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Abstract. A method is presented to calculate state space realizations of a three-dimensional image set. It is

based on interpreting the image set as the impulse response of a 3D separable system. As an application it

is shown how this method, combined with approximation steps, including balanced model reduction, can

be used to suppress noise in three-dimensional image sets. The approach was motivated by a practical

problem in the analysis of three-dimensional fluorescent microscopy image data of fluorescently labelled

cells. The method is illustrated by an analysis of simulated data and experimental data. The proposed

approach can also be applied to a two-dimensional image in a straightforward way.

Key Words: multi-dimensional state space realization, separable n-D system, image processing, noise

suppression, balanced realization, fluorescent microscopy

1. Introduction

Fluorescence microscopy is widely used as a technique to reveal the location of
proteins in cells. Modern fluorescent labeling techniques allow specific cellular
proteins to be tagged by fluorescent markers. Imaging the cells with an epi-fluo-
rescent microscope reveals the location of the markers and therefore the location of
the specific proteins in the cells. To obtain information for the whole cell two-
dimensional images (frames) are taken at different focal planes. The resulting set of
images therefore forms a three-dimensional image set of the specimen.
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One of the problems of this methodology is that the signal level is typically very
low even when highly sensitive detectors are used [1]. In addition, the signal, i.e. the
photons emitted by the fluorescent tags, is itself a random process. There are also
various noise sources in the system ranging from scattered photons to readout noise
in the CCD camera [1]. This means that the acquired images have low signal-to-noise
ratios. Due to the optical properties of the microscope significant blurring can occur
because of the out of focus components of the sample [2], [3]. This blurring can be
removed by the use of deconvolution algorithms. However, the presence of noise in
the image sets is a notorious problem in the application of deconvolution algorithms
(see e.g., [4], [5], [6]. Therefore noise reduction in an image set is of significant
practical importance.
Many advanced signal processing techniques call for the use of state space models.

Therefore the question arises whether it is possible to also obtain a state space
representation for a three-dimensional image set as described above. In [7], [8], [9],
[10], [11] state space realizations are used for multi-dimensional filter design. Here we
will establish that it is indeed possible to represent a three-dimensional image set as
the impulse response of a three-dimensional (3D) separable system.
Balanced model reduction is an effective method to reduce the order of the system

represented by a balanced state space realization. It has also several desirable
properties such as an error bound and preservation of the stability of the original
system (see e.g. [12], [13], [14] for a review of some of the basic properties of balanced
realizations). The singular value decomposition of a data matrix is used in the design
of a two-dimensional filter [15] and is also employed in noise reduction for speech
enhancement (see [16] and references therein). In [17], [18] both singular value
decomposition and state space realizations are used in the design of a two-dimen-
sional separable-denominator digital filter. We show how an approximation of a
three-dimensional image set based on singular value decompositions of the corre-
sponding data matrices, combined with a balanced model reduction of the one-
dimensional components of the image set, can lead to a significant reduction in the
noise components of the image set.
The paper is organized as follows. In Section 2, we introduce some notation. In

Section 3, we present an algorithm to decompose a three-dimensional image set and
express it as the product of three one-dimensional vector-/matrix-valued compo-
nents. Then we discuss the use of a balanced realization algorithm to produce state
space realizations of the one-dimensional components of the three-dimensional
image set. In Section 4, we evaluate the algorithms with both simulated data and
experimental data. We draw conclusions in Section 5.

2. Notation

Shift operation. Let L ¼ ½Lt1t2 �
1�t2�T2

1�t1�T1 be a block matrix, where Lt1t2 2 R
p�q for some

p; q � 1 for all 1 � t1 � T1, 1 � t2 � T2. Then let L" be the ðT1 � 1Þp� T2q matrix
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given by dropping the first block row of L, i.e. L" ¼ ½L̂t1t2 �
1�t2�T2

1�t1�T1�1 with L̂t1t2 ¼ Lðt1þ1Þt2

for all 1 � t1 � T1 � 1, 1 � t2 � T2, and let L# be the ðT1 � 1Þp� T2q matrix given
by dropping the last block row of L, L# ¼ ½L̂t1t2 �

1�t2�T2

1�t1�T1�1 with L̂t1t2 ¼ Lt1t2 for all

1 � t1 � T1 � 1, 1 � t2 � T2, and let LFr be the p� T2q matrix given by the first
block row of L, i.e. LFr ¼ ½L̂1t2 �1�t2�T2

with L̂1t2 ¼ L1t2 for all 1 � t2 � T2, and let LLr

be the p� T2q matrix given by the last block row of L, i.e. LLr ¼ ½L̂1t2 �1�t2�T2
with

L̂1t2 ¼ LT1t2 for all 1 � t2 � T2. Then we have that

L ¼ LFr

L"

� �
¼ L#

LLr

� �
:

Let L
 

be the T1p� ðT2 � 1Þq matrix given by dropping the first block column of L,

i.e. L
 ¼ ½L̂t1t2 �

1�t2�T2�1
1�t1�T1 with L̂t1t2 ¼ Lt1ðt2þ1Þ for all 1 � t1 � T1, 1 � t2 � T2 � 1, and

let L
!

be the T1p� ðT2 � 1Þq matrix given by dropping the last block column of L,

i.e. L
!¼ ½L̂t1t2 �

1�t2�T2�1
1�t1�T1 with L̂t1t2 ¼ Lt1t2 for all 1 � t1 � T1, 1 � t2 � T2 � 1, and let

LFc be the T1p� q matrix given by the first block column of L, i.e. LFc ¼ ½L̂t11�1�t1�T1

with L̂t11 ¼ Lt11 for all 1 � t1 � T1, and let LLc be the T1p� q matrix given by the

last block column of L, i.e. LLc ¼ ½L̂t11�1�t1�T1
with L̂t11 ¼ Lt1T2

for all 1 � t1 � T1.

Then we have that L ¼ ½LFc L
 � ¼ ½L! LLc �:

Root-mean-square error. For positive integers N1, N2, N3 and two three-dimen-
sional arrays Pðk1; k2; k3Þ, P̂ðk1; k2; k3Þ 2 R, ki ¼ 1; 2; . . . ;Ni, i ¼ 1; 2; 3, the root-
mean-square error (RMSE) is given by

� ¼ 1

N1N2N3

XN1

k1¼1

XN2

k2¼1

XN3

k3¼1
ðPðk1; k2; k3Þ � P̂ðk1; k2; k3ÞÞ2

 !1=2

:

Identity matrix. Id stands for the identity matrix of size d� d. If the size is clear from
the context the subscript d is often dropped.
Diagonal matrix. If l1; . . . ; lK are scalars or matrices we denote by diagðl1; . . . ; lKÞ

the (block-)diagonal matrix with diagonal entries l1; . . . ; lK.
Singular value decomposition. Let H be an M�N matrix. A singular value

decomposition of H is defined by the factorization H ¼ URV; where U, V are
matrices consisting of orthogonal columns and orthogonal rows, respectively, i.e.
U�U ¼ I and VV� ¼ I, and their sizes are M� K and K�N, respectively, and
R ¼ diagðr1; r2; . . . ; rKÞ > 0. Note that ri, i ¼ 1; 2; . . . ;K, are the singular values.
Frobenius norm. The Frobenius norm of a matrix A is defined by
jjAjjF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA�AÞ;

p
where the superscript � denotes the complex conjugate trans-

pose and Trð:Þ denotes the trace of the matrix.
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3. State Space Realizations of a Three-dimensional Image Set

The basis of the approach taken here is given by the following realization result, in
which it is shown that a finite multi-dimensional data set can be decomposed and
expressed as the product of the impulse responses of multiple one-dimensional multi-
input multi-output systems. A similar approach was used in [17], [18] to calculate the
realizations of two-dimensional data sets. In contrast to our finite multi-dimensional
data situation the theoretical results in [17], [18] primarily address the realizations of
infinite two-dimensional data sets.

THEOREM 1. For positive integers N1, . . . ,ND let Pðk1; k2; . . . ; kDÞ 2 R,
ki ¼ 1; . . . ;Ni, i ¼ 1; . . . ;D, be a finite D-dimensional array. Then there exist system
matrices ðAi;Bi;CiÞ, i ¼ 1; . . . ;D, such that

Pðk1; k2; . . . ; kDÞ ¼ P1ðk1ÞP2ðk2Þ � � �PDðkDÞ;

where PiðkiÞ :¼ CiA
ki�1
i Bi with Ci 2 R

pi�ni , Ai 2 R
ni�ni , Bi 2 R

ni�mi , ki ¼ 1; . . . ;Ni,
i ¼ 1; . . . ;D.

Proof: For positive integers N1, . . . ,Nr let Qðk1; k2; . . . ; krÞ, ki ¼ 1; . . . ;Ni,
i ¼ 1; . . . ; r, be an array with block entries. We now arrange the block entries of Q in
the following way as

Note that the arrangement of the entries is such that all indices from the second
onwards are identical in all rows, whereas the first index increases from row to row.

Qr :¼

Qð1;1;...;1;1Þ Qð1;1;...;1;2Þ ��� Qð1;1;1;...;1;NrÞ Qð1;1;...;1;2;1Þ ���
Qð2;1;...;1;1Þ Qð2;1;...;1;2Þ ��� Qð2;1;1;...;1;NrÞ Qð2;1;...;1;2;1Þ ���
Qð3;1;...;1;1Þ Qð3;1;...;1;2Þ ��� Qð3;1;1;...;1;NrÞ Qð3;1;...;1;2;1Þ ���

..

. ..
. ..

. ..
.

QðN1;1;...;1;1ÞQðN1;1;...;1;2Þ ���QðN1;1;1;...;1;NrÞQðN1;1;...;1;2;1Þ ���

2
66666664

��� Qð1;1;...;1;2;NrÞ ��� Qð1;N2;...;Nr�2;Nr�1;NrÞ
��� Qð2;1;...;1;2;NrÞ ��� Qð2;N2;...;Nr�2;Nr�1;NrÞ
��� Qð3;1;...;1;2;NrÞ ��� Qð3;N2;...;Nr�2;Nr�1;NrÞ
..
. ..

.

���QðN1;1;...;1;2;NrÞ ���QðN1;N2;...;Nr�2;Nr�1;NrÞ

3
77777775
: ð1Þ
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Let Qr ¼ LR be a minimum rank decomposition of Qr, i.e.

rankðQrÞ ¼ rankðLÞ ¼ rankðRÞ. The left factor L ¼

Lð1Þ
Lð2Þ
..
.

LðN1Þ

2
664

3
775 is a finite block col-

umn vector with N1 entries. Therefore it has a realization ðA;B;CÞ, i.e.
Lðk1Þ ¼ CAk1�1B, k1 ¼ 1; . . . ;N1 [19]. The right factor R is a block row vector, i.e.
R ¼ ½Rð1Þ; Rð2Þ; . . . ;RðN2N3 � � �NrÞ�.
We apply the just described approach to P to obtain the factors L and R. Denote

the left factor L by P1 and its realization by ðA1;B1;C1Þ, i.e. P1ðk1Þ ¼ C1A
k1�1
1 B1,

k1 ¼ 1; . . . ;N1. The right factor R can in a natural way be associated with a block
array P1R with indices k2; . . . ; kD, i.e.

We therefore have obtained a decomposition of P as Pðk1; k2; . . . ; kDÞ ¼ P1ðk1ÞP1R

ðk2; k3; . . . ; kDÞ, ki ¼ 1; . . . ;Ni, i ¼ 1; . . . ;D. Now the above decomposition can be
applied to P1R. If we continue recursively we have

Pðk1; k2; . . . ; kDÞ ¼ P1ðk1ÞP2ðk2Þ � � �PDðkDÞ;

where PiðkiÞ :¼ CiA
ki�1
i Bi , ki ¼ 1; . . . ;Ni, i ¼ 1; . . . ;D:

P1R :¼

P1Rð1;1;...;1Þ P1Rð1;1;...;2Þ ��� P1Rð1;N3;...;NDÞ
P1Rð2;1;...;1Þ P1Rð2;1;...;2Þ ��� P1Rð2;N3;...;NDÞ
P1Rð3;1;...;1Þ P1Rð3;1;...;2Þ ��� P1Rð3;N3;...;NDÞ

..

. ..
. ..

. ..
.

P1RðN2;1;...;1Þ P1RðN2;1;...;2Þ ��� P1RðN2;N3;...;NDÞ

2
66666664

3
77777775

ð2Þ

:¼

Rð1Þ Rð2Þ
RðN3N4 ���NDþ1Þ RðN3N4 ���NDþ2Þ
Rð2N3N4 ���NDþ1Þ Rð2N3N4 ���NDþ2Þ

..

. ..
.

RððN2�1ÞN3N4 ���NDþ1ÞRððN2�1ÞN3N4 ���NDþ2Þ

2
66666664

Rð3Þ ��� RðN3N4 ���NDÞ
RðN3N4 ���NDþ3Þ ��� Rð2N3N4 ���NDÞ

Rð2N3N4 ���NDþ3Þ ��� Rð3N3N4 ���NDÞ
..
. ..

.

RððN2�1ÞN3N4 ���NDþ3Þ ��� RðN2N3N4 ���NDÞ

3
77777775
:
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Example 1. To illustrate the main ideas in Theorem 1 and to explain how a product
of three vector-/matrix-valued sequences can represent an array that cannot be
represented by three scalar-valued sequences, we will show how to decompose the
elements of a three-dimensional array Pðk1; k2; k3Þ, ki ¼ 1; 2; 3, i.e.

Pðk1; 1; k3Þ ¼
0 0 0

0 1 0

0 0 0

2
64

3
75; Pðk1; 2; k3Þ ¼

0 1 0

1 0 1

0 1 0

2
64

3
75;

Pðk1; 3; k3Þ ¼
0 0 0

0 1 0

0 0 0

2
64

3
75; k1; k3 ¼ 1; 2; 3;

into three vector-/matrix-valued sequences. We use such a small array to simplify the
calculation.
The first step in the construction introduced in Theorem 1 is to rearrange the

elements of P to form a two-dimensional array Q3 (Equation (1)), i.e.

Q3 ¼
Pð1; 1; 1Þ Pð1; 1; 2Þ Pð1; 1; 3Þ Pð1; 2; 1Þ Pð1; 2; 2Þ � � � Pð1; 3; 3Þ
Pð2; 1; 1Þ Pð2; 1; 2Þ Pð2; 1; 3Þ Pð2; 2; 1Þ Pð2; 2; 2Þ � � � Pð2; 3; 3Þ
Pð3; 1; 1Þ Pð3; 1; 2Þ Pð3; 1; 3Þ Pð3; 2; 1Þ Pð3; 2; 2Þ � � � Pð3; 3; 3Þ

2
64

3
75

¼
0 0 0 0 1 0 0 0 0

0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0

2
64

3
75:

Then a minimum rank decomposition of Q3 is performed. The results of the
decomposition depend on the method of the decomposition. Here, a very simple
decomposition can be obtained as

Q3 ¼
0 1
1 0
0 1

2
4

3
5 0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0

� �
:

Next, we assign P1 :¼

P1ð1Þ

P1ð2Þ

P1ð3Þ

2
664

3
775 :¼

0 1

1 0

0 1

2
64

3
75,

where the block column vector P1 is the first one-dimensional components of P, and

R :¼ ½Rð1ÞjRð2Þj � � � jRð9Þ� :¼ 0
0

1
0

����
���� 00 1

0

����
���� 01 1

0

����
���� 00 1

0

����
���� 00

� �
: We then rearrange the
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elements in R to form a block array P1R, which is naturally associated with the

indices k2 and k3, based on Equation (2), i.e.

P1R : ¼
P1R (1,1) P1R (1,2) P1R (1,3)

P1R (2,1) P1R (2,2) P1R (2,3)

P1R (3,1) P1R (3,2) P1R (3,3)

2
4

3
5 :¼

R(1) R(2) R(3)

R(4) R(5) R(6)

R(7) R(8) R(9)

2
4

3
5

¼

0 1 0

0 0 0

1 0 1

0 1 0

0 1 0

0 0 0

2
66666664

3
77777775
:

Again, we find a simple minimum rank decomposition of P1R, i.e.,

P1R ¼

0 1
0 0
1 0
0 1
0 1
0 0

2
6666664

3
7777775

1 0 1
0 1 0

� �
;

and assign P2 :¼
P2ð1Þ
P2ð2Þ
P2ð3Þ

2
4

3
5 :¼

0 1
0 0
1 0
0 1
0 1
0 0

2
6666664

3
7777775
; and P3 :¼ ½P3ð1Þj P3ð2Þj P3ð3Þ�

:¼ 1 0 1
0 1 0

� �
; where the block column vector P2 and the block row vector P3 are

the second and third components of the array P. In this case, we see that P1 and P3

are vector-valued sequences, while P2 is a matrix-valued sequence. Thus, we have
obtained a decomposition of P such that

Pðk1; k2; k3Þ ¼ P1ðk1ÞP2ðk2ÞP3ðk3Þ; ki ¼ 1; 2; 3; i ¼ 1; 2; 3:

The next step involves finding state space realizations of P1, P2 and P3. Such real-
izations are given by

A1 ¼
0 1 0
0 0 1
0 0 0

2
4

3
5; B1 ¼

0 1
1 0
0 1

2
4

3
5; C1 ¼ ½1; 0; 0�;
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A2 ¼

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

2
6666664

3
7777775
; B2 ¼

0 1
0 0
1 0
0 1
0 1
0 0

2
6666664

3
7777775
; C2 ¼

1 0 0 0 0 0
0 1 0 0 0 0

� �
;

and

A3 ¼
0 0 0
1 0 0
0 1 0

2
4

3
5; B3 ¼

1
0
0

2
4
3
5; C3

1 0 1
0 1 0

� �
:

Therefore we have

P1ðk1Þ ¼ C1A
k1�1
1 B1; k1 ¼ 1; 2; 3;

P2ðk2Þ ¼ C2A
k2�1
2 B2; k2 ¼ 1; 2; 3

and

P3ðk3Þ ¼ C3A
k3�1
3 B3; k3 ¼ 1; 2; 3:

It is easy to verify that

Pðk1; k2; k3Þ ¼ C1A
k1�1
1 B1C2A

k2�1
2 B2C3A

k3�1
3 B3; k1; k2; k3 ¼ 1; 2; 3: j

The proof of Theorem 1 gives a high level algorithm as to how to obtain a realization
for a finite D-dimensional array of data points. What is missing in this high level
algorithm is a particular method to obtain the factorizations of the data matrix and a
realization algorithm. While a number of choices exist we will use here approaches
based on the singular value decomposition and balanced realizations. The advantage
of using these methods is that model reduction and noise reduction can easily be
incorporated into the algorithm.

3.1. Decomposition of Three-Dimensional Image Sets

In what follows we present the first part of the algorithm, i.e. the factorization part,
in some detail. In the proof of the previous theorem a full rank decomposition
Qr ¼ LR of a rearranged data matrix Q was performed. In our specific imple-
mentation we will use a singular value decomposition to carry out this factorization.
If it is not required to have a state space realization that completely matches the
data, but if noise reduction is desired instead, an approximate factorization can be
used that is also based on the singular value decomposition. Singular value
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decompositions of two-dimensional data matrices are also employed in noise
reduction for speech enhancement (see[16] and references therein) and the design of a
two-dimensional filter ([15]).

Algorithm 1. For positive integers N1, N2 and N3 let Pðk1; k2; k3Þ, ki ¼ 1; 2; . . . ;Ni,
i ¼ 1; 2; 3, represent a three-dimensional image set.

1. Arrange the entries of P in a matrix Q3 as

Q3 ¼

Pð1; 1; 1Þ Pð1; 1; 2Þ � � � Pð1; 2; 1Þ Pð1; 2; 2Þ
Pð2; 1; 1Þ Pð2; 1; 2Þ � � � Pð2; 2; 1Þ Pð2; 2; 2Þ
Pð3; 1; 1Þ Pð3; 1; 2Þ � � � Pð3; 2; 1Þ Pð3; 2; 2Þ

..

. ..
. ..

. ..
.

PðN1; 1; 1Þ PðN1; 1; 2Þ � � � PðN1; 2; 1Þ PðN1; 2; 2Þ

2
666666664

� � � Pð1; 3; 1Þ Pð1; 3; 2Þ � � � Pð1;N2;N3Þ
� � � Pð2; 3; 1Þ Pð2; 3; 2Þ � � � Pð2;N2;N3Þ
� � � Pð3; 3; 1Þ Pð3; 3; 2Þ � � � Pð3;N2;N3Þ

..

. ..
. ..

.

� � � PðN1; 3; 1Þ PðN1; 3; 2Þ � � � PðN1;N2;N3Þ

3
777777775
:

2. Decompose Q3 via the singular value decomposition as Q3 ¼ U1R
1=2
1 R1=2

1 V1.

3. Partition R1 ¼ diagðR̂1;
^̂R1Þ, U1 ¼ ½Û1;

^̂
U1�, and V1 ¼

V̂1
^̂
V1

" #
conformally, where

R̂1 2 R
l1�l1 ,

^̂R1 2 R
r1�r1 , Û1 2 R

N1�l1 , ^̂U1 2 R
N1�r1 , V̂1 2 R

l1�N2N3 ,
^̂
V1 2 R

r1�N2N3 and
l1, r1 are positive integers.

Let Lr1
3 :¼

Lr1
3 ð1Þ

Lr1
3 ð2Þ

Lr1
3 ð3Þ
..
.

Lr1
3 ðN1Þ

2
666664

3
777775 :¼ Û1R̂

1=2
1 ; and Rr1

3 :¼ ½Rr1
3 ð1Þ; . . . ;R

r1
3 ðN2N3Þ� : ¼ R̂1=2

1 V̂1;

where Lr1
3 ðk1Þ 2R1�l1 ; k1 ¼ 1; . . . ;N1;R

r1
3 ðiÞ 2 R

l1�1, i ¼ 1; . . . ;N2N3, and r1 denotes
the number of singular values (including multiplicities) that are dropped in the
approximation, i.e. the number of diagonal entries of

^̂R1. Then Q3 � Q̂r1
3 :¼ Lr1

3 R
r1
3 is

an approximate factorization. The factorization is exact for r1 ¼ 0, i.e.
Q3 ¼ Q̂0

3 ¼ L0
3R

0
3.
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Let the block column vector Pr1
1 be Pr1

1 :¼

Pr1
1 ð1Þ

Pr1
1 ð2Þ

Pr1
1 ð3Þ
..
.

Pr1
1 ðN1Þ

2
66664

3
77775 : ¼ Lr1

3 ;where Pr1
1 ðk1Þ 2 R

1�l1 ;

k1 ¼ 1; 2; . . . ;N1.

4. Rearrange the elements of Rr1
3 to form Q2 as

Q2 :¼

Q2ð1;1Þ Q2ð1;2Þ Q2ð1;3Þ ��� Q2ð1;N3Þ
Q2ð2;1Þ Q2ð2;2Þ Q2ð2;3Þ ��� Q2ð2;N3Þ
Q2ð3;1Þ Q2ð3;2Þ Q2ð3;3Þ ��� Q2ð3;N3Þ

..

. ..
. ..

. ..
.

Q2ðN2;1ÞQ2ðN2;2ÞQ2ðN2;3Þ ���Q2ðN2;N3Þ

2
66666664

3
77777775

:¼

Rr1
3 ð1Þ Rr1

3 ð2Þ Rr1
3 ð3Þ ��� Rr1

3 ðN3Þ
Rr1

3 ðN3þ1Þ Rr1
3 ðN3þ2Þ Rr1

3 ðN3þ3Þ ��� Rr1
3 ð2N3Þ

Rr1
3 ð2N3þ1Þ Rr1

3 ð2N3þ2Þ Rr1
3 ð2N3þ3Þ ��� Rr1

3 ð3N3Þ

..

. ..
. ..

. ..
.

Rr1
3 ððN2�1ÞN3þ1ÞRr1

3 ððN2�1ÞN3þ2ÞRr1
3 ððN2�1ÞN3þ3Þ ���Rr1

3 ðN2N3Þ

2
66666664

3
77777775
:

5. Decompose Q2 via the singular value decomposition as Q2 ¼ U2R
1=2
2 R1=2

2 V2:

6. Partition R2 ¼ diagðR̂2;
^̂R2Þ, U2 ¼ ½Û2;

^̂
U2�, and V2 ¼

V̂2
^̂
V2

" #
conformally, where

R̂2 2 R
l2�l2 , ^̂R2 2 R

r2�r2 , Û2 2 R
N2l1�l2 (l1 is the number of the retained singular values

in step 3),
^̂
U2 2 R

N2l1�r2 , V̂2 2 R
l2�N3 ,

^̂
V2 2 R

r2�N3 and l2, r2 are positive integers.

Let Lr2
2 :¼

Lr2
2 ð1Þ

Lr2
2 ð2Þ

Lr2
2 ð3Þ
..
.

Lr2
2 ðN2Þ

2
666664

3
777775 :¼ Û2R̂

1=2
2 , and Rr2

2 :¼ ½Rr2
2 ð1Þ; . . . ;R

r2
2 ðN3Þ� :¼ R̂1=2

2 V̂2,

where Lr2
2 ðk2Þ 2Rl1�l2 , k2 ¼ 1; . . . ;N2, Rr2

2 ðk3Þ 2 R
l2�1, k3 ¼ 1; . . . ;N3, and r2

denotes the number of singular values (including multiplicities) that are dropped in
the approximation, i.e. the number of diagonal entries of

^̂R2. Then
Q2 � Q̂r2

2 :¼ Lr2
2 R

r2
2 is an approximate factorization. The factorization is exact for

r2 ¼ 0, i.e. Q2 ¼ Q̂0
2 ¼ L0

2R
0
2.
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Let the block column vector Pr2
2 be Pr2

2 :¼

Pr2
2 ð1Þ

Pr2
2 ð2Þ

Pr2
2 ð3Þ
..
.

Pr2
2 ðN2Þ

2
666664

3
777775 :¼ Lr2

2 and the block row vector

Pr2
3 be Pr2

3 :¼ ½Pr2
3 ð1Þ; Pr2

3 ð2Þ; . . . ; Pr2
3 ðN3Þ� :¼ Rr2

2 ; where Pr2
2 ðk2Þ 2 R

l1�l2 ,
k2 ¼ 1; 2; . . . ;N2, and Pr2

3 ðk3Þ 2 R
l2�1, k3 ¼ 1; 2; . . . ;N3.

In Algorithm 1 an approximate decomposition of the image data points is obtained

Pðk1; k2; k3Þ � Pr1;r2ðk1; k2; k3Þ
:¼ Pr1

1 ðk1ÞP
r2
2 ðk2ÞP

r2
3 ðk3Þ; ki ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; 3;

where r1 and r2 are the numbers of the dropped singular values in step 3 and step 6.
If the image set P is noisy small singular values will be corrupted by noise. Since
those small singular values are dropped during the approximation the noise level of
the estimate significantly reduces.
If no approximation is carried out, i.e. if r1 ¼ r2 ¼ 0, we have the exact fac-

torization

Pðk1; k2; k3Þ ¼ P0;0ðk1; k2; k3Þ ¼ P0
1ðk1ÞP0

2ðk2ÞP0
3ðk3Þ;

ki ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; 3:

It is important to note that the dimensions of the three components Pr1
1 ðk1Þ, P

r2
2 ðk2Þ

and Pr2
3 ðk3Þ typically differ significantly and depend on the numbers of the retained

singular values in step 3 and step 6. In general, Pr1
1 ðk1Þ and Pr2

3 ðk3Þ are vector-valued,
whereas Pr2

2 ðk2Þ is matrix-valued.

3.2. Balanced State Space Realizations of Finite One-dimensional Sequences

In the previous subsection the three-dimensional image set was decomposed into
vector-/matrix-valued one-dimensional components. In this subsection a state
space realization will be calculated for each of these components. Since each
component is a finite sequence the existence of a state space realization is
guaranteed by fundamental results in realization theory (see e.g. [19]). Among the
choices of potential realizations we will use balanced realizations [20], since they
are also highly suitable for purposes of model reduction. The particular realiza-
tion algorithm that we use is a modification of Kung’s algorithm (see [21], [22]
for a detailed discussion of Kung’s algorithm) that is based on singular value
decompositions of the Hankel matrices associated with the one-dimensional
components. The proposed modifications guarantee that we obtain exact state
space realizations for any finite one-dimensional sequences, and approximate state
space realizations can be easily obtained from the exact state space realizations.
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Algorithm 2. For positive integer N let PðiÞ 2 R
p�m; i ¼ 1; 2; . . . ;N, be a finite one-

dimensional sequence.

1. Construct the ðNþ 1Þp� ðN þ 1Þm Hankel matrix

H ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0
Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

. ..
.

PðNÞ 0 � � � � � � 0 0
0 0 � � � � � � 0 0

2
66664

3
77775;

where 0 denotes a block of zeros of size p�m.
2. Let H ¼ URV be a singular value decomposition.
3. Partition R ¼ diagðR1;R2Þ, R1 2 R

n�n, R2 2 R
s�s, U ¼ ½U1;U2�, U1 2 R

ðNþ1Þp�n,

U2 2 R
ðNþ1Þp�s, and V ¼ V1

V2

� �
, V1 2 R

n�ðNþ1Þm, V2 2 R
s�ðNþ1Þm, conformally. We

also allow for the partition in which the second components are empty, i.e. s ¼ 0.

4. Let Cs 2 R
p�n be the first p rows of U1R

1=2
1 .

5. Let Bs 2 R
n�m be the first m columns of R1=2

1 V1.

6. Let U1 ¼

�U1
11

..

.

�U1
N1�U1

ðNþ1Þ1

2
664

3
775, where the block rows �U1

t11
2 R

p�n for all t1 ¼ 1; . . . ;Nþ 1,

and U"1 ¼
�U1
21

..

.

�U1
ðNþ1Þ1

2
64

3
75 and U#1 ¼

�U1
11

..

.

�U1
N1

2
64

3
75 (for a formal definition of the shift operation

see Section 2). Then let As be the solution of the following least-squares problem

jjðU1R
1=2
1 Þ

#As � ðU1R
1=2
1 Þ

"jjF ¼ inf
X2Rn�n

jjðU1R
1=2
1 Þ

#X� ðU1R
1=2
1 Þ

"jjF;

and As 2 R
n�n can be calculated as

As ¼ R�1=21 U#�1 U"1R
1=2
1 :

In the following proposition we collect a number of properties concerning the reali-
zation obtained from the previous algorithm.While similar results ([11], [21], [23]) have
appeared in the literature the specific combination of some of the results presented here
appears to be new. In addition, we also discuss the situation concerning an exact state
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space realization (when s ¼ 0) and results on the relationship between the exact state
space realization and an approximate realization (when s 6¼ 0).

Proposition 1. For positive integer N let PðiÞ 2 R
p�m; i ¼ 1; 2; . . . ;N, be a one-

dimensional sequence. Then

1. ifðAs; Bs; CsÞ is a state space realization of P calculated via Algorithm 2, then,

As ¼ R�1=21 U#�1 U"1R
1=2
1

is the solution of the following least-squares problem, i.e.

jjðU1R
1=2
1 Þ

#As � ðU1R
1=2
1 Þ

"jjF ¼ inf
X2Rn�n

jjðU1R
1=2
1 Þ

#X� ðU1R
1=2
1 Þ

"jjF:

2. we have that

As ¼ R�1=21 U#�1 U"1R
1=2
1 ¼ R1=2

1 V
 

1V
!�

1R
�1=2
1 ð3Þ

and As is also the least-squares solution such that

jjAsðR1=2
1 V
!

1Þ � R1=2
1 V
 

1jjF ¼ inf
X2Rn�n

jjXðR1=2
1 V
!

1Þ � R1=2
1 V
 

1jjF:

3. if ðA0; B0; C 0Þ is a state space realization of P calculated via Algorithm 2 when
s ¼ 0 and, based on the sizes of the matrices used in Algorithm 2, we rewrite

U ¼

�U11

..

.

�UN1
�UðNþ1Þ1

2
6664

3
7775, where the block rows �Ut11 2 R

p�ðnþsÞ for all t1 ¼ 1; . . . ;Nþ 1,

V ¼ ½ �V11
�V12 . . . �V1ðNþ1Þ�, where the block columns �V1t2 2 R

ðnþsÞ�m for all

t2 ¼ 1; . . . ;Nþ 1, and have U" ¼
�U21

..

.

�UðNþ1Þ1

2
64

3
75, U# ¼

�U11

..

.

�UN1

2
64

3
75, V
 ¼ ½ �V12 . . . �V1ðNþ1Þ�

and V
!¼ ½ �V11 . . . �V1N� (for a definition of the shift operation see Section 2), then

(a)A0 ¼ R�1=2U#�U"R1=2 is the exact solution of the linear equation

A0ðR1=2V
!Þ ¼ R1=2V

 
:
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(b) A0 ¼ R�1=2U#�U"R1=2 is the exact solution of the linear equation

ðUR1=2Þ#A0 ¼ ðUR1=2Þ":

(c) the controllability matrix and the observability matrix are

C 0

C 0A 0

C 0ðA 0Þ2

..

.

C 0ðA 0ÞN

2
666664

3
777775 ¼ UR1=2and B0 A0B0 ðA0Þ2B0 . . . ðA0ÞNB0

h i
¼ R1=2V;

respectively.
(d) ðA0; B0; C 0Þ is a minimal and stable realization and ðA0Þi ¼ 0; i � N.
(e) the system ðA0; B0; C 0Þ is a realization of the sequence P, i.e.

PðkÞ ¼ C 0ðA0Þk�1B0; k ¼ 1; 2; 3; . . . ;N;

and

C 0ðA0Þk�1B0 ¼ 0; k > N

:

(f) ðA0; B0; C 0Þ is a balanced realization, i.e.

A0PgðA0Þ� � Pg þ B0ðB0Þ� ¼ 0;

ðA0Þ�QgA
0 �Qg þ ðC 0Þ�C 0 ¼ 0;

where Pg ¼ Qg ¼ R.
4. if the exact realization ðA0; B0; C 0Þ, i.e. s ¼ 0, and the corresponding Gramians

are decomposed conformally as

A 0 ¼ A 0
11 A 0

12

A 0
21 A 0

22

� �
; B 0 ¼ B 0

1

B 0
2

� �
; C 0 ¼ ½C 0

1 C 0
2 �; and R ¼ R1 0

0 R2

� �

such that

C 0A 0 ¼ ½C 0
1 C 0

2 �
A 0

11 A 0
12

A 0
21 A 0

22

� �
¼ ½C 0

1A
0
11 þ C 0

2A
0
21;C

0
1A

0
12 þ C 0

2A
0
22�;

and

A 0B 0 ¼ A 0
11 A 0

12

A 0
21 A 0

22

� �
B 0
1

B 0
2

� �
¼ A 0

11B
0
1 þ A 0

12B
0
2

A 0
21B

0
1 þ A 0

22B
0
2

� �
;
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with R2 2 R
sa�sa , for some integer sa � 1, and ðAsa ; Bsa ; CsaÞ is the realization

obtained via Algorithm 2 for the same sa, then
(a) we have

Asa ¼ A0
11; Bsa ¼ B0

1; and Csa ¼ C 0
1 :

(b) the realization ðAsa ; Bsa ; CsaÞ is minimal and asymptotically stable and we have

AsaR1ðAsaÞ� � R1 þ BsaðBsaÞ� �0;
ðAsaÞ�R1A

sa � R1 þ ðCsaÞ�Csa �0:

Proof: 1. Let H ¼ URV be a singular value decomposition. Based on the sizes of
the matrices given in Algorithm 2 we have that R 2 R

ðnþsÞ�ðnþsÞ, U 2 R
ðNþ1Þp�ðnþsÞ

and V 2 R
ðnþsÞ�ðNþ1Þm. Let U and V be partitioned as U ¼ U#

ULr

� �
and V ¼ ½V! VLc �

(for a definition of the shift operation see Section 2), where ULr 2 R
p�ðnþsÞ and

VLc 2 R
ðnþsÞ�m. Then

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0

Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

. ..
.

PðNÞ 0 � � � � � � 0 0

0 0 � � � � � � 0 0

2
66666664

3
77777775
¼ H

¼ U#

ULr

� �
R½V! j VLc � ¼

U#RV
!

U#RVLc

ULrRV
!

ULrRVLc

2
66664

3
77775:

Therefore, we have

0 ¼ ½ULrRV
! j ULrRVLc � ¼ ULrRV; 0 ¼ U#RVLc

ULrRVLc

� �
¼ URVLc ;

where 0 denotes a block of zeros of appropriate sizes. Hence,

ULr ¼ULrðRVV�R�1Þ ¼ ðULrRVÞV�R�1 ¼ 0;

VLc ¼ðR�1U�URÞVLc ¼ R�1U�ðURVLcÞ ¼ 0:

Consequently,
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H ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0

Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

.

PðNÞ 0 � � � � � � 0 0

0 0 � � � � � � 0 0

2
66666664

3
77777775
¼

U#RV
!

0

0 0

2
66664

3
77775;

and

U#�U# ¼U#�U# þ ðULrÞ�ULr ¼ ½U#� ðULrÞ�� U#

ULr

� �
¼ U�U ¼ I:

Similarly we have that V
!

V
!� ¼ I. Considering the partition used earlier we have that

U# ¼ ½U#1; U#2�, where U
#
1 is a Np� nmatrix and U#2 is a Np� smatrix. Therefore, we

have that

U#�1 U#1 U#�1 U#2
U#�2 U#1 U#�2 U#2

" #
¼ ½U#1 U#2�

�½U#1 U#2� ¼ U#�U# ¼ I:

As a result, we have U#�1 U#1 ¼ I, U#�2 U#2 ¼ I, U#�1 U#2 ¼ 0 and U#�2 U#1 ¼ 0.
Let Xo 2 R

n�n be the solution to a least-squares problem, i.e.

inf
X2Rn�n

jjEX� FjjF ¼ jjEXo � FjjF:

If E has full column rank then Xo can be calculated as [24] Xo ¼ ðE�EÞ�1E�F: Let X̂
be the least-squares solution such that

jjðU1R
1=2
1 Þ

#X̂� ðU1R
1=2
1 Þ

"jjF ¼ inf
X2Rn�n

jjðU1R
1=2
1 Þ

#X� ðU1R
1=2
1 Þ

"jjF;

where ðU1R
1=2
1 Þ

" ¼ U"1R
1=2
1 and ðU1R

1=2
1 Þ

# ¼ U#1R
1=2
1 . From the previous discussion we

know U#1 consists of orthogonal columns and R1 has full rank. As a result, ðU1R
1=2
1 Þ

#

has full column rank. Therefore, we have

X̂ ¼ ððU1R
1=2
1 Þ

#�ðU1R
1=2
1 Þ

#Þ�1ðU1R
1=2
1 Þ

#�ðU1R
1=2
1 Þ

"

¼ ðR1=2
1 U#�1 U#1R

1=2
1 Þ

�1R1=2
1 U#�1 U"1R

1=2
1

¼ R�11 R1=2
1 U#�1 U"1R

1=2
1 ¼ R�1=21 U#�1 U"1R

1=2
1

¼ As:
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2. Let us decompose the matrices U and V as U ¼ UFr

U"

� �
and V ¼ ½VFc V

 �, where

UFr 2 R
p�ðnþsÞ is the first block row of U and VFc 2 R

ðnþsÞ�m is the first block column
of V (for a definition of the shift operation see Section 2). We have

H ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0

Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

. ..
.

PðN� 1Þ PðNÞ � � � � � � 0 0

PðNÞ 0 � � � � � � 0 0

0 0 � � � � � � 0 0

2
6666666664

3
7777777775

¼URV ¼ U#

ULr

� �
R½VFc jV � ¼ U#RVFc U#RV

 

ULrRVFc ULrRV
 

" #
: ð4Þ

Similarly we get

H ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0

Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

. ..
.

PðN� 1Þ PðNÞ � � � � � � 0 0

PðNÞ 0 � � � � � � 0 0

0 0 � � � � � � 0 0

2
6666666664

3
7777777775

¼URV ¼ UFr

U"

� �
R½V! jVLc � ¼ UFrRV

!
UFrRVLc

U"RV
!

U"RVLc

" #
: ð5Þ

Note that the (1,2) block of H in Equation (4) equals the (2,1) block of H in
Equation (5). Therefore,

U#RV
 ¼ U"RV

!
: ð6Þ

We substitute R ¼ diagðR1;R2Þ, U# ¼ ½U#1 U#2�, U" ¼ ½U"1 U"2�, V
 ¼ V

 
1

V
 

2

" #
and

V
!¼ V

!
1

V
!

2

" #
in Equation (6), where, from the partition discussed earlier and the

notation defined in Section 2, the Np� s matrix U"2 is given by dropping the first
block row of U2, the n�Nm matrix V

 
1 is given by dropping the first block column

of V1, the n�Nm matrix V
!

1 is given by dropping the last block column of V1, the
s�Nm matrix V

 
2 is given by dropping the first block column of V2, and the s�Nm

matrix V
!

2 is given by dropping the last block column of V2. We have that
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U#1R1V
 

1 þU#2R2V
 

2 ¼ U"1R1V
!

1 þU"2R2V
!

2: ð7Þ

Using U#�1 U#1 ¼ I, U#�1 U#2 ¼ 0 and multiplying R�1=21 U#�1 on both sides of Equation (7)
we get

R1=2
1 V
 

1 ¼ R�1=21 U#�1 U"1R1V
!

1 þ R�1=21 U#�1 U"2R2V
!

2: ð8Þ

Using the fact that V
!

1V
!�

1 ¼ I, V
!

2V
!�

1 ¼ 0 and multiplying both sides of Equation (8)
with V

!�
1R
�1=2
1 we get

R1=2
1 V
 

1V
!�

1R
�1=2
1 ¼ R�1=21 U#�1 U"1R

1=2
1 ¼ As:

The solution to the least-squares problem, i.e.

jjXoðR1=2
1 V
!

1Þ � R1=2
1 V
 

1jjF ¼ inf
X2Rn�n

jjXðR1=2
1 V
!

1Þ � R1=2
1 V
 

1jjF;

is given by

Xo ¼ R1=2
1 V
 

1ðR1=2
1 V
!

1Þ�ððR1=2
1 V
!

1ÞðR1=2
1 V
!

1Þ�Þ�1

¼ R1=2
1 V
 

1ðR1=2
1 V
!

1Þ�ðR1=2
1 V
!

1V
!�

1R
1=2
1 Þ

�1

¼ R1=2
1 V
 

1V
!�

1R
1=2
1 R�11 ¼ R1=2

1 V
 

1V
!�

1R
�1=2
1 ¼ As:

3(a). When s ¼ 0 we have R1 ¼ R, U1 ¼ U and V1 ¼ V. With direct substitution,
Equation (3) becomes

A0 ¼ R�1=2U#�U"R1=2:

Using that U#�U# ¼ I we have from Equation (6) that

R1=2V
 ¼ R�1=2U#�ðU#RV

 Þ ¼ R�1=2U#�ðU"RV
!Þ

¼ ðR�1=2U#�U"R1=2ÞR1=2V
!¼ A0R1=2V

!
:

ð9Þ

Therefore, A0 ¼ R�1=2U#�U"R1=2 is the exact solution of R1=2V
 ¼ A0R1=2V

!
.

3(b). Using Equation (9) and the fact that V
!

V
!� ¼ I we have that

A0 ¼ ðA0R1=2V
!ÞV!

�
R�1=2 ¼ R1=2V

 
V
!�

R�1=2: ð10Þ

Then making use of both Equation (6) and Equation (10) we have
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U"R1=2 ¼ ðU"RV
!ÞV!

�
R�1=2 ¼ ðU#RV

 ÞV!
�
R�1=2

¼ U#R1=2ðR1=2V
 

V
!�

R�1=2Þ ¼ U#R1=2A0:

Therefore A0 is also the exact solution of the equation ðUR1=2Þ#A0 ¼ ðUR1=2Þ".

3(c). Let us rewrite UR1=2 ¼

w1

w2

..

.

wNþ1

2
664

3
775; where wi 2 R

p�m; i ¼ 1; 2; . . . ;Nþ 1. Since

C 0 is the first p rows of UR1=2 we have w1 ¼ C 0. Because A0 is the exact solution of

w2

w3

..

.

wNþ1

2
6664

3
7775 ¼

w1

w2

..

.

wN

2
6664

3
7775A0 we have wi ¼ wi�1A

0; i ¼ 2; 3; . . . ;Nþ 1. As a result,

UR1=2 ¼

C 0

C 0A0

..

.

C 0ðA0ÞN

2
664

3
775:

Since A0 is also the solution of R1=2V
 ¼ A0R1=2V

!
we similarly have that

R1=2V ¼ ½B0 A0B0 � � � ðA0ÞNB0�:

3(d). We have

U#R
ULrR

� �
¼ UR1=2 ¼

C 0

C 0A0

..

.

C 0ðA0ÞN

2
664

3
775;

and it has been shown that ULr ¼ 0 in the proof of Proposition 2 part 1. As a result,
C 0ðA0ÞN ¼ 0. Similarly, we have that ðA0ÞNB0 ¼ 0. Therefore,

rankð½B0 A0B0 . . . ðA0ÞN�1B0�Þ ¼ rankðR1=2V
!Þ ¼ rankðRÞ

¼ rankðU#R1=2Þ ¼ rank

C 0

C 0A0

..

.

C 0ðA0ÞN�1

2
66664

3
77775

0
BBBB@

1
CCCCA:
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Since R has full rank ðA0; B0Þ is controllable and ðC 0; A0Þ is observable. Hence the
realization ðA0; B0; C 0Þ is minimal.
Since C 0ðA0ÞN ¼ 0 and ðA0ÞNB0 ¼ 0 we also have C 0ðA0Þi ¼ 0, i � N, and
ðA0ÞiB0 ¼ 0; i � N. As a result, we have ðA0ÞN½B0 A0B0 � � � ðA0ÞN�1B0� ¼ 0. Since
½B0 A0B0 � � � ðA0ÞN�1B0� has full row rank we have ðA0ÞN ¼ 0. Consequently, we
also have

ðA0Þi ¼ 0; i � N:

Therefore, the realization ðA0; B0; C 0Þ is asymptotically stable.
3(e). When s ¼ 0

H ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ 0

Pð2Þ Pð3Þ � � � PðNÞ 0 0

..

. ..
. ..

. ..
.

PðNÞ 0 � � � � � � 0 0

0 0 � � � � � � 0 0

2
666664

3
777775 ¼ UR1=2R1=2V

¼

C 0

C 0A0

..

.

C 0ðA0ÞN�1
C 0ðA0ÞN

2
666664

3
777775½B

0 A0B0 � � � ðA0ÞN�1B0 ðA0ÞNB0�

¼

C 0B0 C 0A0B0 C 0ðA0Þ2B0 � � � C 0ðA0ÞN�1B0 0

C 0A0B0 C 0ðA0Þ2B0 C 0ðA0Þ3B0 � � � 0 0

C 0ðA0Þ2B0 C 0ðA0Þ3B0 C 0ðA0Þ4B0 � � � 0 0

..

. ..
. ..

. ..
.

C 0ðA0ÞN�1B0 0 � � � � � � 0 ..
.

0 0 � � � � � � 0 0

2
6666666664

3
7777777775
:

As a result, the system is a realization of the sequence, i.e.

PðkÞ ¼ C 0ðA0Þk�1B0; k ¼ 1; 2; 3; . . . ;N:

From Proposition 1 part 3(d) we know ðA0Þi ¼ 0; i � N. Therefore,

C 0ðA0Þk�1B0 ¼ 0; k > N:

3(f). The observability Gramian Pg and the controllability Gramian Qg can be
calculated as
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Pg ¼
X1
k¼1
ððA0Þk�1B0ÞððA0Þk�1B0Þ� ¼

XN
k¼1
ððA0Þk�1B0ÞððA0Þk�1B0Þ�

¼ R1=2VðR1=2VÞ� ¼ R > 0;

Qg ¼
X1
k¼1
ðC 0ðA0Þk�1Þ�ðC 0ðA0Þk�1Þ ¼

XN
k¼1
ðC 0ðA0Þk�1Þ�ðC 0ðA0Þk�1Þ

¼ ðUR1=2Þ�UR1=2 ¼ R > 0:

Therefore, Pg ¼ Qg and the Gramians are diagonal, which shows that the system is
balanced. That the Lyapunov equations hold is a standard result.
4(a). We know

C 0
1 C 0

2

� �
C 0

1 C 0
2

� �
A0

..

.

2
6664

3
7775 ¼ UR1=2 ¼ ½U1 U2�

R1 0
0 R2

� �1=2
¼ ½U1R

1=2
1 U2R

1=2
2 �;

and

B0
1

B0
2

� �
A0 B0

1

B0
2

� �
� � �

� �
¼ R1=2V ¼ R1 0

0 R2

� �1=2
V1

V2

� �
¼ R1=2

1 V1

R1=2
2 V2

" #
:

By definition Csa is the first block row in U1R
1=2
1 and Bsa is the first block column in

R1=2
1 V1. Consequently, Csa ¼ C 0

1 and Bsa ¼ B0
1. Since A0 is the solution of

ðUR1=2Þ" ¼ ðUR1=2Þ#A0 we have that

½ðU1R
1=2
1 Þ

" ðU2R
1=2
2 Þ

"� ¼ ½ðU1R
1=2
1 Þ

# ðU2R
1=2
2 Þ

#� A0
11 A0

12

A0
21 A0

22

� �
:

As a result,

ðU1R
1=2
1 Þ

" ¼ ðU1R
1=2
1 Þ

#A0
11 þ ðU2R

1=2
2 Þ

#A0
21: ð11Þ

Rearranging Equation (11) yields

ðU1R
1=2
1 Þ

#A0
11 ¼ ðU1R

1=2
1 Þ

" � ðU2R
1=2
2 Þ

#A0
21:

Using that U#�1 U#2 ¼ 0 we therefore have

A0
11 ¼ R�1=21 U#�1 U"1R

1=2
1 � R�1=21 U#�1 U#2R

1=2
2 A0

21 ¼ R�1=21 U#�1 U"1R
1=2
1 ¼ Asa :
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4(b). From Proposition 1 part 3(d) and Proposition 1 part 3(f) we know
ðA0; B0; C 0Þ is a minimal, stable and balanced realization. Therefore, the realiza-
tion ðAsa ; Bsa ; CsaÞ is minimal and stable [25]. From Proposition 1 part 3(f) we have
also

A0PgðA0Þ� � Pg þ B0ðB0Þ� ¼0;
ðA0Þ�QgA

0 �Qg þ ðC 0Þ�C 0 ¼0:

Considering the partitions of the realization ðA0; B0; C 0Þ we have

0 ¼A0PgðA0Þ� � Pg þ B0ðB0Þ�

¼ A0
11 A0

12

A0
21 A0

22

" #
R1 0

0 R2

� �
A0

11 A0
12

A0
21 A0

22

" #�
�

R1 0

0 R2

� �
þ B0

1

B0
2

" #
B0
1

B0
2

" #�

¼
A0

11R1ðA0
11Þ
� þ A0

12R2ðA0
12Þ
� � R1 þ B0

1ðB0
1Þ
�

A0
21R1ðA0

11Þ
� þ A0

22R2ðA0
12Þ
� þ B0

2ðB0
1Þ
�

"

A0
11R1ðA0

21Þ
� þ A0

12R2ðA0
22Þ
� þ B0

1ðB0
2Þ
�

A0
21R1ðA0

21Þ
� þ A0

22R2ðA0
22Þ
� � R2 þ B0

2ðB0
2Þ
�

#
:

Since Asa ¼ A0
11; Csa ¼ C 0

1 and Bsa ¼ B0
1 and A0

12R2ðA0
12Þ
� � 0 we have

AsaR1ðAsaÞ� � R1 þ BsaðBsaÞ� � 0:

Similarly, we can show

ðAsaÞ�R1A
sa � R1 þ ðCsaÞ�Csa � 0: j

Note that a number of modifications of Algorithm 2 are possible, although with
many of the modifications the results of the previous proposition no longer hold. For
example, the Hankel matrix can be constructed as ([11])

Ĥ ¼

Pð1Þ Pð2Þ � � � PðN� 1Þ PðNÞ
Pð2Þ Pð3Þ � � � PðNÞ 0

..

. ..
. ..

. ..
.

PðNÞ 0 � � � 0 0

2
6664

3
7775:

Let us denote by ðÂs; B̂s; ĈsÞ the system obtained from Algorithm 2, if the Hankel
matrix Ĥ is used instead of the Hankel matrix H.
It follows from the proof of the previous proposition that if H ¼ URV is a singular

value decomposition of H then Ĥ ¼ ÛRV̂ is a singular value decomposition of Ĥ,
where Û :¼ U# and V̂ :¼ V

!
. Now let us partition these matrices as Û ¼ ½Û1 Û2�,

OBER ET AL.28



R̂ ¼ R̂1 0
0 R̂2

� �
, V̂ ¼ V̂1

V̂2

� �
. Since the first block rows of Û1R

1=2
1 and U1R

1=2
1 coincide

we have that the B matrices agree, i.e. B̂s ¼ Bs. Similarly, since the first block
columns of R1=2

1 V̂1 and R1=2
1 V1 coincide we have that Ĉs ¼ Cs.

However, in contrast to the B and C matrices the A matrices typically differ. The
last block row in Û is not necessarily zero. Therefore, Û# is, in general, not a matrix
with orthonormal columns. As a result, although Âs is the least-squares solution of
the following problem

jjðÛ1R
1=2
1 Þ

#Âs � ðÛ1R
1=2
1 Þ

"jjF ¼ inf
X2Rn�n

jjðÛ1R
1=2
1 Þ

#X� ðÛ1R
1=2
1 Þ

"jjF ð12Þ

it cannot be calculated by using Equation (3). Consequently, Âs is in general not the
exact solution of ðÛ1R

1=2
1 Þ

#X ¼ ðÛ1R
1=2
1 Þ

", even when s ¼ 0. This implies that if
Algorithm 2 is based on the Hankel matrix Ĥ instead of H, in general, we cannot
expect to obtain an exact realization.
To examine the connection between As and Âs and applying the shift operations

defined in Section 2, we first decompose Û1 ¼
Û#1
ÛLr

1

� �
; where ÛLr

1 2 R
p�n is the last

block row of Û1. We also know Û1 ¼ U#1 and U"1 ¼
Û"1
0

� �
. From Algorithm 2, if

ðÛ1R
1=2
1 Þ

# has full column rank the least-squares solution Âs of Equation (12) is
calculated as

Âs ¼ððÛ1R
1=2
1 Þ

#�ðÛ1R
1=2
1 Þ

#Þ�1ðÛ1R
1=2
1 Þ

#�ðÛ1R
1=2
1 Þ

"

¼ðR1=2
1 Û#�1 Û#1R

1=2
1 Þ

�1R1=2
1 Û#�1 ðÛ1R

1=2
1 Þ

"

¼R�1=21 ðÛ#�1 Û#1Þ
�1R�1=21 R1=2

1 Û#�1 ðÛ1R
1=2
1 Þ

"

¼R�1=21 ðÛ#�1 Û#1Þ
�1Û#�1 Û"1R

1=2
1 : ð13Þ

From the previous discussion we know

Û#�1 Û#1 þ ðÛ
Lr

1 Þ
�ÛLr

1 ¼
Û#1
ÛLr

1

� ��
Û#1
ÛLr

1

� �
¼ U�1U1 ¼ In:

As a result we have Û#�1 Û#1 ¼ In � ðÛLr

1 Þ
�ÛLr

1 : Based on the well-known matrix
inversion formula [19]

ðAþ BCDÞ�1 ¼ A�1 � A�1BðDA�1Bþ C�1Þ�1DA�1;

provided matrices A and C are invertible, we rewrite
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ðÛ#�1 Û#1Þ
�1 ¼ðIn � ðÛLr

1 Þ
�ÛLr

1 Þ
�1 ¼ ðIn þ ð�ÛLr

1 Þ
�IpÛ

Lr

1 Þ
�1

¼In þ ðÛLr

1 Þ
�ðIp � ÛLr

1 ðÛ
Lr

1 Þ
�Þ�1ÛLr

1 : ð14Þ

Replacing the term ðÛ#�1 Û#1Þ
�1 in Equation (13) by Equation (14) yields

Âs ¼R�1=21 ðIn þ ðÛLr

1 Þ
�ðIp � ÛLr

1 ðÛ
Lr

1 Þ
�Þ�1ÛLr

1 ÞÛ
#�
1 Û"1R

1=2
1

¼R�1=21 Û#�1 Û"1R
1=2
1 þ R�1=21 ðÛLr

1 Þ
�ðIp � ÛLr

1 ðÛ
Lr

1 Þ
�Þ�1ÛLr

1 Û#�1 Û"1R
1=2
1 : ð15Þ

We also have

As ¼R�1=21 U#�1 U"1R
1=2
1 ¼ R�1=21

Û#1

ÛLr

1

" #�
Û"1
0

" #
R1=2
1 ¼ R�1=21 Û#�1 Û"1R

1=2
1 ;

which is exactly the same as the first term in Equation (15). Therefore we can write

Âs ¼As þ R�1=21 ðÛLr

1 Þ
�ðIp � ÛLr

1 ðÛ
Lr

1 Þ
�Þ�1ÛLr

1 Û#�1 Û"1R
1=2
1 : ð16Þ

The second term in Equation (16) becomes zero, if ÛLr

1 ¼ 0. In that case we have
Âs ¼ As.
If we define �As as the solution to the modified least-squares problem such that

ðÛ1R
1=2
1 Þ �As � ðÛ1R

1=2
1 Þ

"

0

� �����
����
F

¼ inf
X2Rn�n

ðÛ1R
1=2
1 ÞX�

ðÛ1R
1=2
1 Þ

"

0

� �����
����
F

then we have that

�As ¼ððÛ1R
1=2
1 Þ

�Û1R
1=2
1 Þ

�1ðÛ1R
1=2
1 Þ

� ðÛ1R
1=2
1 Þ

"

0

" #

¼ ðR1=2
1 Û�1Û1R

1=2
1 Þ

�1R1=2
1 Û�1

ðÛ1R
1=2
1 Þ

"

0

" #

¼R�11 R1=2
1 ½Û

#�
1 ðÛLr

1 Þ
�� ðÛ1R

1=2
1 Þ

"

0

" #
¼ R�1=21 Û#�1 Û"1R

1=2
1 ¼ As:

This shows that if in Algorithm 2 the Hankel matrix H is replaced by the Hankel
matrix Ĥ then this modified least-squares problem has to be solved in order to obtain
the same realization as in Algorithm 2.
Algorithm 2 does provide not only a numerically stable way to obtain an exact

realization for a finite one-dimensional sequence. It is well-known that reduced
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order balanced realizations have a number of interesting properties (see e.g. [12],
[13], [14]). A further important property is that reduced order balanced realizations
can be used to perform noise suppression on a sequence of noise corrupted data
points. Due to the presence of noise in the sequence, the insignificant states of the
full order state space realization are corrupted. By excluding those states via bal-
anced model reduction, we effectively reduce the noise level in the sequence. This
property has been successfully used in a number of applications including NMR
spectroscopy (see e.g. [26], [27]) and surface plasmon resonance analysis of protein–
protein interactions [28]. It is this property of noise suppression that we will also
employ here in order to suppress noise in a three-dimensional image set.

3.3. Calculation of State Space Realizations of a Three-dimensional Image Set

For positive integers N1, N2 and N3 let Pðk1; k2; k3Þ; ki ¼ 1; 2; . . . ;Ni, i ¼ 1; 2; 3, be a
three-dimensional image set and assume that its data points are decomposed as

Pðk1; k2; k3Þ � Pr1;r2ðk1; k2; k3Þ ¼ Pr1
1 ðk1ÞP

r2
2 ðk2ÞP

r2
3 ðk3Þ;

ki ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; 3;

via Algorithm 1 with some parameters r1 � 0 and r2 � 0. For the one-dimensional
components Pr1

1 , P
r2
2 , and Pr2

3 of the image set and for appropriately chosen reduction
parameters s1, s2; and s3 approximate realizations ðAr1;s1

1 ; Br1;s1
1 ; Cr1;s1

1 Þ,
ðAr2;s2

2 ; Br2;s2
2 ; Cr2;s2

2 Þ and ðAr2;s3
3 ; Br2;s3

3 ; Cr2;s3
3 Þ are derived using Algorithm 2. Note

that r1 and r2 are the numbers of the discarded singular values in step 3 and step 6 of
Algorithm 1. s1, s2 and s3 are the numbers of the dropped singular values in step 3 of
Algorithm 2, when the state space realizations of the three one-dimensional sequences
are calculated. From Proposition 1 it follows that these realizations are minimal and
stable. In this way approximations of Pr1

1 , P
r2
2 , P

r2
3 are obtained by setting

Pr1
1 � Pr1;s1

1 ðk1Þ :¼ Cr1;s1
1 ðAr1;s1

1 Þk1�1Br1;s1
1 ; k1 ¼ 1; 2; . . . ;N1;

Pr2
2 � Pr2;s2

2 ðk2Þ :¼ Cr2;s2
2 ðAr2;s2

2 Þk2�1Br2;s2
2 ; k2 ¼ 1; 2; . . . ;N2;

Pr2
3 � Pr2;s3

3 ðk3Þ :¼ Cr2;s3
3 ðAr2;s3

3 Þk3�1Br2;s3
3 ; k3 ¼ 1; 2; . . . ;N3:

It is clear that the numbers of the dropped singular values are closely related to the
accuracy of the approximation. Therefore, the estimate of the three-dimensional
image set P is denoted as Pr1;r2;s1;s2;s3 , and calculated in the following way

Pðk1; k2; k3Þ �Pr1;r2;s1;s2;s3ðk1; k2; k3Þ
:¼Pr1;s1

1 ðk1ÞPr2;s2
2 ðk2ÞPr2;s3

3 ðk3Þ
¼Cr1;s1

1 ðAr1;s1
1 Þk1�1Br1;s1

1 Cr2;s2
2 ðAr2;s2

2 Þk2�1Br2;s2
2 Cr2;s3

3 ðAr2;s3
3 Þk3�1Br2;s3

3 ;
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ki ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; 3: If in neither of the two algorithms approximations are
carried out we have an exact estimate of the image set given by

Pðk1; k2; k3Þ ¼ P0;0;0;0;0ðk1; k2; k3Þ ¼ P0;0
1 ðk1ÞP

0;0
2 ðk2ÞP

0;0
3 ðk3Þ

¼ C0;0
1 ðA

0;0
1 Þ

k1�1B0;0
1 C0;0

2 ðA
0;0
2 Þ

k2�1B0;0
2 C0;0

3 ðA
0;0
3 Þ

k3�1B0;0
3 ;

ki ¼ 1; 2; . . . ;Ni; i ¼ 1; 2; 3:

From Proposition 1 part 3(e) we have that

P0;0;0;0;0ðk1; k2; k3Þ ¼ C0;0
1 ðA

0;0
1 Þ

k1�1B0;0
1 C0;0

2 ðA
0;0
2 Þ

k2�1B0;0
2 C0;0

3 ðA
0;0
3 Þ

k3�1B0;0
3 ¼ 0;

if ki > Ni for some i ¼ 1; 2; 3, i.e. the realizations are such that the estimate is zero
for indices outside those that describe the given finite data set P. From Proposition 1
part 3(d) and Proposition 1 part 3(f) we have that the realizations ðA0;0

i , B0;0
i , C0;0

i Þ,
i ¼ 1; 2; 3, are asymptotically stable, minimal and balanced. It also follows from
Proposition 1 part 4(a) that the approximate realizations ðAr1;s1

1 ; Br1;s1
1 ; Cr1;s1

1 Þ,
ðAr2;s2

2 ; Br2;s2
2 ; Cr2;s2

2 Þ and ðAr2;s3
3 ; Br2;s3

3 ; Cr2;s3
3 Þ are easily obtained from the corre-

sponding full order realizations ðAr1;0
1 , Br1;0

1 , Cr1;0
1 Þ, ðA

r2;0
2 ; Br2;0

2 ; Cr2;0
2 Þ and

ðAr2;0
3 ; Br2;0

3 ; Cr2;0
3 Þ by performing a balanced approximation step. This is a com-

putationally very simple way to obtain an approximation, if the realization of the full
order system is given.
Besides the capabilities of obtaining the exact state space realizations, the

proposed method can be used to suppress noise with properly chosen approxi-
mation steps in Algorithm 1 and Algorithm 2 as mentioned in Section 3.1 and
Section 3.2. The use of these approximation steps will be discussed in more detail
in the following section.
For a given three-dimensional image set the assignment of which spatial dimension

corresponds to which index in the image array P is a matter of choice. The actual
performance of the approximation algorithms can, however, in general not be ex-
pected to be independent of the particular choice that is made, in part due to the
different sizes of the three one-dimensional components of the image set. We have
found that, for example, for microscopy image sets it is often advisable that the
middle index k2 corresponds to the optical axis, if fewer data points are available in
this direction than in the others.

4. Results

In this section the previously presented algorithms will be illustrated with two
examples. First, a simulated image set will be processed. This is followed by the
analysis of a fluorescent microscopy image set.
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4.1. Simulation of Three-dimensional Image Sets

We simulated an image set of three balls (one with radius 500 nm and two with
radius 300 nm), since organelles in a cell often have a similar appearance. The images
of balls were generated from an analytical description in the frequency domain [29]

w1;w2;w3 2 R, where R is the radius of the ball. To avoid Gibbs effects the image
set was convolved with a three-dimensional Gaussian filter whose standard
deviation is 1 pixel. The simulated noise-free image set consists of 30 images each
being a 60 � 60 pixel array. The images are assumed to be 50 nm apart along the
optical axis, i.e. z-axis. Each pixel is assumed to be 50�50 nm in size. Zero mean
Gaussian noise with standard deviation of 200 was added to each pixel of the
image set to generate a noisy image set. All frames of the noisy image set are
shown in Figure 1. The noise-free image set and the noisy image set are denoted
as Pðk1; k2; k3Þ and Pnðk1; k2; k3Þ, k1 ¼ 1; 2; . . . ; 60, k2 ¼ 1; 2; . . . ; 30,
k3 ¼ 1; 2; . . . ; 60, respectively. As discussed in Section 3.3, the second components
of the image sets correspond to the z-axis/optical axis.

4.2. Exact State Space Realizations of Simulated Image Sets

In this section, we will show how to derive exact state space realizations of both the
noisy image set Pn and the noise-free image set P using Algorithms 1 and 2. The first
step is to perform the decomposition of the three-dimensional image sets via Algo-
rithm 1, i.e. Pðk1; k2; k3Þ ¼ P0;0ðk1; k2; k3Þ ¼ P0

1ðk1ÞP0
2ðk2ÞP0

3ðk3Þ and Pnðk1; k2; k3Þ
¼ P0;0

n ðk1; k2; k3Þ ¼ P0
n;1ðk1ÞP0

n;2ðk2ÞP0
n;3ðk3Þ; k1 ¼ 1; 2; . . . ; 60, k2 ¼ 1; 2; . . . ; 30,

k3 ¼ 1; 2; . . . ; 60, where 0 implies no non-zero singular values are dropped in the
algorithm (see Section 3.3 for an explanation of the notation). Key aspects of this
step are two singular value decompositions used in steps 3 and 6 of Algorithm 1. The
resulting singular values are shown in Figure 2. For the noise-free image set there are
55 and 59 non-zero singular values (we treat all singular values less than 10�16 as
zeros) from the first and second singular value decompositions, respectively. For the
noisy image set there are 60 non-zero singular values for both singular value
decompositions, which are the maximum numbers, given the size of the image set.
More non-zero singular values are obtained for the noisy image set because of the
corruption caused by the additive Gaussian noise. To obtain exact estimates of the
image sets we retain all non-zero singular values. A state space realization is then
calculated for each of the one-dimensional components P0

i , P
0
n;i, i ¼ 1; 2; 3, of the

H3ðw1;w2;w3Þ¼
�2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2þw2
3

q
cosð2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2þw2
3

q
Þþsinð2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2þw2
3

q
Þ

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2þw2
3

q 3
;
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image sets P, Pn, respectively, using Algorithm 2 and we obtain the balanced real-
izations ðA0;0

i ;B0;0
i ;C0;0

i Þ and ðA
0;0
n;i ;B

0;0
n;i ;C

0;0
n;i Þ that are exact realizations of P0

i and P0
n;i

respectively. Similarly, all non-zero singular values are retained in Algorithm 2.
In Figure 3 cross sections of the simulated image sets and their exact estimates are

compared. It is clearly seen that the estimates are very accurate. The root-mean-
square errors between the simulated image sets and their estimates are 4:7� 10�11 in
the noise-free case and 6:2� 10�11 in the noisy case. This shows that up to small
numerical errors we have indeed obtained exact realizations of both the noise-free
image set and the noisy image set.
The memory requirement for calculating exact state space realizations is heavy. For

the noise-free image set we have P0
1ðk1Þ 2 R

1�55; k1 ¼ 1; 2; . . . ; 60, P0
2ðk2Þ 2

R
55� 59; k2 ¼ 1; 2; . . . ; 30, and P0

3ðk3Þ 2 R
59�1; k3 ¼ 1; 2; . . . ; 60. Similarly for the

Figure 1. All two-dimensional images of the simulated noisy three-dimensional image set Pn consisting of

three balls, one of radius 500 nm and two of radius 300 nm. The simulated image set consists of 30 images

each being a 60� 60 pixel array. The images are assumed to be 50 nm apart in the optical axis/z-axis. Each

pixel is assumed to be 50 � 50 nm in size. Hence, each frame has a size of 3� 3lm. Zero mean Gaussian

noise with standard deviation 200 was added to each pixel. The panel is arranged such that the frames are

displayed sequentially from left to right and top to bottom.
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noisy image set we have P0
n;1ðk1Þ 2 R

1�60; k1 ¼ 1; 2; . . . ; 60, P0
n;2ðk2Þ 2 R

60�60;
k2 ¼ 1; 2; . . . ; 30, and P0

n;3ðk3Þ 2 R
60�1; k3 ¼ 1; 2; . . . ; 60. Clearly, the second compo-

nents in both cases have the largest sizes. For the simulated noise-free image set, the size
of the matrix A0;0

2 is 1233� 1233 while that of the matrix A0;0
n;2 is 1795� 1795 for the

simulated noisy image set. In both cases, the sizes of the Amatrices are bigger than the
sizes of the corresponding image sets.

4.3. Noise Suppression of the Simulated Image Set

Having established that exact realizations can be obtained for the noise-free image
set and the noisy image set we now consider the use of approximate realizations for

Figure 2. The singular values of the two singular value decompositions (A for the first singular value

decomposition, B for the second singular value decomposition assuming all non-zero singular values are

retained in the first decomposition) when the simulated noise-free image setP and noisy image setPn (shown

in Figure 1) are decomposed using Algorithm 1. The circles represent the singular values for the noisy

simulated image set Pn while the diamonds represent the singular values for the noise-free image set P.
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noise reduction. In both Algorithms 1 and 2, approximations can be carried out and
may result in a reduction of the noise components of the image set Pn. The sizes of
the approximations are typically made dependent on the sizes of the retained sin-

Figure 3. Cross sections of the simulated noise-free image set P and noisy image sets Pn (see Figure 1) and

their exact estimates P0;0;0;0;0;P0;0;0;0;0
n , calculated via exact state space realizations. A1, A2 and A3 show

the 16th frame (Pðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of the noise-free image set, the 16th frame

(P0;0;0;0;0ðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of its estimate based on the exact realizations and their difference

respectively. B1, B2 and B3 show the cross section Pð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60, the cross

section P0;0;0;0;0ð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60, and their difference, respectively. C1, C2 and C3

show the 16th frame (Pnðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of the noisy image set, the 16th frame

(P0;0;0;0;0
n ðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of its estimate based on the exact realizations and their difference

respectively. D1, D2 and D3 show the cross section Pnð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60, the cross

section P0;0;0;0;0
n ð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60, and their difference, respectively. The coordinate

system shown in the plots is such that the y-axis (x-axis, z-axis/optical axis) coincides with the first (third,

second) index of the image arrays P;Pn;P
0;0;0;0;0 and P0;0;0;0;0

n , respectively. The origin of this coordinate

system is located at the center of the pixel array(s).
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gular values of the corresponding singular value decompositions. From Figure 2 it is
seen only a few singular values of the noisy image set Pn are dominant and are close
to the corresponding singular values of the noise-free image set P. The rest of the
singular values of the noisy image set are very different from those of the noise-free
image set because of the corruption from noise. Since only dominant singular values
are important to the accuracy of the approximation we retained the eight largest
singular values in each of the two singular value decompositions used to construct
the one-dimensional components of the noisy image set. Following the notation
introduced in Section 3.3 we represent three resultant one-dimensional components
by P52

n;1, P
52
n;2 and P52

n;3, respectively, since in each of the two singular value decom-
positions 52 singular values are ignored. Figure 4 shows the singular values of the

Figure 4. The singular values of the Hankel matrices constructed from the approximate one-dimensional

components of the simulated noisy image set Pn (see Figure 1 and Section 4.3.) in Algorithm 2. The one-

dimensional components are generated with 8 retained singular values from both singular value decom-

positions in Algorithm 1. A, B and C correspond to the first, second and third one-dimensional compo-

nents, respectively.

STATE SPACE REALIZATION OF A THREE-DIMENSIONAL IMAGE SET 37



three Hankel matrices constructed from the one-dimensional components. Some of
the singular values are relatively small and are therefore considered to correspond to
insignificant parts of the dynamics. For the three one-dimensional realization
problems we retain 53, 160 and 53 singular values, respectively. Since we drop 52, 52,
7, 80 and 7 singular values in both algorithms the smoothed estimate is then denoted
by P52;52;7;80;7

n (see Section 3.3 for an explanation of the notation).
The sizes of the three one-dimensional approximate components P52

n;1, P
52
n;2 and P52

n;3

are P52
n;1ðk1Þ 2 R

1�8; k1 ¼ 1; 2; . . . ; 60;P52
n;2ðk2Þ 2 R

8�8; k2 ¼ 1; 2; . . . ; 30 and
P52
n;3ðk3Þ 2 R

8�1; k3 ¼ 1; 2; . . . ; 60. When a state space realization of the second
component was calculated we dropped the 80 smallest singular values of the cor-
responding Hankel matrix. Following our notation in Section 3.3 we denote
ðA52;80

n;2 ; B52;80
n;2 ; C52;80

n;2 Þ as the approximate state space realization of the second
component. The size of the matrix A52;80

n;2 is 160� 160. It is much smaller than A0;0
n;2

(the A matrix for the corresponding exact realization). As a result, the memory
requirement is reduced significantly.
Cross sections of the estimate P52;52;7;80;7

n of the noisy image set Pn are shown in
Figure 5A1, A2, A3 and A4. The noise level is significantly reduced in the estimated
image set. The root-mean-square error between the estimated image set and the
simulated noise-free image set is 36.1, which is less than one fifth of the standard
deviation of the Gaussian noise. It can, of course, not be expected that the noise-free
image set P is fully recovered, since the result of the proposed method depends on the
trade off between noise reduction on the one hand and the accuracy of the estimate
on the other hand. Some errors are seen as low level ripples in regions of the images
which have low signal levels. We have also observed that the best results are obtained
by taking advantage of noise suppression in both Algorithms 1 and 2.

4.3.1. Performance of the Proposed Method Under Different Noise Levels

Table 1 shows the root-mean-square errors of the estimates obtained via the pro-
posed method for different noise levels in the simulated data sets. The noise levels
were varied by changing the standard deviation of the additive Gaussian noise
during simulation. The table shows that the root-mean-square errors are less than
22% of the standard deviations of the noise in the corresponding noisy image set.
This implies that noise is effectively suppressed. Clearly, by increasing the noise level
in the simulated data set the accuracy of the estimates decreases. We obtain a cor-
responding increase in the root-mean-square error, since with increasing noise level

Table 1. The effectiveness of noise suppression via the proposed approach.

r 50 100 200 300 400 500

RMSE 10.9 20.0 36.1 51.2 66.1 85.2

Root-mean-square errors between the smoothed image sets obtained via the proposed approach and the

noise-free image set are calculated for different noise levels. The standard deviation of additive Gaussian

noise is denoted as �.
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only the rough features of the image sets can be recovered. On the other hand, the
ratios between the root-mean-square errors and the standard deviations of Gaussian
noise decrease as the noise levels increase. This suggests that the proposed method
suppresses noise effectively, even when the noise level is high.

Figure 5. Cross sections of the estimates P52;52;7;80;7
n and Pg

n of the simulated noisy image set Pn, shown in

Figure 3, by using the proposed method with noise suppression and a Gaussian filter with standard

variance one, respectively. A1 and A3 show the 16th frame (P52;52;7;80;7
n ðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of the

estimate obtained via the proposed method and its error, respectively. A2 and A4 show the cross section

P52;52;7;80;7
n ð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60 and its error, respectively. B1 and B3 show the 16th

frame (Pg
nðk1; 16; k3Þ; k1; k3 ¼ 1; . . . ; 60) of the estimate obtained by using a Gaussian filter and its error,

respectively. B2 and B4 show the cross section Pg
nð22; k2; k3Þ; k2 ¼ 1; . . . ; 30; k3 ¼ 1; . . . ; 60 and its error,

respectively. The coordinate system is defined as in Figure 3.
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4.3.2. Comparison Between the Results of the Proposed Method and the Smoothed
Image sets Using a Gaussian Smoothing Filter

A Gaussian filter of variance one is often used to suppress noise in fluorescence
microscopy images (see e.g. [30], [31]). To compare the performance of the proposed
method with the results of the Gaussian filter, we also smoothed the image set Pn

with the Gaussian filter. Cross sections of the smoothed estimates of the noisy image
set using both methods are shown in Figure 5. From these plots, it becomes evident
that using a Gaussian filter results in much larger errors than the proposed
approach. This is because the Gaussian filter calculates the weighted average of
neighboring pixels and large errors occur at the edges of the balls. The root-mean-
square error of the smoothed image set obtained by using the Gaussian filter is 151.
This is more than four times the root-mean-square error (36.1) of the smoothed
image set that is obtained via the proposed method.

Figure 6. All two-dimensional images of a three-dimensional fluorescent microscopy image set Imn of a T

cell, showing the locations of FcRn. The images were acquired on a Zeiss inverted microscope with a 100�
Plan-Aprochromat objective (N.A. = 1.4) using a highly sensitive Hamamatsu Orca 100 Peltier cooled 12

bit CCD camera. The image set consists of 21 images each being a 99� 110 pixel array. The images are

300 nm apart from each other. Each pixel is 67� 67 nm in size. Therefore, each frame has a size of

6:633� 7:37lm. The panel is arranged such that the frames are displayed sequentially from left to right

and top to bottom.
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4.4. A Three-dimensional Fluorescent Microscopy Image Set

We apply the proposed method to a three-dimensional fluorescent microscopy image
set of a mouse T cell transfected with FcRn-GFP. The MHC Class I related receptor,
FcRn, plays a role in the transfer of gammaglobulin (IgG) from mother to young
and also regulates the serum levels of IgG, reviewed in [32]. The large number of
molecules and the limited resolution capacity of the microscope imply that only the
total accumulations of the signals are recognizable. The image set consists of 21
images, 300 nm apart from each other. Each image has 99� 110 pixels and the size
of a pixel is 67� 67 nm in the object space of the imaging system. This means that
the image set forms an array Imnðk1; k2; k3Þ; k1 ¼ 1; 2; . . . ; 99; k2 ¼ 1; 2; . . . ; 21;
k3 ¼ 1; 2; . . . ; 110. As in the previous data the second index of the image set refers to

Figure 7. The singular values of the two singular value decompositions (A for the first singular value

decomposition, B for the second singular value decomposition assuming all non-zero singular values are

retained in the first decomposition) when the three-dimensional image set Imn of a T cell, shown in

Figure 6, is decomposed using Algorithm 1.
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the optical axis of the microscope, i.e. the z-axis. All images of this three-dimensional
image set are shown in Figure 6.

4.5. Exact Estimate of a Fluorescent Microscopy Image Set via State Space Real-
izations

Following the same procedure for the simulated data, we decomposed the image set
Imn into three one-dimensional components via Algorithm 1 and calculated an exact

Figure 8. Cross sections of the fluorescent image set Imn of a T cell, shown in Figure 6, and its estimate

Im0;0;0;0;0
n calculated via the exact state space realizations. A1, A2 and A3 show the 12th frame

(Imnðk1; 12; k3Þ; k1 ¼ 1; . . . ; 99; k3 ¼ 1; . . . ; 110) of the image set Imn, the 12th frame

(Im0;0;0;0;0
n ðk1; 12; k3Þ; k1 ¼ 1; . . . ; 99; k3 ¼ 1; . . . ; 110) of the estimate calculated via the exact state space

realizations and their difference, respectively. B1, B2 and B3 show the cross section Imnð60; k2; k3Þ; k2
¼ 1; . . . ; 21; k3 ¼ 1; . . . ; 110, the cross section Im0;0;0;0;0

n ð60; k2; k3Þ; k2 ¼ 1; . . . ; 21; k3 ¼ 1; . . . ; 110, and

their difference, respectively. The coordinate system is defined as in Figure 3
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balanced state space realization for each of the one-dimensional components. Fig-
ure 7 shows the plots of the singular values for the two singular value decomposi-
tions used in Algorithm 1. Similar to the simulated data, all singular values are non-
zero due to the presence of noise. The singular values obtained in Algorithm 2 are
also non-zero. To obtain the exact realizations we retained all singular values. The
exact estimate of the image set is denoted as Im0;0;0;0;0

n .
Figure 8 shows two cross sections of the image set Imn and the corresponding cross

sections in the estimated image set Im0;0;0;0;0
n calculated from the exact state space

realizations. The root-mean-square error between the estimated image set and the
acquired image set is 7:4� 10�10. This shows that up to insignificant numerical errors
exact state space realizations were obtained. It is interesting to note that the significant
background intensity level has also been accurately matched by the proposed method.
As in the case of the simulated image set, large memory allocations are necessary, if

the exact state space realizations are calculated. Let Im0
n;1; Im

0
n;2 and Im0

n;3 be the three
one-dimensional components of Imn calculated using Algorithm 1. We have
Im0

n;1ðk1Þ 2 R
1�99; k1 ¼ 1; 2; . . . ; 99; Im0

n;2ðk2Þ 2 R
99�110; k2 ¼ 1; 2; . . . ; 21, and

Im0
n;3ðk3Þ2 R

110�1; k3 ¼ 1; 2; . . . ; 110. Let ðA0;0
2 ; B0;0

2 ; C0;0
2 Þ be the exact state space

realization obtained for the second one-dimensional component. The size of this sys-
tem is considerable with A0;0

2 being a 2079� 2079 matrix.

4.6. Noise Suppression of a Fluorescent Microscopy Image Set

Image sets acquired in fluorescent microscopy are notoriously noisy, since the
fluorescent signal is relatively weak. Noise sources include scattered photons, con-
tamination in the samples, and noise sources in the cameras etc. Therefore noise
suppression is an important aspect in the analysis of fluorescent microscopy image
sets. Here, we will apply the proposed method to suppress the noise components in
the image set Imn.
From Figure 7 only a few singular values are dominant amongst the singular

values of the two singular value decompositions that are used in Algorithm 1. We
retain 15 and 30 singular values in the first and the second singular value
decompositions, respectively. Figure 9 shows the singular values of the three
Hankel matrices constructed from the corresponding one-dimensional compo-
nents. For the calculation of the approximate realizations we retain 60; 300 and
100 singular values, respectively. The other singular values are very small and
judged not to be significant enough to include in the approximation. The num-
bers of the dropped singular values in the five singular value decompositions are
84; 80; 39; 15 and 10. Following the notation introduced in Section 3.3, we denote
the estimated image set as Im84;80;39;15;10

n .
Figure 10 shows cross sections of the estimated image set Im84;80;39;15;10

n . The differ-
ence between the smoothed image set and the original image set appears as random
noise. Some small ripples appear to have been created during noise suppression and
they are observed near the background area of the estimated images.

STATE SPACE REALIZATION OF A THREE-DIMENSIONAL IMAGE SET 43



As expected the memory requirement for the approximate state space realizations
is much smaller than that for the exact realizations. For example, the matrix A80;15

2

for the second approximate one-dimensional component of Imn is of size 300� 300,
which is considerably smaller than the 2079� 2079 of the corresponding A matrix
for the exact realization.
It should be pointed out that we found that it is of advantage to estimate the

background level of the image set separately, if approximate realizations are to be
obtained. This is particularly relevant in situations such as the present one when the
background level is significant since relatively small errors in the estimation of the
background could lead to relatively large errors in the estimation of the actual signal

Figure 9. The singular values of the Hankel matrices constructed from the approximate one-dimensional

components of the image set Imn of a T cell (Figure 6) in Algorithm 2. The one-dimensional components

are generated with 15 and 30 retained singular values from the first and second singular value decom-

positions in Algorithm 1. A, B and C correspond to the first, second and third one-dimensional compo-

nents, respectively.
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that is of interest. To avoid this potential error we reduced the background level of
the image set by subtracting an estimate of the background level and then applied the
proposed method to the modified image set. The estimated background level was
formed by the mean of the pixels at the edges of the image set and was added back to
the resulting smoothed image set.

5. Conclusions

We developed a method to calculate state space realizations of a three-dimensional
image set by decomposing the three-dimensional image set into three one-dimensional
components and constructing a state space realization for each of these components.
Besides the capability to obtain exact state space realizations of the image set the
method allows for the incorporation of approximation steps that can be used for noise
reduction in the image set.

Figure 10. Cross sections of the smoothed estimate Im84;80;39;15;10
n of the fluorescent image set Imn, shown

in Figure 6. A1 and A2 show the 12th frame (Im84;80;39;15;10
n ðk1; 12; k3Þ; k1 ¼ 1; . . . ; 99; k3 ¼ 1; . . . ; 110) of

the estimate and the difference between it and the 12th frame of Imn, respectively. B1 and B2 show the

cross section Im84;80;39;15;10
n ð60; k2; k3Þ; k2 ¼ 1; . . . ; 21; k3 ¼ 1; . . . ; 110, and the difference between it and the

corresponding cross section of Imn, respectively.

STATE SPACE REALIZATION OF A THREE-DIMENSIONAL IMAGE SET 45



We tested the approach with both simulated data and a three-dimensional fluo-
rescent microscopy image set. In both cases, the estimates obtained via the exact
state space realizations were very accurate. However, the proposed method is
memory-intensive, when the exact state space realizations are calculated. It has been
shown that the proposed method suppressed the noise components of the image sets
effectively and compared favorably to the use of a Gaussian filter, especially with
respect to the preservation of sharp features in the image set.
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