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Abstract—Data sets that are acquired in many practical sys-
tems can be described as the output of a multidimensional linear
separable-denominator system with Gaussian measurement noise.
An important example is nuclear magnetic resonance (NMR) spec-
troscopy. In NMR spectroscopy, high-accuracy parameter estima-
tion is of central importance. A classical result on the Cramér–Rao
lower bound states that the inverse of the Fisher information ma-
trix (FIM) provides a lower bound for the covariance of any un-
biased estimator of the parameter vector. The calculation of the
FIM is therefore of central importance for an assessment of the ac-
curacy with which parameters can be estimated. It is shown how
the FIM can be expressed using the matrices that determine the
system that generates the data set. For uniformly sampled data, it
is shown how the FIM can be expressed through the solutions of
Lyapunov equations. The novel techniques are demonstrated with
an example arising from NMR spectroscopy.

Index Terms—Cramér–Rao lower bound, Fisher information
matrix, Lyapunov equation, multidimensional linear systems,
NMR spectroscopy, parameter estimation.

I. INTRODUCTION

DATA that can be considered to be generated by a mul-
tidimensional linear separable-denominator continuous

system appears in many areas of applications. For example,
in nuclear magnetic resonance (NMR) spectroscopy, it can be
shown ([14] and see, e.g., [2] and [6] for general references)
that the data of a so-called two-dimensional (2-D) NMR
experiment typically has the form

(1)

where and are matrices of compat-
ible sizes. The fundamental problem in NMR spectroscopy is
that the system matrices are dependent on parameters (e.g., the
resonant frequencies of the magnet spins) that need to be esti-
mated through the experiment.

Estimation of parameters that determine dynamic data is a
frequently encountered problem in many areas of applications.
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The question therefore naturally arises as to the accuracy with
which these parameters can be estimated. The Cramér–Rao
lower bound (CRLB) gives a lower bound for the covariance
of the parameter estimates of an unbiased estimation procedure
for a given data set [5], [9], [17]. The CRLB is in fact typically
calculated as the inverse of a matrix called the Fisher infor-
mation matrix (FIM). The relevance of this result is not only
to evaluate a particular estimation procedure but can also give
guidance for an appropriate design of an experiment to collect
data (see, e.g., [13]). In many experimental situations, there is
a limit on the number of data points that can be acquired. For
example, in clinical trials of drugs, patients cannot be subjected
to an arbitrary number of blood tests. It is therefore important
to develop a strategy for experiment design that is likely to
produce good quality parameter estimates while keeping the
number of data samples low.

In [13], the FIM was derived for a concrete problem arising in
NMR spectroscopy. The approach taken there was to derive the
FIM from first principle using “hand calculations” to perform
the derivatives that lead to the analytical expressions for each
entry of the matrix. This is a time-consuming and cumbersome
process that needs to be repeated for each, possibly minor, mod-
ification of the data model, which makes it impossible to use the
technique in a routine manner in the applications at hand. The
purpose of the current paper is to develop techniques that allow
for a more systematic derivation of the FIM for data that arises
as the output of a multidimensional separable-denominator con-
tinuous system.

Expressions for the FIM in system theoretic terms have ap-
peared in the literature before in the context of the modeling
of stationary time series [10], [15], [18]. Recently, a system-
atic investigation of the CRLB or FIM for the case of one-di-
mensional (1-D) deterministic dynamic systems corrupted by
measurement noise is presented in [12]. The classes of 1-D data
discussed in [12] include data of the form given by

The calculation of the FIM for the above 1-D data plus mea-
surement noise was done in terms of a derivative system and
by using the solution of a Lyapunov equation. In this paper, we
generalize the results of [12] to 2-D data described by (1), using
2-D system theoretic methods. This generalization is, however,
not a straightforward extension of the results in [12] due to the
significantly more intricate structure of 2-D systems.

This is not the first publication to address the derivation of the
CRLB for 2-D signals. Various methods have been suggested
for the computation of the CRLB for 2-D parameter estimation
problem of undamped exponential signals with additive noise
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(see, e.g., [3], [7], and [16]). However, to our best knowledge,
a closed-form expression for the CRLB for the parameter es-
timation problem for 2-D damped exponential signals is not
available in the literature, although its 1-D counterpart was in-
vestigated two decades ago in [11]. Moreover, mixed signals
consisting of 1-D and 2-D terms like those in (1) have seldom
been studied in the signal processing community, although they
do arise in many practical situations.

To derive a systematic approach to data sets described in
(1), we consider a 2-D complex single-input single-output con-
tinuous system with a separable denominator using Roesser’s
model (RM)

(2)

(3)

where , , , , , , , and are complex ma-
trices of appropriate dimensions, depending on the unknown
parameter vector , , and

are horizontal and vertical state vectors, respectively,
is the input, and denotes partial derivative with

respect to . The boundary conditions are given by

In the following lemma, we characterize the input–output de-
scription of such a system. See Appendix A for a proof.

Lemma 1.1:The output of the above 2-D separable-denom-
inator continuous system is given by

Here, is the system response due to nonzero boundary
conditions, and is the system response due to system
input, which are given by

and

Note that the data model that motivated our study in (1) can
be seen to be the output of such a system if we set

, which is the 2-D unit impulse function, ,
, , , and .

Assume that we have acquired noise corrupted samples
( ; ) of the

measured output of a 2-D separable-denominator continuous
system at various points , i.e.,

where is the noise free data acquired at the
sampling point ( ;

), and is the measurement noise
component assumed to be complex Gaussian with zero mean.
The real and imaginary parts of are assumed to
have variance and to be independent/uncorrelated, i.e.,
var Re var Im , and

Re Im . Note that one of the
main results (Theorem 2.1) will deal with the general noise
model introduced here in which the variance depends on the
indices and . For some later results, we will, however,
assume that the variance is uniform for all data points, i.e.,

, . The general noise model was used in
our earlier paper [13] on NMR spectroscopy, where a particular
experiment could be interpreted as dealing with different
variance levels (at least in one of the two dimensions).

By the Cramér–Rao lower bound [9], [17], any unbiased es-
timator of has a variance (provided certain regularity con-
ditions hold) such that

var

where var is interpreted as meaning that the ma-
trix var is positive semidefinite [9]. Here,
is the FIM given by

where is the unknown parameter vector,is the measured
data set, is the probability density function of the mea-
surements, and is the expected value with respect to the
underlying probability measure.

In Section II, we discuss the derivation of the FIM for the
data set generated from a 2-D separable-denominator contin-
uous system model. For the special but important case of uni-
formly sampled data, we show in Section III that the compu-
tation of the FIM of a 2-D separable-denominator continuous
system can be reduced to the computation of solutions to certain
Lyapunov equations. The techniques introduced in this paper
are then illustrated with an example that is motivated by NMR
spectroscopy in Section IV. The results and approaches obtained
here are compared with those in [13]. In particular, the differ-
ences between finite and infinite data sets are discussed. Finally,
a conclusion is presented in Section V.

We denote by diag the block diagonal
matrix whose diagonal block entries are , and
all other block entries are zero matrices. Throughout the paper,
the phrase “2-D system” refers to the 2-D separable-denomi-
nator continuous system described by (2) and (3), and “noise”
refers to the complex Gaussian noise with zero mean whose real
and imaginary parts are assumed to have variance and to
be uncorrelated.
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II. FISHER INFORMATION MATRIX

In this section, we are going to derive an expression for the
FIM for the parameter estimation problem for a 2-D data
set with Gaussian measurement noise discussed in the previous
section. The data sampling scheme employed for obtaining the
data samples can be either uniform sampling or nonuniform
sampling in this section. With the Gaussian noise model dis-
cussed in Section I, the probability density function is given by

Re Re

Im Im

In the following lemma, we are going to collect some basic
results on the FIM adapted to the particular data model that we
consider (see e.g., [9]).

Lemma 2.1:

1) For

Re

where denotes conjugate.
2) Let

...

Then

Re

where denotes complex conjugate transpose.
In order to calculate the FIM, it is necessary to compute the

derivative of the output with respect to the elements
of the parameter vector, . This can be done

either on directly [13] or on the state-space real-
ization of , as to be done in the following. We first
quote a lemma from [12] that is essentially the continuous time
equivalent of [5, Lemma 5.2-30].

Lemma 2.2:Let be any complex square matrix depending
on the parameter vector, and denote for ,

We have for and ,

In the following lemma, we consider the derivative of a
product of matrices depending on the parameter vector,
which can be regarded as an extension of a lemma for the
calculation of the derivative of the 1-D function
in [12]. A proof is given in Appendix B.

Lemma 2.3:Consider the matrix product ,
where , , , are matrices depending on the parameter
vector . Then

In the following lemma, we can now give the desired system
theoretic expression of the derivative of the output with respect
to the elements of the parameter vector.

Lemma 2.4:With the notations in Section I, consider for
,

Then, for

where

and

1) for bounded piecewise continuous input

2) for impulse response input , with
, and
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Here

Proof: The proof of part 1) is an application of Lemmas
2.2 and 2.3 and the fact that derivation and integration can be
exchanged since the integrand is bounded and the integration is
over a finite interval. The proof of part 2) is a direct consequence
of the expression of the impulse response of the system and an
application of Lemmas 2.2 and 2.3.

In the following theorem, we summarize the previous results
and state the general expression for the FIM for the data set cor-
responding to the output of a 2-D separable-denominator con-
tinuous system.

Theorem 2.1:Consider the augmented derivative system
given by

diag

diag

diag

diag

diag

...
...

...
...

...

Then

1) for ,

...

where

and

a) for bounded piecewise continuous input

b) for impulse response input ,
with , and

2) for the 2-D data set sampled at (
; ), the FIM is

Re

Proof: Item 1) follows immediately from Lemma 2.4 by
stacking up the variables for the system. Item 2) is the content
of Lemma 2.1.

In the next theorem, we are going to give a more explicit
expression for the FIM for the type of 2-D signals introduced
in (1) in Section I.

Theorem 2.2:Assume that the 2-D system is such that we
have the following:

1) A finite number of samples of the output are acquired
in both the and variables, i.e., at (

; ).
2) The input is a 2-D unit impulse function, i.e.,

. The boundary conditions are
given by and , where
may depend on the parameter vector. The matrices

are all zero matrices. These assumptions
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imply that the deterministic part of the measured signal
is given by

(4)

Then, the FIM for the above data set with noise variance
, ; is given by

Re

(5)

where

and ...

Proof: With the given assumptions and from Theorem 2.1,
the FIM can be written as

Re

Re

Re

Re

III. FISHER INFORMATION MATRIX FOR

UNIFORMLY SAMPLED 2-D DATA

Although Theorem 2.2 in the previous section is valid for both
uniform and nonuniform sampling schemes, it is computation-
ally rather inefficient to directly compute the 2-D summations in
(5), particularly in the case when the number of samples is large
in one or both of the variables. In this section, we develop an
efficient method for calculating the FIM for 2-D data generated
by uniformly sampling the output of a 2-D separable-denomi-
nator continuous system. To this end, it is assumed that all the
eigenvalues of and are in the open unit disc or,
equivalently, the eigenvalues of and are in the open half
plane, where and are the sampling intervals for the vari-
ables and , respectively. Theorem 2.2 can then be simplified
significantly with the Lyapunov approach. For convenience of
exposition, we denote and . In
the following lemma, a standard result on the Lyapunov equa-
tion is summarized [8].

Lemma 3.1:Let

where all the eigenvalues of are in the open unit disc, and
is a Hermitian matrix, i.e., . Then, is the unique

solution to the following Lyapunov equation:

(6)

Moreover

is the unique solution to the following Lyapunov equation:

There are standard methods for solving Lyapunov equations
in the literature (see, e.g., [1] and [4]). In the following theorem,
we are going to characterize the FIM for the data model in (1)
through the solutions of Lyapunov equations.

Theorem 3.1:Consider the data model of Theorem 2.2, and
assume that the signal is uniformly sampled with sampling in-
terval for the variable and for , respectively, i.e.,
at , ; ,
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. Moreover, assume that all the eigenvalues of
and are in the open left half plane. Then, the FIM for

the 2-D data set is given by

Re

where , , and can be obtained as follows.
is the unique solution to the following Lyapunov equation:

is the unique solution to the following Lyapunov equation:

where

is the unique solution to the following Lyapunov equation:

and is the unique solution to the following Lyapunov
equation:

Proof: In Theorem 2.2 and the assumption
; , ,

the FIM for the given 2-D data set can be written as

Re

where , and . Let

and

We then have

Re

Due to the way by which and are constructed
from and , respectively, it is easy to show that the as-
sumption that all the eigenvalues of and are in the open
left half plane implies that all the eigenvalues of
and are in the open unit disc. By Lemma 3.1,

is therefore the unique solution to the following Lyapunov
equation:

As for , since ,
can be rewritten as

Let

It is then clear from Lemma 3.1 that is the unique solution
to the following Lyapunov equation:

To calculate , rewrite it as

where

It is easy to see that is the unique solution to the following
Lyapunov equation:

Hence, is the unique solution to the following Lyapunov
equation:

The proof is thus completed.
In the case that there are an infinite number of equidistant

samples in the variable, i.e., in Theorem 3.1, the
previous theorem can be simplified with the help of Lemma 3.1.

Corollary 3.1: Assume that the 2-D system is the same as
in Theorem 3.1, except that there are an infinite number of
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equidistant samples in the variable, i.e.,
. Then, the FIM is given by

Re

where , , and can be obtained as follows. is the
unique solution to the following Lyapunov equation:

is the unique solution to the following Lyapunov equation:

is the unique solution to the following Lyapunov equation:

and is the unique solution to the following Lyapunov
equation:

Note that the expressions for the FIM given in Corollary 3.1
are not only simpler than those in Theorem 3.1 but also give
the asymptotic FIM when an infinite number of samples are
available in . Note that when the number of samples increases,
further positive terms are added to the FIM, and hence, the FIM
becomes larger in the sense of positive definite matrices. This
then implies the corresponding decrease in the inverse, i.e., the
CRLB. Hence, the asymptotic FIM is useful in determining the
lowest possible CRLB that can be achieved by increasing the
number of acquired data points.

Further simplifications of the expression for the FIM can be
achieved by assuming that the boundary conditions are all zero
i.e., in Theorem 2.2. In this case, the 2-D
noise free signal in (4) is given by

and Theorem 3.1 and Corollary 3.1 reduce to Corollary 3.2 and
Corollary 3.3, respectively, as given below.

Corollary 3.2: Assume that the 2-D system is the same as
that in Theorem 3.1, except that , i.e., as-
sume that the deterministic part of the measured signal is given
by

Then, the FIM is given by

Re

where is solved as follows. Obtain as the unique solution
to the following Lyapunov equation:

and as the unique solution to the following Lyapunov
equation:

Corollary 3.3: Assume that the 2-D system is the same as in
Corollary 3.1, except that , i.e., assume that
the deterministic part of the measured signal is given by

Then, the FIM is given by

Re

where is solved as follows. Obtain as the unique solution
to the following Lyapunov equation:

and then get as the unique solution to the following Lyapunov
equation:

In Corollary 3.3, as the 1-D term disappears due to the zero
boundary condition, it is feasible to have an infinite number of
equidistant samples for both theand variables. In this case,
Corollary 3.3 can be further simplified as follows.

Corollary 3.4: Assume that the 2-D system is the
same as that in Corollary 3.3, except that an infinite
number of equidistant samples are acquired in both the

and variables, i.e., , ;
. Then, the FIM is given by

Re

where can be solved as follows. First, obtainas the unique
solution to the Lyapunov equation

and then as the unique solution to the Lyapunov equation

In the next section, we present an example to illustrate the
novel methods developed in this section and compare the new
results with those by an existing method of [13].

IV. EXAMPLE

In this example, the methods that were introduced earlier will
be illustrated with a concrete example that arose from our ear-
lier work on the use of the CRLB in NMR spectroscopy [13].
Consider a simulated 2-D NMR data

where the parameter vector is given by

The signal is assumed to be measured with additive complex
Gaussian white noise, whose real and imaginary parts are uncor-
related and both have zero mean and fixed variance .



2686 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 10, OCTOBER 2003

In [13], the FIM was calculated for the finite sample situation
by calculating the partial derivatives term by term. Here, we will
demonstrate that system theoretic methods allow a much more
systematic approach that is easily adapted to other problems. In
addition, the system theoretic approach also permits the calcula-
tion of the FIM and CRLB for the case when an infinite number
of sampled data points are available. Having an infinite number
of data points is, of course, not a situation that is encountered in
a practical situation. It is, however, a limiting case that indicates
to what extent the CRLB could be improved by increasing the
number of data points, given that the other experimental param-
eters such as the sampling interval are kept constant.

A. Data as Output of a 2-D Separable-Denominator
Continuous System

To apply the earlier results, it is important to note that the
above simulated 2-D NMR data can be considered as the output
of a 2-D separable-denominator continuous system with a state-
space realization given by

where the input and initial conditions are given by

Hence, we describe the data as the uniformly sampled output of
the 2-D signal

where and are given in the above.

B. Derivative System

A central step in our approach is based on the calculation of
the derivative system. The expressions that are of relevance here
will be determined now, i.e., , , , , and .

Let diag . It is then
easy to show that

and all the remaining diagonal entries of are identically
equal to diag .

Similarly, let diag
We thus have

and all the remaining diagonal entries of are identically
equal to diag .

In addition, letting diag
, we have

and all the remaining diagonal entries of are identically
equal to diag .

Proceeding in the same manner, we have

and hence

Similarly

diag
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Thus, is given by

diag

where is the sampling interval for the continuous variable
, and, as shown in the first set of equations at the bottom of

the page, the remaining diagonal block entries of are all
identically equal to

diag

Similarly, is given by

diag

where is the sampling interval for the continuous variable
, and as shown in the second set of equations at the bottom

of the page, the remaining diagonal block entries of are all
identically equal to

diag

C. CRLB

Having determined the components of the derivative system
that are of importance for our data set, it is now possible to
calculate the FIM once the remaining experimental parameters
are set. We assume that the above simulated 2-D NMR data
(with additive noise) is uniformly sampled in both theand

variables. For the variable, the sampling interval is
s, and the number of samples acquired is .

For , the sampling interval is s, and the number of
samples acquired is . It is further assumed that the noise
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TABLE I
CRLB FOR DIFFERENT METHODS WITH T = 0:015;

T = 1:54; N = 1024; M = 16

variance in this example. For the purpose of
illustration, we fix the value of the parameter vector as

We then obtain the CRLB of the given data using the method
presented in [13], as well as the new methods proposed in this
paper. As the boundary conditions of the
associated 2-D system are both zero, Corollaries 3.2–3.4 can
be applied. The resultant values for the CRLB are given in
Table I. As the given simulated data are uniformly sampled
with finite samples in both variables and , the method of
[13] and Corollary 3.2 would give the exact CRLB, whereas
Corollaries 3.3 and 3.4 could give only the approximate CRLB.
From Table I, it can be seen that the values in columns 1 and 2
are indeed very close (the differences are caused by numerical
errors only), whereas there are some small differences between
the values in columns 1 and 3 (or 4). Note that the value in
column 3 is consistently smaller than the corresponding values
in columns 1 and 2 but greater than that in column 4 for any row
(parameter). In fact, it is easy to see that Corollary 3.3 gives
expressions for the FIM associated with the asymptotic CRLB
for an infinite number of samples for, whereas Corollary 3.4
gives expressions for the FIM associated with the asymptotic
CRLB for an infinite number of samples for both and , as
verified by this example.

When the lengths of the sampling intervals increase, while
the number of samples remains unchanged, the relative differ-
ences between the values in columns 1 and 3 (or 4) decrease, as
can be seen from Tables II and III. A heuristic explanation of
this phenomenon rests on the fact that the data is exponentially
decaying. Therefore, the data eventually decays into the noise
and contributes little to the information content of the data set.
Hence, a finite data set of suitable length can lead to a FIM that

TABLE II
CRLB FOR DIFFERENT METHODS WITH T = 0:03;

T = 1:54; N = 1024; M = 16

TABLE III
CRLB FOR DIFFERENT METHODS WITH T = 0:015;

T = 1:54; N = 2048; M = 16

is close to what is achievable with an infinite data set with the
same sampling interval. This argument applies similarly to the
case when the number of samples increases while the lengths of
the sampling intervals remain unchanged and, furthermore, to
the case when both the lengths of the sampling intervals and the
number of samples increase. Table II gives results on the CRLB
with the same setting as in Table I, except that the sampling in-
terval for is now equal to 0.03 s, whereas in Table III, the
number of samples for is 2048 (the sampling interval for
is still 0.015 for Table III).

Despite the similar values between columns 1 and 2 in all
three tables, there is a significant difference between the method
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of [13] and Corollary 3.2 in that Corollary 3.2 is much more effi-
cient computationally than the method of [13] (at least 100 times
more efficient based on our simulations carried out using the
same PC). Moreover, as it takes almost the same effort and time
to apply Corollaries 3.2–3.4 to the computation of the CRLB,
we recommend that Corollary 3.2 should be adopted when one
is interested in calculating the exact CRLB for parameter esti-
mation for 2-D NMR data with zero boundary conditions for fi-
nite samples in both variables. On the other hand, if one is inter-
ested in knowing the asymptotic CRLB, i.e., for infinite samples
in one or both variables, Corollary 3.3 or 3.4 should be adopted
instead.

V. CONCLUSION

In this paper, we have developed an efficient method for the
calculation of the Cramér–Rao lower bound for a wide class of
2-D signals that are samples of outputs of 2-D separable-denom-
inator continuous systems. Explicit expression for the associ-
ated FIM is derived for the class of 2-D signals with a general
data sampling scheme. For the special but important case of uni-
form sampling, the Lyapunov approach is exploited, which has
speeded up considerably the calculation of the FIM. Although
the results are derived for 2-D separable-denominator systems
and the associated 2-D data sets, they can be easily generalized
to multidimensional ( ) separable-denominator systems
and the associated multidimensional ( ) data sets. How-
ever, it is nontrivial to generalize the results in this paper to the
multidimensional ( ) nonseparable-denominator systems,
and this is a challenging problem for further investigation.

We believe that the presented results will have a significant
impact on applications dealing with a large number of data sam-
ples and a large number of parameters to be estimated, such as in
multidimensional NMR spectroscopy. An illustrative example is
also presented and compared with a recent result on the topic.

APPENDIX A
PROOF OFLEMMA 1.1

First, we represent the 2-D Laplace transform of ,
, , and by , ,
, and , respectively. Taking the 2-D

Laplace transform of both sides of (2) and (3) and taking into
account the initial conditions , we obtain

where

and

With simple matrix algebra, we have

and

It is easy to verify that

when and exist. Therefore, the
response due to nonzero boundary conditions in the -do-
main is given by

Thus, in the -domain, we have

The system response to the input in the -domain is given
by
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Thus

Therefore

APPENDIX B
PROOF OFLEMMA 2.3

We prove this lemma by induction. When

When

Assume this lemma is true for , i.e.,

Then
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