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ABSTRACT

An algorithin is presented (o calculate a state space realiza-
tion of a 3D image set. It is based on interpreting the image
set as the impulse response of a 3D separable system. As an
application it is shown how the approximation steps, includ-
ing balanced model reduction methods, in the algorithin can
be used to suppress noisc in 3D tnage sets. The approach
was motivated by a practical problem in the analysis of 3D
fluorescent microscopy image data of fluorescently labelled
cells.

1. INTRODUCTION

Noise suppression is an important aspect in the analysis of
3D fluorescent microscopy image sets. The signal levels of
fluorescent microscopy images are typically very low even
when highly sensitive detectors are used [1]. In addition, the
signal, i.e. the photons emitted by the fluorescent tags, is it-
sell a random process. There are also various noise sources
in the system ranging from scattered photons to readout
noise in the CCD camera [1]. This means that the images
have low signal to noise ratios. As a result, noise becomes a
serious obstacle to the use of such acquired images in many
image processing algorithms, i.e. deconvolution algorithms
(see e.g. [2]). As a standard method, a Gaussian filter is
often used o smooth 3D image sets [3]. However, since the
Ganssian filtering approach is based on a weighted average
of neighboring pixels, it typically results in the loss of sharp
details in 3D image sets. It is therefore desirable to develop
alternative methods for noise reduction of 3D fluorescent
TICTOSCOpY images.

Many advanced signal processing techniques call for the
use¢ of state space models. The question arises whether it
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is possible to also obtain 4 state space representation for a
3D imuge set and address the noise reduction problem at
the same (ime. An affimative answer is provided in this
paper. State space realizations have been used for multidi-
mensional filter design (see [4] and the references therein).
One of the most suitable forms of rcalizations is balanced
state space rcalization, since it can be easily used in bal-
anced model reduction, which has several desirable propes-
ties such as an error bound and preservation of the stability
of the original system (sce e.g. [5]). In addition, state space
realizations were also used together with singular value de-
composition to design a 2D separable-denominator digital
filter (see e.g. [6]).

In this paper we present a new algorithm to calculate a
state space realization of a 3D image set by considering the
image set as the impulse response of a 3D separable sys-
tem. When noise is presented in 3D image sets, the algo-
rithm is capable of reducing noise components and obtain-
ing smoothed estimates of image seis.

2. METHODS

Qur algorithm can be separated into two parts. In the first
part of the algorithm (Algorithm 1) a non-iterative method is
introduced to decompose a 3D image set to three cascaded
1D components via singular value decompositions. Thoagh
singular value decompositions were used in the low-rank
approximation of a 3D array [7]. The algorithm given in [7]
is an iterative algorithm and computationally very iniense.
In the second part of the algorithm (Algorithm 2} the bal-
anced realizations of the one-dimensional components are
calculated via the modified Kung'’s algorithm {8].
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2.1. Decompasition of a three-dimensional image set 6. Pariition Yo = diag(3q, 5a), Us = {0.3,[:]2], and

Algorithm 1 Let P(ky, ko, ka) by = 1,2, Ny i =1,2,3, V= [ vy

represeni a three-dimensional image set, ) g

} conformally, where 3, € Ri=7E, ﬁlg £

T2 XT2 ¥ Nalyxlg A Nolixre 1) tax N3
R LU eR LU eR JVaeR ,

1. Arrange the entries of P in a matrix Qs as 2 N - elf2
and Vo € R™7%3 Let LT? := U332~ and R}? =

P(1,1,1)  P1,1,2) Vo, Then Qy = Q5 == LP R} is an approxi-
P(2,1,1) P2,1,2) ... mate factorization. The factorization is exact forry =
Qy = P P(3,1,2) PIE(1)
: : P(2)
P(N,1,1) P(N.,L2) - 0,ie. Qn =QF = L3RS Let P5? = PR3 | =
P(1,2,1) P(1, Na, N3) s
P2,21) o P(2, Ny, N3) , ‘ ‘ PI2(Ny)
r(3,2,1) P(3, Na, Ny) Ly and P3? = [P2(1), P2(2), ..., P3*(Ns)l=
_ ' R, where P32(ka) € RV oy = 1,2, Na,
: : and Py (ks) € R2* ka = 1,2, ..., Na.
P(j\]hg’]) })(]\111}'\(_7:}\’3)
In this algorithm an approximate decomposttion of the
where Qs € RV N2 Na, image data points was obtaincd

2. Decomnpose Qs via the singular value decomposition Pk, ko, k) me PPV Ry ko, k) = Py (R Pa® (k) P32 (ka),

T 2]
asQs = UlE}/_E}/'Vl- bk, = 1,2,...,N;, ¢ = 1,2,3. If no approximation is car-
. . ried out, i.e. if y =3 = 0, we have the exact factorization
3. Partition ¥, = diag(¥,, ), Uy = [U, /1], and .
Vi . Lty Pk, kg, ka} = PO%(ky, ks, ks) = Py (k1) P5 (kq) F5 (k3),
Vi = 1:/ conformally, where b, ¢ R7*79, Y €

] B;=1,2,... N, i=1,2,3
erXTl 01 eRNl)(ll 01 € RN[XT‘[ ‘;'1 E}RIIXNZNS, .
and ffl e RM*MaNs pop [T 012}/2 and R} = 2.2. Balanced state space realizations of finite one-dimensional
(B3 (), ..., R5'(NaNg)) = £V, where Ry (i) € P09VEREE
RUXL = 1,9 NoNas. Then Qs =~ QF =  Algorithm2 Ler P;(i) e RP*™, i = 1,2,... ,Nandj is
L3 Ry is an approximate factorization, where vy de- an integer; be a finite one-dimensional sequence.

noies the dropped singular vilues. The factorization

is exact for 11 = 0, ie. Qs = OF — LORY. Let 1. Construct the (N 4 1)p x (N + 1)m Hanke! matrix

o P B2 o BN-1) B(N) 0

P2 B(2) P8 - RV 0 0

Pro= 3 = L3, where P[* (k) € H— . . . .
: P;(N) 0 0 0

P{(Ny) 0 0 .. 0 0

RYUN k=12, Ny
where O denotes a block of zeros of size p x m.

1
4. Rearrange ihe elements of Ry toform. (s as 2. Let H = UXV be a singular value decomposition.

RH(1) -« REMDNa) 3. Partition Y3 = diag(¥,%2), ¥1 € R™™", &3 €
R;l (NS -+ 1) ... R;l (2N3) Rsxs U= [UI U‘)I Ul c R(N+1)pxn U2 e R(N+1)px3
ot - Ty 4 » 2 N ,
w o A (Q{%JF K : & (-?)NB) andV = [ 112 ] V, e RPxWFDm g grx(NHLm
Ry ((Nz —1)N3+1) --- R3'(NaNs) conformally.

4. Let C3 € RP™™ be the first p rows ofUlﬂi/?.
5. Decompose Qo via the singtdar value decomposition R
as (s = UQZ);/QZ];/Q Va. 5. Let Bj € R™*™ be the first m caolumnns OfE}/"Vl.
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6. LetU) = - . where U} | € R for all
_Uil\"l
U(1N+1)1 ~
o,
t1=1,...,N+1, ai'uz'deﬁneUlT =
i
) Uiw
2
and U} = D Thenlet A3 = v Pulruisite
7k,
]RTI.X?!.'

Then ( A“ B“‘ C'”) is called a state space realization of
Py, ic. P() a2 'é(}ls)' 1Bs N.If no
singular values are dmppul 1¢. s = 0, we oblain an exact
realization. For more details and propertics of the above
state space realization, see [9].

o s
e =1,2,...,

2.3. State space realizations of a 3D image set

Let P(kq, ko, ka) By = 1,2, N;, i =1,2,3,bca3D
image set. We decompose the image set and obtain three 1D
sequences Py, Fy? and F3? via Algorithm 1 with some pa-
rameters r; > 0 and rg > 0. For each 1D component with
appropriately chosen reduction parameters s;, so, and s3
approximate realizations (A7, BJi%, €7}, (A"”2
B3, C3*** ) and (A3, By»°e, C”’E“‘) arc derived us-
ing Algorithin 2. Note that r1, r¢ denote the numbers of the
dropped singular values in the two singular value decom-
positions used to decompose the image set P in Algorithm
1 and sy, s3, s3 are the numbers of the discarded singular
values in the other three singular value decompositions used
to calculate the realizations in Algorithm 2. The smoothed
estimate of the 3D image set 2 obtained is then denoted as
Prim21,32:%2 and we have
P(kq, kg, k3) P””“"”’“(kl ko, k3)
— Tl,-?l(k 1”2,82( )
= TI,SL(ATI.,SI.)M*IBTI ;81
052,32 .Ag2|32)k2 1852,32

Xc‘};z;sa (Agz;-?a )kgle;z;Sa ,

'

pé’?:‘sa(ks)

where k; = 1,2,..., Ny, ¢ = 1,2,3. If in neither of the
two algorithms approximations are carried out we have an
exact realization of the image set given by P(ki, ks, k) =
PU'O;O’O'O(kh kz, k.’i)-

Note that the actual performance of the approximation
algorithm is in general not independent of the patticular as-
signment of which spatial dimension corresponds 0 which
index in the image array P, in part due to the different sizes
of the three 1D components. We have found, for example,

for microscopy image data it is often advisable that the mid-
dle index k4 corresponds to the optical axis, if fewer data
points are available in this direction than in the others.

3. STATE SPACE REALIZATIONS OF
BIOMEDICAL IMAGES AND NOISE REDUCTION

We apply our algorithm to a 3D fluorescent microscopy im-
age set I” of a mouse T cell. The T cell receptor has been
labeled with fluorescent tags and is therefore visible by flu-
orescent microscopy. All images of this 3D image sel and
two sample cross sections arc showa in Figure 1.

We first apply our algorithm to the 30 image scl with-
oul carrying oul approximations. Based on the notation
introduced in Mcthods section, the estimated tmage sct is
denoted as P2%99C Figure 2.al show a cross section of
PO000.8 The root-mean-square error (RMSE) between the
cstimated image set and the original image set is 7.4 x 10719
for the scale used for displays. This shows that up to in-
significant numerical errors an exact state space realization

- was obtained. Tt is interesting to note that the significant

background intensity level has also been accurately matched
by the realization algorithm.

To suppress noise of the image set P we use our algo-
rithm to obtain a realization of the image set with approx-
imations. As discussed in Methods section, the approxi-
mation is essentially based on splitting the set of singular
values of each singular value decomposition in two subsets,
One, typically the larger oncs, that will be ‘retained’ and
two, typically the smaller ones, that will be ‘discarded’ to
provide the approximation. Due to the presence of noise in
the image set, small singular values are corrupted by noise,
By excluding those singular values, we effectively suppress
noise and obtain a smoothed approximation of the noisy im-
age selL.

In this case, we choose to retain 15 and 30 singular val-
ues in the first two singular values decompositions used to
decompose the image set P and keep 60, 300 and 100 singu-
lar values in the other three singular value decompositions
when calculating the realizations. Due to the limitation of
space, we do not explain how to obtain these numbers here,
which can be found in a related paper on noise suppression
of point spread functions [10]. The total number of non-zero
singular values for the five singular value decomposition is
99, 110, 99, 315 and 110. Therefore, we dropped 84, 80, 39,
15 and 10 singular values respectively. From the notations
introduced in Methods section, the smoothed estimate of the
image set P is denoted as P#803%,15.10 Figyre 2.a2 show
the cross section of the image set P880:39.15,10  The dif-
ference between the smoothed image frame and the original
image frame, shown in Figure 2.a5 appears as random noise
and no significant error is introduced. For comparison, we
also applied a Gaussian filter of size 3*3*3 with standard

1155



deviation of one in all directions to the 3D image set. The
resultant image for the corresponding image frame is shown
in 2.43 and the difference between the smoothed image set
and the original image set is shown in Figure 2.26. As can
be seen, the error by the Gaussian filter method is bigger
than that using our method.

a0t

intensity
—- o M

(n

Fig. 1. (a) All two-dimensional images of a three-
dimensienal fluorescent microscopy image set of a T cell.
The image series was acquired on a Zeiss inverted micro-
scope with a 100x Plan-Aprochromat NA 1.4 objective us-
ing a high sensitivity Hamamatsu Orca 100 Peltier cooled
12 bit CCD camera. The image sct consists of 21 im-
ages each being a 99 x 110 pixel array. The mnages are
assumed to be 300nm apart. Each pixel i5 assumed o
be 67nm X 67nm in size. Therelore, Each frame has a
size of 6.633pm x 7.3Tum. The panel is arranged such
that the frames are displayed sequentially from left to right
and top to bottom, (b) is the cross section P(60, ks, k3),
ko=1,...,21, ks = 1,...,110 of the image set.
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