ ~  := diag (&An,azAiz , .  . . . ~ K A I Z ) ,  

DA,, := diag (81Am~a2.422,. . . ,&Azz) ,  

Dc, := diag (&Cl,&C1,. . . , &Cl). 

Assume that the 2 0  system is the same as that in 
Lemma 2.2. We have 

Dye(L, , t Z )  = Dc, eDaii t L D ~ , , e D A 2 2 t Z D ~ ,  , 

For the 2D data set sampled at ( t l n , t g m )  (n = 
0: 1,. . . , N - 1; m = 0,1 , .  . . ~ A4 - 1) with noise variance 

=: a', the Fisher information matrix is given by 

3. FISHER INFORMATION MATRIX FOR 
UNIFORMLY SAMPLED 2D DATA 

Although Theorem 2.1 in the previous section is valid for 
both uniform and nonuniform sampling schemes, it is com- 
putationally rather inefficient to directly compute the 2D 
summations in (2). particularly in the case when the num- 
ber of samples is large. In this section, we develop an ef- 
ficient method for calculating the Fisher information ma- 
trix for 2D data generated by uniformly sampling the out- 
put of the 2D continuous separable-denominator system in 
Lemma 2.2. To this end, it is assumed that all the eigenval- 
ues of eAnT1 and eAzzT2 are in the open unit disk or equiv- 
alently the eigenvalues of All and are in the open half 

plane, where TI and T2 are the sampling intervals for the 
variables tl and t2  respectively. Theorem 2.1 can then be 
simplified significantly with the Lyapunov approach. For 
convenience of exposition, we denote A d 1  := eDallT1 and 
Ad2 := e D A m T 2 .  

Theorem 3.1 Consider the data model of Theorem 2.1 and 
assume that the signal is uniformly sampled with sampling 
intervals TI for the variable t l  and T2 for t2, i.e., at t l ,  = 
nT1:n = O , l , .  . . , N- 1; tz, = mT2,m = O , l , .  . . , A I -  
1. Moreover; assume that all the eigenvalues of All and A22 
are in the open 1 4  halfplane. Then the Fisher information 
matrix is given by 

where PI is solved as follows. Obtain P2 as the unique so- 
lution to the following Lyapunov equation 

Ad2PzA; ~ P2 = -DB,D& + A$iDBzD&(A$;)H, 

and then get PI as the unique solution to the following Lya- 
punov equation 

AdlPlAdH1-Pi = -Da , ,PzD~~ ,+A~DalzP~D~~*(A;Z: )H 

In the case that there are an infinite number of equidis- 
tant samples in either of the variable t i ,  t2 or both, Theo- 
rem 3.1 can be simplified to the following two corollaries. 

Corollary 3.1 Assume that the 2 0  system is the same as 
that in Theorem 3.1, except that there are an infinite num- 
ber of equidistance samples in the t l  variable, i.e. tl, = 
nTi: n = 0,  1, . . . , m. Then the Fisher information matrix 
is given by 

where PI is solved as follows. Obtain P2 as the unique so- 
lution to the following Lyapunov equation 

and then get Pl as the unique solution to the following Lya- 
punov equation 

Corollary 3.2 Assume that the 2D system is the same as 
that in Theorem 3.1, except that an infinite number of 
equidistant samples are acquired in both the t l  and tz vari- 
ables, i.e., tl,, = nT1, n = O? 1 , .  . . ,CO; tZm = mT2, m = 
0,1,. . . ,CO. Then the Fisher information matrix is given by 
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where Pi can be solved as follows. First obtain P2 as the 
unique solution ro the Lyapunov equation 

AdzPzAdHZ - P2 = -DB,D&, 

rhen ger Pi as the unique solurion to the Lyapunov equarion 

AdiPiA$ - P i  = -DA~.PZD?~,  

4. EXAMPLE 

Consider the simulated 2D NMR data having the form 

2 2  

where the parameter vector is given by 

@ = [ C I I ,  C12, C21, C22, T i l ,  T i z ,  T z i ,  T22> W i l l  W I Z ,  

W21, W 2 2 ,  411, 412,  421,  422 I T ,  
The above simulated 2D NMR data can be considered as 
the output of a 2D continuous separable-denominator sys- 
tem with a state-space realization given by 

where the input and initial conditions are given by 

h 
U ( t 1 , t Z )  = 6(tlit2), z,(O,tz) = 0, .;;(tl>O) = 0 

we fix the values of the parameter vector 0 as 

10.15, 0.22, 0.12, 0.13, -0.1, -0.35, -0.15, -0.45, 

1.445, 2.136, 2.702, 0.88, 0.683, 1.366, 2.4167, 0.9823: 

To apply the methods in Section 3, the first step is the calcu- 
lation of the derivative system determined by DA,, , D A , ~ ,  
D A ~ ~ ,  Dc, and D B ~  in Theorem 2.1. Detailed calculation 
is omitted here hut can be found in [7]. Next, we obtain the 
CRLB for the simulated NMR data with additive Gaussian 
noise using the method of [4] and the new methods proposed 
in this paper. From Table 1, it can be seen that the values in 
columns 1 and 2 are indeed very close (the differences are 
caused by numerical errors only), while there are some small 
differences between the values in column 1 and column 3 (or 
4). In fact, it is easy to see that Corollary 3.1 gives expres- 
sions for the Fisher information matrix associated with the 
asymptotic CRLB for an infinite number of samples for ti 
while Corollary 3.2 gives expressions for the Fisher infor- 
mation matrix associated with the asymptotic CRLB for an 

infinite number of samples for both tl and t2 ,  as verified by 
this example. The significance is that the new methods are 
computationally much more efficient than the method of [41. 
For this example as well as many other simulations we have 
conducted, the computational time using the method of [41 
is at least 100 times more than that using the new methods 
for the same PC under the same conditions. 

Table I ,  CRLB for OifferenlMethodr with TI = 0.015. 
Tz = 1.54, N = 2048,  M = 16 

5. CONCLUSIONS 

In this paper, we have developed an explicit expression for 
the calculation of the Cramer Rao lower bound for a class of 
2D signals which are samples of outputs of 2D continuous 
separable-denominator systems. For the special but impor- 
tant case of uniform sampling, the Lyapunov approach is 
exploited which has speeded up considerably for the calcu- 
lation of the Fisher information matrix. We believe that the 
presented results will have a significant impact on applica- 
tions dealing with a large number of data samples and a large 
number of parameters to be estimated. 
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