A stochastic analysis of performance limits for optical microscopes

Sripad Ram
Center for Immunology, NB9.106
Unaversity of Texas Southwestern Medical Center at Dallas
6000 Harry Hines Boulevard, Dallas, TX 75390-8576, USA
and
Joint Biomedical Engineering Graduate Program, University of Texas
at Arlington and University of Texas Southwestern Medical Center at Dallas, Texas.
Email: sripad.ram@utsouthwestern.edu

E. Sally Ward
Center for Immunology, NB9.106
Unwversity of Texas Southwestern Medical Center at Dallas
6000 Harry Hines Boulevard, Dallas, TX 75390-8576, USA
Email: sally.ward@Qutsouthwestern.edu

Raimund J. Ober
Department of Electrical Engineering
Unaversity of Texas at Dallas
Richardson, TX 75083-0688, USA
Email: ober@Qutdallas.edu
and

Center for Immunology, NB9.106
Unwersity of Texas Southwestern Medical Center at Dallas
6000 Harry Hines Boulevard, Dallas, TX 75390-8576, USA

Email: raimund.ober@utsouthwestern.edu

Corresponding author: Raimund J. Ober

Contact information:

Center for Immunology, NB9.106

University of Texas Southwestern Medical Center at Dallas
6000 Harry Hines Boulevard, Dallas, TX 75390-8576, USA
E-mail: raimund.ober@utsouthwestern.edu

Tel: 214 648 1922

Fax: 214 648 1259

Multidimensional Systems and Signal Processing, in press



Abstract

The optical microscope is a powerful instrument for observing cellular events. Recently, the increased
use of microscopy in quantitative biological research, including single molecule microscopy, has generated
significant interest in determining the performance limits of an optical microscope. Here, we formulate
this problem in the context of a parameter estimation approach in which the acquired imaging data is
modeled as a spatio-temporal stochastic process. We derive formulations of the Fisher information matrix
for models that allow both stationary and moving objects. The effects of background signal, detector size,
pixelation and noise sources are also considered. Further, formulations are given that allow the study
of defocused objects. Applications are discussed for the special case of the estimation of the location
of objects, especially single molecules. Specific emphasis is placed on the derivation of conditions that

guarantee block diagonal or diagonal Fisher information matrices.

Keywords: Spatio-temporal stochastic processes, Fisher information matrix, Cramer-Rao lower bound,
Parameter estimation, Fluorescence microscopy, Optical imaging, Single Molecule Microscopy, Localization

accuracy



1 Introduction

The optical microscope has been an invaluable tool in cell biological research ([1]). In the more recent
past, advances in photodetector technology, high speed data acquisition and fluorescent labeling techniques
have significantly enhanced the capabilities of this instrument. Presently, optical microscopes perform tasks
ranging from long term (hours time scale) three dimensional imaging of live cells to fast imaging (milliseconds
time scale) of molecular interactions within a cellular environment even at the single molecule level (see e.g.,
(2, 3, 4]).

In several biological applications such as single molecule studies, the data acquired through an optical
microscope requires extensive quantitative analysis (e.g., see [5]). In order to carry out such studies, it is
important for an experimenter to know the capabilities of the instrument. This not only provides insight into
determining the feasibility of a particular experiment, but it also helps in designing an optimal experimental
setup.

In this paper we present results to calculate performance limits that quantify the capabilities of an
optical microscope. Due to the random nature of the acquired data, we use the tools of statistical esti-
mation theory (see e.g., [6]) to determine the performance limits. We also show how experimental factors
such as background noise, detector size, detector shape etc., affect the performance of an optical micro-
scope. The present results are applicable to several microscopic techniques such as fluorescence microscopy,
brightfield /transmitted-light microscopy, etc.

Parameter estimation problems play an important role in single molecule microscopy. Examples relate
to determining the location of single molecules ([7]), the determination of the photon detection rate, the
estimation of the level of defocus ([8]) etc. Common to all these problems is that it is helpful for the
experimenter to have an analytical method to assess with which accuracy the various parameters can be
estimated. The approach that we take is based on calculating the Fisher information matrix/Cramer Rao
lower bound for the corresponding estimation problems. In [7] we have analyzed the localization problem
for in focus stationary single molecules using the methodology that is used here. In the current paper we
significantly expand on the scope of the approach and address more general parameter estimation problems
that include the localization problem but are not limited to it. Importantly from the point of view of
applications we also consider time-varying problems, such as when the imaged object is not stationary. We
also investigate under which conditions the Fisher information matrix is diagonal and determine in detail
the influence of the detector size on the accuracy with which a parameter can be estimated.

It should be pointed out that there have been several reports that addressed specific problems such as
the localization accuracy of point sources for a particular estimation technique (see e.g., [9]). In [10] the
Cramer Rao lower bound was calculated for a position estimation problem in the special case where the
image of the object is given by a Gaussian function and the detector is pixelated.

The organization of the paper is as follows. In Section 2 we present the statistical description of the



acquired data. In Section 3 we derive general expressions for the Fisher information matrix relating to the
parameter estimation problem. In Section 4 we derive expressions for the Fisher information matrix that
are of relevance when the optical system is spatially shift invariant and an image function can be assumed
to exist. In Section 5 we show how the detector size affects the performance of an optical microscope.
Throughout the paper we provide examples to illustrate our results with specific profiles that describe the

image of a point source.

2 General stochastic framework

A basic optical microscope setup consists of an object located in the object space, a lens system and a
detector in the image space that captures the image of the object (see Fig. 1). For example, the object
could be an individual point source (e.g., a fluorescent single molecule or a fluorescent nano-particle), a
collection of two or more point sources, or a fluorescently labelled cellular organelle. Here, we are primarily
interested in experiments in which the detector detects photons from the object of interest for a fixed
acquisition time. Since the photon detection process is inherently a random phenomenon (see e.g., [11]), the
recorded image of the object is stochastic in nature.

We assume that the acquired data consists of the spatial coordinates of the arrival location of the detected
photons on the detector and the time points at which the photons are detected. In a typical quantitative
experiment, some attributes of the object such as the location, distance of separation from other objects,
orientation, size etc., are determined from the acquired data by using a specific estimation procedure. The
accuracy of the estimates can be determined by calculating the standard deviation of the estimates of this
attribute assuming repeated experiments.

In any estimation problem, it is important to know whether the specific estimation technique used to
estimate the desired attribute indeed comes close to the best possible accuracy. This can be determined
by calculating the Fisher information matrix ([6, 12]) for the underlying random process that characterizes
the acquired data. According to the Cramer-Rao inequality ([6, 12]), the (co)variance (matrix) of any
unbiased estimator § of an unknown vector parameter 6 is bounded from below by the inverse of the Fisher

information matrix I(0), i.e.,
Cov(f) > T71(0).

Since we have defined the accuracy of an estimator in terms of its standard deviation, the square root of
the inverse Fisher information matrix provides a lower bound to the best possible accuracy. It is important
to note that the Fisher information matrix is independent of the estimation procedure used to estimate the
parameter # and only depends on the statistical nature of the acquired data. For instance, if the desired
attribute is the location of an object, then the above equation implies that for any (asymptotically) unbiased
estimator of the location, the accuracy of its location estimates can never be smaller than the square root of
the inverse Fisher information matrix. Therefore, the square root of the inverse Fisher information matrix
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provides a limit to the accuracy with which the location of the object can be determined. Generalizing this,
in an optical microscope the performance limit in determining a specific attribute of an object is defined as
the square root of the inverse Fisher information matrix calculated for that attribute.

Due to its stochastic nature, the acquired data is modeled as a space-time random process (see e.g., [13])
which we refer to as the image detection process G. The temporal part of G describes the time points of the
detected photons and is modeled as a temporal Poisson process with intensity function Ag. The spatial part
of G describes the spatial coordinates of the arrival location of the detected photons and is modeled as a
family of mutually independent random variables {U; };>¢, with probability densities {fg }+>¢, defined on
the detector C, where 7 denotes the time point of a detected photon. The time dependence of the random
variables {U;}r>¢, denotes the fact that the spatial distribution of the detected photons can change with
time. For example, this is the case when photons from a moving object are detected. In some applications the
spatial part of G is independent of 7 and in that case the random variables are independent and identically
distributed. In all cases, we assume that the spatial and temporal parts of G are mutually independent of
each other. We note that the probability density fy , satisfies certain regularity conditions that are necessary

for the calculation of the Fisher information matrix (see [12]).

Definition 2.1 Let C denote a detector, i.e., an open subset of R? with non-zero Lebesque measure. Let ©
denote the parameter space that is an open subset of R™ and let tg € R. For 6 € ©, an image detection
process G(Ag, { fo.r}r>t,,C) is defined as a spatio-temporal process whose temporal part describes the time
points of the photons detected on the detector C and the spatial part describes the spatial coordinates of the
arrival location of the photons detected on the detector C.

The temporal part is modeled as a Poisson process {Z(T); T > to} with intensity Ay, called the photon
detection rate, such that
C1. Ay(7) is piecewise continuously differentiable with respect to 0 for each T > tg.
C2. Ay(7) is piecewise continuous with respect to T for each 6 € ©.

Let Fo be the set of probability densities fg on C parameterized by 6 that satisfy the following regularity
conditions
C3. 0fp(r)/06; exists forr€C,i=1,...,n and 6 € O.
C4. [-|0fy(r)/00;]dr < oo fori=1,...,n and § € ©.
C5. The integral [, ! 8299(:) %e(jr)dr exists and is finite fori,j=1,...,n and § € O.

fo(r)
The spatial part of the image detection process is modeled as a family of mutually independent random vari-

ables {U; }r>t, that is assumed to be independent of {Z(1);T > to}. The corresponding family of probability
densities {for}r>t, € Fo is called the photon distribution profile, if U, with probability density fo ,
describes the spatial distribution of the location of the point of detection of a photon on the detector C that

is detected at time T, T > .

We next derive an expression for the Fisher information matrix of the image detection process G.
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Theorem 2.1 Let G(Ag, { fo.r}r>t,,C) be an image detection process. Then for § € © the Fisher information

matriz 1(0) of G corresponding to the time interval [to,t] is given by

0y () (45 L5 (250

_ / o1 (3[A9(T)f9,r(7“)]>T<3[A0(T)f9,7(7“)]
¢ Jto No(T) for (1) a0 90

) drdr.

Proof: This result is a generalization of the Fisher information matrix for a spatio-temporal random
process whose temporal component is a Poisson process and the spatial component is independent of the
time points (see [13, pg 213]). Due to space limitations the proof of this generalization is omitted, but can

be found in [14]. °

In deriving the above result we made no specific assumptions about the geometry of the imaging setup or
the analytical expression for the photon distribution profile fy. Hence the above theorem provides a general
result to calculate the Fisher information matrix for a wide range of situations. Note that the two-term
expression of I() shows explicitly the dependence of I(f) on the temporal and spatial components of the
image detection process.

We next consider the superposition of two image detection processes. In many concrete situations the
detected photons originate from different sources. For example, the detected photons can result from a
background component in addition to those detected from the object of interest. In an incoherent imaging
setup, such as in fluorescence microscopy, the photon detection process that describes the collection of all

the detected photons is then the superposition of the object and the background image detection process.

Theorem 2.2 Let G1(A}, {f5’7}72t07c) and G*(A2, {ng}TZtO,C) be two independent image detection pro-
cesses. Then the superposition process is an image detection process G(Ag, { fo.r }r>t,,C) whose photon de-

tection rate Ag is given by

Ag(T) = Ag(T) + AG(7), T>ty, 0€O, (1)
and the photon distribution profile { for}r>t, is given by

for(r) =e4(r) for(r) +e4(T)f5.(r), reC, 0eO, T2t, (2)

where c(r) = Ay(r)/Ao(r), &(r) = A3(r)/Ao(r), 6 € ©, 7 > to.

Proof: This result is analogous to the result of the superposition of Poisson processes (see e.g. [13]). For

a detailed proof please see [14]. .



3 Performance limits and Fisher information matrix

Using the results derived in the previous section, we next obtain expressions of the Fisher information matrix
for a parameter estimation problem in which the parameter vector 6 := (6;,6,,6,) is decomposed into three
components, where #; denotes the location component, 6, denotes an auxiliary component and 65 denotes
the rate component. The location component 6; typically consists of the x and y coordinates of the object
location. The auxiliary component 6, if present, may consist of other relevant parameters such as the z
coordinate of the object location. In single molecule microscopy it is often reasonable to assume that the
photon detection rate is a constant, i.e. Ag(7) = Ag, 7 > to and that the intensity level Ag needs to be
estimated. In this case 05 would consist of the parameter Ag. For example, in tracking problems for vesicles,
due to photobleaching effects the photon detection rate can often be modeled as Ag(7) = Ag exp(—(7—1o)ks),
T > tg. In this case 85 would consist of the parameters Ay and k.

In the following theorem, we consider two independent image detection processes G' and G2. The image
detection process G' is such that its photon detection rate Aé only depends on the rate component 6, and
its photon distribution profile f917T only depends on the location component 6; and the auxiliary component
6,. The image detection process G2 is such that its photon detection rate A% and photon distribution profile
f? are independent of §. For example, G' can model the detected photons from the object of interest,

whereas G2 might model a background component.

Theorem 3.1 Let G'(A}, {f(}J}TZtO,C) and G*(A?,{f?}+>1,,C) be two independent image detection pro-
cesses such that G* is independent of 0, 0 € ©. Let G be the superposition of G and G%. Assume that
Al. for 0 =(0,,0,,0r) € © and T > 1o, 8f917T(r)/89A =0, 7 €C, dNy(1)/00, =0, OA}(T)/06, = 0.

Then for 6 € © the Fisher information matriz of G corresponding to the time interval [to,t] is given by

I:0) IL4,(0) I.A(0)
1(9) = Iljja(e) Ia,a(e) Ia,A(e) , (3)
I[A(0) IDA(0) Iaa(0)

where, for 0 € O,

_ [ [AY(7)]? of )\ (044.(r)
” _/to/cAé(7>f$,7(r§+A2(T)f3(r)( 0o ) ( 905 )d”lﬂ o f e lal (4)
Ap()f5.£(r) 3.\ (9Ay(r)
/to/cA )3, (1) +A2(T)f$(r)< 90, ) ( 205 )drdﬂ a € {la}, (5)
_ [ (fo-(r)) OAg(r)\T [ OAL(T)
bl /to/cAé(T)fel,T(rHAQ(T)f?(r)( 20, ) ( 50, )d““- (6)

Proof: By Theorem 2.2, for the image detection process G(Ag, { fo.r }r>ty,C), Ao(7) := Aj(7) + A%(7) and
Jor(r) = 65(7’)]09177_(7“) +e2(T)f2(r) for r € C, 0 € ©, T > g, where €}(7) := Aj(7 )/( 5(7) + A?(7)) and
€5(7) = A(7)/(Ag(r) + A%(7)), 7 = to, 6 € ©. Thus we have Ag(7) fo.r(r) = (Ag(7) + A*(7)) (e5(7) fy-(r) +
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(T)f2(r)) = Aé(T)féﬂ_(’l“) + A2(7)f2(r), 7 € C, § € ©, T > to. Substituting this in Theorem 2.1, using
condition A1 and the fact that A? and f? are independent of 6, we get

([ 1 O[Aa(7) for (MINT (0[Aa(7) fo.r(r)] o 1
1= /c to No(7) fo.(r) ( 90 ) ( 90 ) drdr = /t /c AF(T) £3.(r) + A2(7) f2(r)

[ a8 \" ]
Aé (1) < %01 >
art .\ af} (r) af} (r) OAL(r
Ay(7) < gba > [ Aj(7) %’9[ Aj(7) gba fglyT(r) 85,(\ ) } drdr, 0 € 0.
T
OAL (T
f@l,r(r> ( 821(\ )>
From the above equation the result immediately follows. °

In many practical situations it is important to know whether the Fisher information matrix I(0) is
diagonal, as the diagonality of I(f) has several implications. For example, it is well known that under
certain conditions the maximum likelihood estimator of a vector parameter 6 is asymptotically Gaussian
distributed with asymptotic mean 6 and covariance I"1(0) (see e.g., [12]). Here, if I(6) is diagonal, this
implies that the components of the maximum likelihood estimate of 6 are asymptotically independent. Note
that if an efficient estimator of # exists (i.e., an unbiased estimator whose covariance matrix is equal to
I71(0), 6 € ©), then a diagonal I(f) ensures that the estimates of § are uncorrelated.

In general, for 0 = (61,...,0,) € O, if I(#) is diagonal, then this implies that the limit of the accuracy
of the unbiased estimates of 6;, i = 1,...,n, does not depend on the other unknown parameters in 6. For
an unbiased estimator of the object location, this means that the limit of the localization accuracy of the x
coordinate of the location is the same whether or not the y and z coordinates of the location are known.

We next investigate the conditions under which the Fisher information matrix given in Theorem 3.1 is
block diagonal. As will be shown, for the parameter vector 6 = (6;,0,,60,), it turns out that I(6) is block
diagonal when the detector C and the photon distribution profiles fel,r and f2 satisfy certain symmetry
conditions. Furthermore, for some special cases of 0, I(6) becomes fully diagonal (see Corollary 4.1). We

next define a symmetric detector and a symmetric function.

Definition 3.1 1. A detector C is said to be symmetric if there exists a point (cz,cy) € R2, known as the
center of C, such that for every (x,y) € C, (2¢, —x,y) € C, (x,2¢y —y) € C and (2¢, — x,2¢y —y) € C.

2. Let C be a symmetric detector with center (cgz,cy). A function f : C — R is said to be symmetric
(antisymmetric) along the = axis with respect to ¢, if for every (z,y) € C, f(x,y) = f(2¢; — z,y)
(f(x,y) = —f(2ca—x,y)). If f is symmetric along both the x and y azes with respect to ¢, and c, respectively,

then f is said to be symmetric with respect to the center of C.

In the following theorem we assume the location component 6; to be 6; = (61, 62). Further, we assume
that (9f,(r)/061) = —0,(9f,(r)/0x) and (Of},(r)/082) = —0,(0f},(r)/Oy), v = (a,y) € C, 6 € O,
T > to, where ¥, and 9, are constants that are independent of (x,y) € C. This assumption is satisfied if the
photon distribution profile f(}’T is a function of (z/9, — 61,y/9Y, — 62), where (z,y) € C (see Section 4).
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Theorem 3.2 Let G(A}, {f5,7}72t07c): G2(A% {f?}>1,,C) and G be image detection processes as given in
Theorem 3.1. Assume that

Al. for 0 = (6;,04,05) € O, 0, = (01,02), 0, = (03,...,0;) and Op = (Op41,...,0n), af;’T(r)/aeA =0,
r€C, T >ty, ON}(1)/00, =0, T >ty and ON}(1)/00, =0, T > to,

A2, 8f917T(r)/891 = —ﬂx(ﬁfelﬁ(r)/ax), afel’T(r)/802 = —ﬁy(aféﬁ(r)/ay), r=(z,y) €C, 0 €0, 1>t
where ¥, and ¥y are constants that are independent of x and y,

A3. the detector C is symmetric, and

A4, felﬁ and f? are symmetric with respect to the center of the detector C for € © and T > t.

1. Then for 6 € © the Fisher information matriz of G corresponding to the time interval [to,t] is given by

I,(0) I4(0) 0
100) = | I,(0) Loa(9) Ton(d) |,
0 IA(0) Iya(d)

where for 0 € ©, 1) 4(0) and 1,,(0) are given by eq. 4, L, A(0) is given by eq. 5, In A(0) is given by eq. 6

and

t Ay 013,
ﬁ%fto Je Aé(T)fel’T(ﬁ)+A2(T)f3(r)( o ) drdr "

1,,(0) == 2 AL 013,00\
0 v fto Je AFOfE )+A2(T)f$(r)( 9y ) drdr

(7)

2. In addition to conditions A1l - A4, assume that

A5. all the elements of the vector 8f9177(7‘)/60a, r € C, are symmetric with respect to the center of the
detector C for 0 € © and T > ty.

Then for 6 € © the Fisher information matriz of G corresponding to the time interval [to,t] is given by

1171(9) 0 0
1(0) = 0 I.(0) I, A(0) |,
0 IL,(6) Tya(6)

where all the non-zero entries of 1(0) are given in result 1.
3. In addition to conditions A1 - A5, assume that
AG. the photon detection rate of G is zero, i.e., A2(1) =0, T > to.

Then for 6 € © the Fisher information matriz of G corresponding to the time interval [to,t] is given by

I,,(0) 0 0
I0)=| 0 T 0 ; (8)
0 0 IAA(0)
where for 6 € O,
1) 2
92 1 fp 52 (o0 gy 0
1,0 = | 0l 9)
l,l . 9 7’) 8f017_(7”) 2 Y
0 9 fto Je fl By drdr
(r) (063-(r)\" 083, (r)
~——drd 1
/to/ feT ( a0, e (10)
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t 1\ T gAL(+
o [y (24

Proof: 1. Using condition A1 and the fact that A2 and f2 are independent of #, we can show that the
general expression for the Fisher information matrix is given by Theorem 3.1 (see eq. 3). Consider the
matrix I;;(#) that is given by eq. 4. Using condition A2 we immediately obtain the integral expressions
of [I;(0)]11 and [I;;(6)]22 that are given in eq. 7. To obtain the desired result, we need to show that the
off-diagonal terms of I;;(6) (i.e., [I;;(#)]12 and [I;;(0)]21) and all the terms of I; A(60) (i.e., [I;A(0)]ij, ¢ = 1,2,
j=k+1,...,n) are zero.

Let (cz, ¢y) denote the center of the detector C and define Tx : C — R?, (z,y) — (2¢c;—x,y). By condition
A4, f(,lﬁ(x, y) = (f(}’T oTx)(x,y), (x,y) € C, 0 € ©® and T > ty. Using the chain rule of differentiation we get

Of(wy) O, 0T @) Ofh (e —w,5) 020, —a) (051,
Ox N Ox N Ox Ox — \ oz °oTx | (@.y), (12)

where (z,y) € C, 8 € © and 7 > ty. Similarly, by using condition A4 we can show that for # € © and

T 2 to,
ofs (z, Ol(f4. o Tx)(x, ofs_
Bl _ MD)W 1), e )
AN y) + A2 2, y) = (A, + A1) 2) o T ) (), (1) €C. (14

Consider the term [I(0)]12 that is given by eq. 4. Hence using this result, condition A2 and eqs. 12 -
14, we get for 6 € O,

[AI(T)]Q afG,T(T) afe,r(r)
(6 /t/ A feT(r§+A2() 0 00 o6, AT

Wor 01} (5.9) Of}. (x.9)
_ MO 0o, 0for
- // (( f9T+A2< 72 0r oy ) 01X ) (v
AN o e 0wy
Y /to / Ay(T) fo(x,y) + AX(7) f2(2,y) Oz dy drdydr = —[I11(0)]12, (15)

where we have used the Theorem on change of variables (see [15, pg 153-155]) in the final step. Similarly
we can show that [I;;(0)]21 = —[I;;(0)]21, 6 € ©. Thus we have [I;;(0)]12 = [1;;(8)]21 =0, 6 € ©.
If Ty : C — R% (2,y) — (z,2¢, — y), then similar to egs. 12 and 14, we can show that for § € © and

T > t07
1 1 o 1
8f07Ta(yx7y) - Mo ajg;Y)(%y)} == <8£Z’T oTy> (z,y), (x,y)€C, 7>ty €O, (16)
Ag(T) fo - (z,y) + A2 (7) (2, y) = ((Aé(f)fel,T + A (7)f2) o Ty) (z,y), (=,y)€C. (17)
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Hence by using egs. 12, 14, 16 and 17 and condition A2, we can show that [I; A(0)];; = —[I;a(6)]i;, for
i=1,2,j=k+1,...,nand 6 € ©. Hence I; ,(#) =0, § € ©. From this the result follows.

2. By condition A5, for ¢ € {X,Y}, 01}, (2.9)/00, = O(f3, o T)(w,y))/0, = ((04},/06,) 0 T (2.y),
(z,y) € C, 8 € © and T > ty, where Tx and Ty are defined above. Hence using this result, eqs. 12 -
14, egs. 16 - 17, condition A2 and by taking an approach similar to that of eq. 15, we can show that
I.0(0)i; = —La(0))ij, ¢ = 1,2, j = 3,...,k, 0 € ©. From this it follows that I; ,(¢) = 0, § € ©.

Substituting this in result 1 of this Theorem the result follows immediately.

3. Substituting for A? in eq. 7 we immediately obtain the expression for I;;(#) that is given by eq. 9.
Consider the term I, A(6) that is given by eq. 5 (see Theorem 3.1). Since f9177 is a density function that
satisfies conditions C3 - C5 of Definition 2.1, fc(afelﬁ(r)/ém) =0,0 € © and 7 > tp ([12, pg 182-183]).
Using this result and substituting for A?, we get

o2\ on(r)
Ia7A(0) = /to < g T@a d’rwdT == 0, 0 € O.

Finally, consider the term Iy o(f) that is given by eq. 6. Substituting for A? and using the fact that

Je f‘9177(r)d7“ =1, 7 >tg, 0 € ©, we obtain the desired expression that is given in eq. 11. °

Remark 3.1 Note that when condition A6 is satisfied, the photon detection rate and the photon distribution
profile of G are equal to that of G'. In this case, the condition that (see condition A4) f? is symmetric with

respect to the center of the detector is no longer required.

From the above theorem we see that the number of symmetry conditions imposed on the partial deriva-
tives of f(iT (ie., 0 f&T(r) /06, and 0 fel’T (r)/00,) determines the number of off-diagonal terms that are zero
in the Fisher information matrix I(). Note that the photon detection rate A2 also plays a crucial role in
making I(#) block diagonal. Consider a special case, where the parameter vector § = (6;,0,) only consists
of the location ; and the rate 5 components. In this case the Fisher information matrix given in result 1
of the above theorem is block diagonal, even when the photon detection rate A%(7) # 0, 7 > to. Finally,
we note that in result 3 of the above theorem if the auxiliary component 6, and the rate component 8, are

scalars, then I(#) is diagonal.

4 Image function

In the previous sections we made no assumptions about the specific functional form of the photon distribution
profile. In an optical microscope, the image of an object can often be considered to be invariant with respect
to shifts in the object location ([16]). Hence the photon distribution profile f(}ﬁ can be expressed as a scaled
and shifted version of the image of the object. For example, in the case of a moving object, f(,lﬁ can be
written as f(}’T(as,y) = +0.(% — 2or, & — yor), (x,y) €R?, 0 € O, T > tg, where gy, denotes an image
function, M > 0 denotes the lateral magnification and (zo, yo,-) denotes the time dependent x — y location
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of the object. An image function gg, describes the image of a fixed object on the detector plane at unit
lateral magnification when the object is located along the z axis in the object space (see Fig. 1). Here, 0. is
a vector that parameterizes the image function. For example, 6, could be the z position of the object and/or
the angles that specify the 3D orientation of the object. In some applications the 6, parameterization is not
required and in such cases the image function is denoted as g. Since fel’T is a probability density function
that satisfies conditions C3 - C5 of Definition 2.1, to express f(,lﬁ in terms of gy, we impose appropriate

conditions on the image function that are given below.

Definition 4.1 Let O, C R™ be a parameter space. For 0, = (0c1,...,0cm) € O, we define qp, : RZ —

[0,00) to be an image function if the following properties are satisfied.

1. [r2 o, (x,y)dxdy = 1,

2 8q95 (:B,y) a%e (I,y)
: ox ’ oy

3. 2 &19%7%@’ drdy < 00, [pe ‘&J%ngw)) drdy < oo and [p» ‘3(1%%7(:3;3/)’ dxdy < oo, and

1 Oqo,(z,y) Oqp, (x,y) 1 0Oqo,(2,y) 9qe, (x,y) 1 Oqe.(zy) Ogs,(z,y)
4 fRQ q0.(z,y)  ICk aq dzdy, fR2 g0, (z,y) Ik 00c,i dady and fR2 g0 (z,y)  O0e, 00, ; dady

and exist for every (z,y) € R?,

ang (x’y)
806,1'

exist and are finite, where (1 =x, (o =y, k,l=1,2 andi,j=1,...,m.

The image function gp, and its derivative (0qp,/00c,i) are said to be symmetric if, for . € O, gy, (z,y) =

940, (z,y) _ 9qo.(—zy) __ Oqp,(z,~y)
00e: = 7 00,

e,

9. (—x,y) = qo.(x, —y) and . respectively, for (z,y) € R%.

In several applications the image of the object can be considered to be invariant with respect to time, for
example, when the object is not moving during the acquisition of its image. In such cases, the expression for
the photon distribution profile will be independent of time. In the following Corollary we derive a general
expression for the Fisher information matrix for such applications. Here, the parameter vector is set to be
0 = (6;,04,05) € ©, where 0; = (x9,yo) denotes the x — y location of the object and )y = Ag is a scalar
parameter that characterizes the photon detection rate Aé. We assume that the photon distribution profile
felﬁ is given in terms of a symmetric image function. We also assume the detector to be infinite, i.e., C = R2.
An infinite detector provides the best case scenario, where all the photons that reach the detector plane
are detected by the detector (see Fig. 1). Hence the square root of the inverse Fisher information matrix
for an infinite detector provides the fundamental limit to the accuracy with which the components of the
parameter vector 6 can be determined. We then consider a special case, where 6; and 8, are as given above
and the auxiliary component 6, = ¢g is a scalar. For this special case we show that the Fisher information
matrix is diagonal. Finally, we assume the photon distribution profile fé}’T to be independent of 8, and the

parameter vector to be 8 = (6;,0,) with §; and 6, as given above.

Corollary 4.1 Let © C R" be a parameter space. Let G'(A}, {f(,lyT}thO,IE@) and G2(A%, {f?}r>1,, R?) be
two independent image detection processes such that G? is independent of 8. Let G be the superposition of G*
and G%. For 6 = (0;,0,,00) € ©, let 0; = (x0,y0) and 05 = Ao, where xg, yo and Ao are scalar parameters.
Assume that for 6§ € O,

12



A1. ON}(7)/00, = 0, ON}(T)/00, = 0 and A%(1) =0 for T > to,

A2. there exists a symmetric image function qg, such that for M > 0, the photon distribution profile f(}’T 18

(

A3. all the elements of the vector (qp, (z,y)/00,) are symmetric, (z,y) € R2.

given by

1
el

X

Y
—$0,—yo>7 (LL‘,y)GRQ, TZth

1 —
fe,’r(x? y) - M M

1. Then for 6 € © the Fisher information matriz of G corresponding to the time interval [to,t] is given by

I,(0) 0 0
I0)=| 0 I.,.0) 0 7
0 0 IrA(0)
where
PAL 1 9qe, (z,y) 2
Il 1(9) — fto AG(T)dT fRQ QQa(I,y) ( oz ) dﬂ?dy O i 0 . @
7 0 x, ) )
0 ftg Aj(7)dr fRz o (1:1?,y) ( 49%; y)) dzdy
t 1 dqe, (x y) r dqp (:c Y)
Iaa = Al / ( a ? ) a 9
a(0) s g(T)dr k2 g (2.9) o6, 50 dxdy, 0€®O,
o1 (anyn))
I 0) = 0 d 0 '
A7A( ) to Aé(r) < Mo T, €0

2. If 0, = € is scalar, then for 6 = (x9,yo, €0, Ao) € O the Fisher information matriz of G corresponding to

the time interval [to,t] is given by

.(18)

b e ey (42) ey o 0 0
1(0) = 0 Joo M (0T [ ot (‘“’q‘%if’y)f dady 0 K
" 0 S Ab)ar fe sty (2822) daay o

L 0 0 0 f;ﬁ(agigﬂ)%i

3. If 0 = (0, Y0, No) € ©, then the Fisher information matriz of G corresponding to the time interval [to, t]
s given by

)\ 2
ftz Aj(r)dr Jr? q(rl’y) (%) dxdy 0 ) 0
q(x,
1(0) = ftto Ay(T)dr fR2 q(;y) (7‘1((%9)) dxdy 0 (19)
2
t Ny (7)
0 0 St Aé1(7)< o ) dr

Proof: 1. Let M > 0. By conditions A1 and A2, 8f9177(r)/89/\ =0, OA}(7)/06, = 0 and OA}(T)/00,
0 for » € R, # € © and 7 > to. Further, from condition A2 we can verify that O f(,lyT(r)/axo
M0}, (r)/0x) and Of} (r)/0ys = —M(Df},(1)/0y) for r = (x,y) € B2, § € © and 7 > to. Since
(Mxg, Myg) € R?, for every (x,y) € R, (2Mxzg—z,y) € R?, (z,2Myo—vy) € R? and (2Mxzg—z,2Myo—y) €

R2. Hence R? is symmetric with respect to the point (Mzg, Myg) (see Definition 3.1). From conditions A2
- A3 we can easily verify that fel’T(m,y) and all the elements of the vector Bf(iT(:c, ) /00, = (1/M?)(0qq,
13



(x/M — z0,y/M — y0)/00,) are symmetric with respect to the point (Mg, Myo), where (z,y) € R%, § € ©
and 7 > to. Finally we note that by condition A1, A%(1) =0, 7 > to.

Thus from the above and from Remark 3.1, we see that the photon distribution profile and the photon
detection rate of G and G2 satisfy all of the conditions of result 3 of Theorem 3.2. Hence for the present
case, the Fisher information matrix I(#) is block diagonal (see eq. 8).

From eq. 9 we see that I;;(6) is diagonal and we evaluate its diagonal terms [I;;(6)]11 and [I;;(0)]22

Substituting for A} and fel’T in the integral expression of [I;;(0)]11, we get

[I,:(60 11—1\/[2/%/R f9 ( fg;( )> drdr

2
t 1 1 9qp, (7 — 0, % — ¥0)
=M? | Aj(r)d / 3 dzd
to 9(7—) T R A}2q9a( — 0, M ) <M2 ox xay

= t: Aj(r)dr /R2 q;:%gz)) (3%&8(5,11) ]\14>2 (Mdu)(Mdv) (u = % — xg, V= % - y0>

t 1 8q9(xy)2
_[n d/ ( G >dd, 0co.
N e e " o) W

Similarly, we can show that

1 (3% (z,y)

2
dxdy,
T,y) dy )

O = [ abesir [,

t 1 (917_ TalT
La(®) = | M) [f0 7 ( {Sbjr)> {gb:r>dr

t 1 dqe, (z,y)\" dge,(z,y)
Ab(T)d / ( a )™ > o\ ) dod
to 0(7-) T R? 46, (x,y) aga aea v,
Lo - [l (M) tonm 1 (oM@
AT AL(r) \ 00, 00y " )iy Ab(r) \ T aA, ™

where § € ©, and I, ,(6) and I A(0) are given by eqgs. 10 and 11 respectively. From this the result follows.

2. If 8, = ¢ is scalar, then for 6 € O,

t 1 90, (z,y)\" Ogp, (x,y) t 1 9o ()
_ 1 a \") a \"") _ 1 0\
Loa(6) = ter(”dT/R? qea@,y)( 90, ) 9, W= tOA"(”dT/Rz qm(:c,y)( deo

Substituting this in result 1 of this Corollary we obtain the desired result.

2
) dxdy.

3. The result immediately follows from result 2 of this Corollary. °

From the above Corollary we see that the Fisher information matrix I(f) is independent of (zo,yo)
and only depends on the image function and its partial derivatives. Moreover, I() is diagonal when 6 =
(0, Yo, €0, Ao) and 0 = (x0,yo, o). Note that if g = zy denotes the z coordinate of the object location,
then I(#) that is given in result 2 of the above Corollary can be used to calculate the three dimensional
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fundamental limit of the localization accuracy of the object. In [7], we recently reported integral expressions
for I(#) that are analogous to egs. 18 and 19, where the parameter vector was set to be 8 = (x,y0), Ao was
assumed to be known and I(6) was a 2 x 2 diagonal matrix. We note that eqs. 18 and 19 are generalizations
of our earlier result and show that the diagonality of I(#) is preserved even when additional parameters such

as €y and Ay are assumed to be unknown.

4.1 Examples

We now illustrate the results derived in this section by considering specific image functions that describe the
image of a fixed point source. According to optical diffraction theory, when a point source is in focus with
respect to the detector, the intensity distribution of the image of the point source is described by the Airy
profile ([17, pg 440]). The 2D Gaussian profile, on the other hand, has been widely used to approximate the
Airy profile, for example, in the analysis of data from single molecule fluorescence experiments ([18, 19, 20]).
In the following Corollary, the parameter vector is set to be 6 = (g, 0, Aog) € © and the photon distribution
profile fal,r is assumed to be given in terms of an image function q. The photon detection rate is assumed

to be a constant, i.e., Aj(7) = Ag, 7 > to. For each image function, we derive a simple formula for the

fundamental limit of the localization accuracy /[I=1(6)]11 (v/[I~1(0)]22) of xo (yo) and for the fundamental
limit of the accuracy /[I71(6)]s3 of Ag. We note that the following results are extensions of the results

reported in [7].

Corollary 4.2 Let © C R? be a parameter space. Let G, G® and G be image detection processes that are
given in Corollary 4.1. For 0 = (xo,y0,Ao) € © and T > to, let A%(7) = 0, A}(1) = Ao and for M > 0,
assume that there exist a symmetric image function q such that fele(x,y) = (1/M?)q(x/M — zq,y/M — yp),
(z,y) € R?.

1. Airy profile: If, for ng, A > 0, q is given by

(5 /5 )

A2y (z,y) € R?, (20)

q(z,y) =

then for 0 = (xo,yo, Ao) € © the Fisher information matriz of G corresponding to the time interval [to,t] is

given by
(27rna)2>\/;0(t—t()) 0 0
1) = 0 (27ma)2)\/;0(t—t0) 0
0 0 TOO

Further, the fundamental limit of the localization accuracy 5% (5581 of o (yo) and the fundamental limit of

the accuracy 5%% of Ay are given by

524 _ 52d _ 2d _ Ao
xo -

A
Y ornav/Aot —to) 0\ (t—to)

(21)

15



2. 2D Gaussian profile: If, for o > 0, q is given by

1 z? 4 o2
q(z,y) 1= 55 exp (— 52 | (@Y€ R?, (22)

then for 8 = (xo,yo, Ao) € © the Fisher information matriz of G corresponding to the time interval [to,t] is

given by
AO(ctﬂ_tO) 0 0
0 0 e

Further, the fundamental limit of the localization accuracy 635" (69") of xo (yo) and the fundamental limit

of the accuracy 03" of Ao are given by

v e | (23)
VAot —t) o (t — to)
Proof: 1. It can be verified that the Airy profile is a symmetric image function. By definition, for

0 = (z0,y0,Mo) € © and 7 > to, A%(1) = 0, ONy(7)/0x0 = OA}(T)/Dyo = 0, 8f91’T(7')/8A0 =0, r € R? and

gau __ sgau __
5990 - 5y0 -

felﬁ is expressed as a shifted and scaled version of q. Hence for the present case result 3 of Corollary 4.1
holds and the Fisher information matrix I(6) is diagonal (see eq. 19). Using eq. 19 we can easily show that
[I(0)]ss = (t — to)/Ao. Let a := 27,/ A. Using the identity (9/0x) [x™"Jp(x)] = —x " Jpt1(x), € R (see
[21, pg 18]) with n = 1, we can show that

0 Rl FEP) |, BT ) By

¢  x?+y? Va2 T2 + 12
Hence by using this result and the integral identity [;°(J2(t)/t)dt = 1/(2n) ([21, pg 405]) with n = 2, we
can show that [1(0)]11 = [1(0)]a2 = (2mn4)?Ao(t — t0)/A? (see also [7]).

, (zy) €R?, (€ {x,y}. (24)

2. We can easily verify that the 2D Gaussian profile is a symmetric image function. Further, we can show
that for the present situation the Fisher information matrix is diagonal and is given by eq. 19 (see proof
of result 1). Substituting for A} and ¢ in eq. 19 we get [I()]s3 = (¢t — to)/Ao, and it can be shown that
[X(0)]11 = [L(0)]22 = Ao(t — to) /0 (see [7]).

In both cases, the fundamental limit of the localization accuracy of zg (yp) and the fundamental limit
of the accuracy of Ay are obtained by inverting the Fisher information matrix and taking the square root of

the corresponding leading diagonal elements. °

The Airy profile depends on the term « that is given by a = 2wn, /A, where n, denotes the numerical
aperture of the objective lens and A denotes the wavelength of the detected photons. For a given experimental
configuration, the numerical values of n, and A are known and hence « is known. On the other hand, the 2D
Gaussian profile depends on the term o that needs to be empirically determined from calibration experiments
(see [18, 19]).

It can be shown that the maximum likelihood estimator of the photon detection rate Ag is given by
Ay = Niot/(t — to), where Ny denotes the total number of detected photons and ¢ — ty denotes the
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acquisition time (e.g., see [13, pg 74-75]), and the standard deviation of A is given by \/Ao/(t — to). From
the above results, we see that for both the Airy profile and the 2D Gaussian profile, the performance limit
to determining the parameter Ag is given by \/Ag/(t — to), which is equal to the standard deviation of Ag.
Thus for the above scenario, the maximum likelihood estimator of the photon detection rate is an efficient

estimator.

5 Effects of reduced detector size

In the previous section we derived the Fisher information matrix for the 2D Gaussian profile and the Airy
profile, where it is assumed that the detector occupies the full detector plane, i.e., C = R?. These models
imply that photons impact the detector plane not only close to the center of the image profile, but also far
away from the center of the image. This is, however, not a practical assumption since detectors have a finite
size. In addition, when analyzing microscopy images typically only small regions of interest are used. This
raises the question of how the detector size or the region of interest influences the performance limits.

In the following proposition we show how an image detection process G(Ag,{fo.r}r>t,,C) has to be
adjusted when instead of the detector C, the photons are detected on a reduced part C™® of C, i.e., on an

open subset C"¢ of C.

Proposition 5.1 Let G(Ag, {fo.r }r>19,C) be an image detection process and let C"® C C be open. For 6 € ©
and T > to, let agr = [ora fo-(r)dr. The time points and the spatial coordinates of the arrival location
of the photons detected on the reduced detector C™ are described by an image detection process G™ whose

photon detection rate Agd and photon distribution profile fgi are given by

1

A (T) = g No(T), T>1to, 0EB, fid(ry=—Ffo,(r), TEC 00O, >t

Proof: By definition of the image detection process G, the time points of the detected photons on the
detector C are modeled as a Poisson process with intensity function Ag. It then follows that the time points
of the detected photons on the detector C™® form a Poisson process with intensity function ap N, T > o,
0 € © ([22, pg 381)).

Let A C C™. Let U, denote the random variable that describes the arrival location of a photon that is
detected on the detector C"¢ at time 7, 7 > tg. Then the probability that the arrival location of the detected

photon is in the set A given that the arrival location is in the detector C™® is given by

P[(UT € -A) ﬂ(UT € Crd)] _ P[UT € A] _ fA fG,T(T)m(dT) _ fA fG,T(r)m(dT)

rd] _
PlU, e A| U, €C] = PlU, € Cr] ~ PlU-€C  [ora fo.r(r)m(dr) ;7

where m denotes the Lebesgue measure in R2. Since the above equation holds for every A C C™® and 7 > t,
the term P[U, € A | U, € C"¥ is absolutely continuous with respect to m. Hence there exists a probability

density function fgfi such that
1

Qg r

fid(r) = for(r), reC™ 0cO, t>t.
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Since, by definition fp ; satisfies conditions C3 - C5 of Definition 2.1, it can be verified that fj j‘i also satisfies
these conditions. °

We refer to the image detection process G as the reduced version of G corresponding to the detector
Cr. We next derive a general expression for the Fisher information matrix of G, We also derive a formula

to calculate the loss of information when a detector of reduced size is used.

Theorem 5.1 Let G(Ag, {fo,+}r>t9,C) be an image detection process and G be the reduced version of G
corresponding to the detector C™, where C® C C. For 6 € ©, let 1(6) denote the Fisher information matriz

of G corresponding to the time interval [to,t]. Then for 6 € ©,

1. the Fisher information matriz of G'% corresponding to the time interval [to,t] is given by

' 7)Jor\T T T)for (T
i~ | st () (e

) drdr,

3[A9(T)f9,7(7”)]>T (6[A9(T)fe,T("")]

2 ALE):=16) - L) = /t: /C\C“i Aa(T)ice,f(T) ( a0 a0 ) drdr,

3. 1(0) > Ly(6).

Proof: 1. For § € © and 7 > to, let ap, = [ora fo-(r)dr. For the image detection process G, by
Proposition 5.1 the photon detection rate A4%(7) = ap,Ag(7) and the photon distribution profile fgi (r) =
(1/agr) for(r) forr € C™, 0 € ©, 7 > ty. Substituting for Aj? and fgci in Theorem 2.1 the result immediately

follows.

2. The result immediately follows by using the expressions for the Fisher information matrix of G and G

that are given in Theorem 2.1 and in part 1 of this Theorem, respectively.

3. The integrand in the integral expression of AI(#) given in result 2 of this theorem is non-negative. This

implies that AI(#) is positive semidefinite for § € © and from this the result follows. .
From result 1 of the above theorem we see that the expression for the Fisher information matrix of grd

is analogous to that of G (see Theorem 2.1) with the only difference being that the region of integration of

the spatial integral is now the reduced detector C™.

5.1 Upper and lower bounds to the performance limits

In Section 4.1 the integral expressions of the Fisher information matrix I(#) for an infinite detector reduced
to simple formulae. However, in a practical situation the calculation of I(#) can become cumbersome, for
example, due to the shape of the finite sized detector C. Hence determining the limit of the accuracy
VI L(0)]:; for the components of @ can become difficult. We next address this concern by deriving integral

expressions for matrices I,(#) and I;(#) that provide an upper and lower bound to the Fisher information
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matrix I(6 respectlvely, ie., I,(0) > I(0) > I;(0). Note that if I;(0) is invertible, then it can be shown that
vall Ji and /(I ()]s provide an upper and lower bound to /[I=1(6)];, respectively, i.e., v/ [Ia ' (8)]i <

[I (9)] < Iy 1(9)}“, i =1,...,n. This is of particular relevance since in a number of situations the
upper and lower bounds are diagonal matrices whose diagonal entries can be analytically calculated. We
will show that this is the case for the 2D Gaussian profile and the Airy profile if the ‘bounding detectors’ are
circular with center at the center of the image profile. The integral expression for I,,(0) (I;(9)) is derived in
such a way that its integrand is identical to that of I(f) and its spatial integral is evaluated over a circular
region B, (u) (B, (1)) known as the upper (lower) circular bounding detector that is centered at a point

re € C with radius u (I). The circular bounding detectors are defined below.

Definition 5.1 Let C be a detector and ro = (rez,7cy) € C. For p >0, let B, (p) := {(z,y) | (x —rez)* +
(y—7rey)? < p%, (z,y) € R} denote a circular region centered at r. with radius p and let B, (c0) := R?. We

define B, (u) and B, (l) to be the upper and lower circular bounding detectors of C, respectively, if
L= sup{p | Br.(p) CC} and u=inf{p |C C B,.(p)}.

Earlier in this section we discussed the relationship between an image detection process described on a
large, possibly infinite, detector and a more realistic smaller detector (see Proposition 5.1). In the derivation
of the upper and lower bounds for the Fisher information matrix it will be useful to have the notion of an
‘extended’ version of an image detection process. We refer to any image detection process G¢ as an extended

version of G if G is the reduced version of G°€.

Theorem 5.2 Let © C R" be a parameter space and let G be an image detection process that is defined
over the detector C. Assume that G¢(AG, {f§ ,}r>t,,C) is an extended version of G. For r. € C, let By (1)
and B,_.(u) denote the circular bounding detectors of C. Let I(0) be the Fisher information matriz of G
corresponding to the time interval [to,t]. If C C B, (u) C C¢, then

1. L(0)>10) >L#), 6co, (25)

where

NG () S5 (D" (9151 f5.-(r)]
/tO/ feT( r) < 90 ) ( 20 )drdT, G e {u,l}. (26)

2. Further, if I)(0) is invertible, then

[IL_Ll(Q)]” < [I_l(g)hi < [Il_l((g)]u, i=1,....,n, 6€0O. (27)

Proof: 1. Since G€ is an extended extension of G, it follows that G is the reduced version of G¢ and the
expression for the Fisher information matrix I(6) of G corresponding to the time interval [tg,t] is given by
result 1 of Theorem 5.1. Note that B, (/) is open and B, (5) C C¢, 5 € {u,l}. Hence from Proposition 5.1
it follows that the detected photons on the circular bounding detector B, (u) (By, (1)) can be modeled as an
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image detection process G-? (GI'?), which is the reduced version of G¢ corresponding to B, (u) (B,.(1)). If the
Fisher information matrix of G4 (GI'?) corresponding to the time interval [to, ] is denoted as I,(8) (I,(0)),
then from result 1 of Theorem 5.1 we obtain the desired integral expression that is given by eq. 26. Further,

since B, () € C C B, (u), from result 3 of Theorem 5.1 it can be deduced that L,(6) > I(0) > I;(0), 0 € ©.

2. If I;(0) is invertible for 6 € O, then by result 1 of this Theorem I(#) and I,,(6) are also invertible. It then
follows that I;1(0) < I71(6) <I;1(9) ([23, pg 169]) and from this the result follows. o

The above result provides a general formula to calculate the upper and lower bound to the (inverse)
Fisher information matrix I(f). We next consider a special case in which the extended version G€ is defined
over R2. Here, the parameter vector is given by 6 = (z¢,y0, Ag) € ©, the photon distribution profile fgyT of
G¢ is assumed to be given in terms of a symmetric image function ¢ and the photon detection rate Aj of G¢
is independent of xg and yy for 6 € ©. We assume that the circular bounding detectors of C are centered
at the point r. := (Mxzy, Myp) € C, where M > 0 denotes the lateral magnification. For this case, we show
that the matrices I;(0) and I,,(0) are diagonal.

Corollary 5.1 Let © C R? be a parameter space and let G be an image detection process that is defined
over the detector C. Let M > 0. Assume that G¢(A§, {fg’T}thO,]RQ) is an extended version of G and that
there exist a symmetric image function q such that f§_ (r) = ﬁq (4 — w0, 45 — wo) forr = (z,y) € R?,
0 = (z0,%0,Mo) € © and 7 > ty. Assume that ONG(T)/0xo = OAG(T)/Oyo = 0 for 7 >ty and § € ©. Let
0 € O, assume that r. :== (Mxo, Myo) € C, and let B,_(l) and B, (u) denote the circular bounding detectors
of C. Then

L L) > 1(0) > 1(0). (28)
where
ofg . (1)
L As(r) 258" ) Bf5 (1) 2 0S5, ()  fo.(r) oAS
1(9) :/ / 69 M Le.r Mo T R r _ Jo..(r) AG(T) deT, (29)
to JC fQ,T(T) _fS,T(r)agAg(T) Oz 9y Ag(T)  9Ao }
Ao(r) Ao
2
t 9q(z,y)
fto AG(T)dr fzso(%) q(ml,y) (%) dxdy 0 i 0
_ t re 9q(x,
I5(0) = 0 S A ()T [, 2 riy)( quw) dzdy 0 (30)
2
t AAE(7)
0 0 fto A;l(‘r)< 8/9\0 ) deBo(%) q(xvy)dxdy

with Bo(B/M) = {(z,y) | Va2 +y2 < £} and B € {u,l}.
2. Further, if I)(0) is invertible, then

L O] < [T O] < [17'(0)]u, i=1,2,3. (31)

U

Proof: Let § € ©. Egs. 28 and 31 immediately follow by noting that B, (I) C C C B, (u) C R? and that
the results of Theorem 5.2 hold for the present case. In rest of this proof we derive the integral expressions

for I(0) and I3(0) that are given in eqgs. 29 and 30, respectively.
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By assumption, 9AG(7)/0zo = OAG(T)/Oyo = Ofg ,(r)/OAo = 0 and it can be shown that 9 fg (r)/0zo =
—M(0fg . (r)/0z) and OfF (r)/Oyo = —M (0f§ . (r)/0y), for r = (z,y) € R? and 7 > t. Using these results
and substituting for Ag and fg - in result 1 of Theorem 5.1, we obtain the expression for I(0) that is given in
eq. 20. By definition, for 8 € {u,}, B,.(8) = {(z,) | v/(&/M = 202 = /M = go)? < B/M}, (z,y) € B2},
Substituting for fg§ and A§ in eq. 26, we have for 3 € {u,(},

afB‘r
! 1 (T)a ) afs.(r) afs (1)
I5(0) :/ / —_— fer r e 0. T e 0.0 e (NN | grdr
7 to J Bre(B) Ae(T)fe,T(T) A5(r) 8?\‘140(7) [ o7 = 6(7) Ovo fa’T() oo }
fo-(r) DKo
9q( 4 —x0, 4 —vo) 9q( 4 —x0, 4% —vo) r
— M= asz —M—== aQM

:1/t 5(7-)/ 1 _Maq(sz —T0, 37 yo) _Maq(;, —T0, 47 90) dxdydr

M2 Jy 5.8 4 (35 — 70, % — o) ay 7

’ " Mo a(57 =70, 47 —v0) 9A5(r) | | (57 =047 —vo) DAG(T)
Ae(7) ako A2(7) ako
Oa(uv) ou M 2a(0) 0u r

1 t 1 Bq(u v) 6 Bq(u v) Hv ui= L —xg
o | N [ MGG | | MEGR G| (Mdw)(Mdv)r i

M2 1, 0 Jo( 2y q(u,v) a(u) OAE (1) (uv) DS (1) V=3 = Yo

_AS() (9/\() _Ag(T) 8A0
8(1((99:73;)

! 1 9q(z.y) Oq(zy)  Oq(z,y) () OAS(7)
— [ ag(n) / & dey)  Dazy) _alzw) 000 N oy (32)

/to s a(ey) | g orse) [ ? % Ag(m) - 9ho }

AS(T) OAo

Since the image function ¢ is symmetric, it can be shown that dq(z,y)/0z = —0q(—x,y)/0x and dq(z,y)/dy
= 0q(—,y)/dy for (,y) € R? (see egs. 12 - 13). Thus we have
’ 1 9q(z,y) dq(,y)
I&:IGZ/AEd/ 7 o
[15(0)]12 = [L5(6))21 o o(T)d 5oL a(z,y) Ox Oy !

7

1 0q(—x,y) 0q(—x

t )
— [ AS(r dT/ Y) dwd
o) Bo(2) q(—z,y)  Ox dy Y

t 1 9q(u,y) Oudq(u,y)
Y, o
s o(T)dr 5o(2) gl y)  Ou Oz Oy

M

(—du)dy (u:=—x)

- t: A§(7)dr /BO(B) (ul 3 aqu y) aqu Y dudy = 0012 = ~ (O, B € {u.1).

M

Hence [I5(6)]12 = [I3(6)]21 =0, B € {u,l}. Similarly, we can show that [I5(6)]13 = [I3(6)]31 =0, 8 € {u,l}.
Further, by using the symmetry property of ¢ we can also show that dq(z,y)/0y = —90q(—=x,y)/0y for
(z,y) € R? (see eq. 16). From this it follows that [I5(6)]2s = [I5(6)]s2 = 0, 8 € {u,l}. Substituting these in
eq. 32 the result follows. °

For the localization accuracy problem the upper and lower bounds of the limit of the localization accuracy

of (xg,yo) are referred to as the localization accuracy bounds.
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5.2 Examples

We now illustrate the results derived in this section by considering specific image functions that describe
the image of a point source. Here, the parameter vector is set to be 8 = (xg, 40, Ao) € © and the photon
distribution profile fgﬁ is assumed to be given in terms of a symmetric image function ¢. Further, the photon
detection rate is assumed to be a constant, i.e., AG(7) = Ag, 7 > to. For each image function, we derive the
expression for the Fisher information matrix I(6) corresponding to the detector C and also derive the upper

and lower bound for \/[I71(0)];;, i = 1,2, 3, which denotes the limit of the accuracy of the components of 6.

Corollary 5.2 Let © C R? be a parameter space and let G be an image detection process that is defined

over the detector C. Let M > 0. Assume that G°(Ag, {f&T}TEtO,RQ) 1s an extended version of G and that

there exists a symmetric image function q such that f§77(r) = ﬁq (47 — @0, 47 — wo) forr = (z,y) € R?,

6 = (z0,%0,M0) € © and T > tyg. Assume that AG(T) = Ao for 7 >ty and § € ©. Let 6 € O, assume that
= (Mxo, Myy) € C, and let B, (I) and B, (u) denote the circular bounding detectors of C.

1. Airy profile: If q is given by eq. 20, then the Fisher information matriz of G corresponding to the

time interval [to,t] is given by

1
1(60) = Aolt = t0) | oy O (1) Qo(r)dr

7l[r—rel[?

where a = 21ng/(AM), ||r —re|| := /(x — Mxo)% + (y — Myo)? and

0y(r) = Ji(allr —re|]) [ 2aM(e=Mzo) g (o1l — () 28M@=Myo) gy 1 allr—rel) } _

7| jr — 7] [Ir=rel? [lr—re[[? TAo [[r—rell

Moreover, if u and | are as defined above, then

M (2mma/Rolt—To) ) M (27nav/Rolt — o)) N
V1 = (F3(au) + 23 (au) + J3 (au) < /IO < V1= (J3lal) + 273 (al) + J3(al)) i=12,(33)
(34)

NG M e VAT G
\/1— (Jg(au) + JE(au)) \/1— (J3(al) +J2(al))
where J,, denotes the n'* order Bessel function of the first kind, n =0, 1,2

2. 2D Gaussian profile: If q is given by eq. 22, then the Fisher information matriz of G corresponding

to the time interval [to,t] is given by

10) = tolt 1) [ 27 G ) sy
e 2(Mo)2

where o > 0, ||r — re|| := /(x — Mxzo)? + (y — Myo)? and

1 _lr=rell?
o— 2(Mo)? (z=Mzo)  (y—Myo) 1
QQ(T) = 7€ (Me) [ Mo? Mo? Ao |-
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If uw and | are as defined above, then

J/ V A0<t - tO) < [171(9)]“ < U/ AO(t B tO)

1 2 . i=1,2, (35)
JL- et (143 ) ¢1_gauzf<1+;(¢gj
Ao/(t — to) < JIT 1 (0)]5 < Ao/ (t —to) ' (36)
e V1o e iR

Proof: We can show that the Airy profile and the 2D Gaussian profile satisfy the properties of a symmetric
image function. Let 6 € ©. It can be verified that for the present case the results of Corollary 5.1 hold. Then
the expressions for the Fisher information matrix I(#) immediately follow by substituting the corresponding
image function in eq. 29. Further, we can also verify that I-!(#) exists for each image function. In rest of

this proof we derive the expressions for the upper and lower bounds of I(6).

1. Let o := 2mng /. Substituting for A§ and ¢ in the integral expression of [I5(6)]11 ([Ig(0)]22) that is given
in eq. 30, we have for g € {u,l},

t a/z 2
[I5(0)]11 = [I5(6)]a2 :/to AOdT/BO( 1 [a (J%( W)ﬂ

2y By | 0o

ox
m(z2+y?)

=

4 2 2 2 2 4 2 o )
= &Ao(t—to)/ JQ(O‘W)dmdyz iAo(t—to)/ COSQ¢d¢/NI Mdp
m {(@y)lVary?<p/my (22 +4%) m 0 o P

— 40 Aot — to) /aﬁ J%(w)dw — 4a2Mo(t — o) (/OOO Jg(w)dw_/oo JQQ(w)dw)

0 w w 3 w

_ 1 (J3(aB) +2Jf(apB) + J3(af))
N /((2mna)2ho(t — to))

where x = pcos @, y = psin ¢, a = a/M, the partial derivative of ¢ with respect to x is given in eq. 24, and
the integral expressions in the final step are evaluated by using the integral identities [;°(J2(t)/t)dt = (1/2n)
([21, pg 405]) and n [2°(J2(t)/t)dt = (1/2)J¢(z) + JE(x) + ...+ J2_1(z) + (1/2)J%(x) ([24, pg 95]) with
n =2 and z € R. Similarly, for 8 € {u,l}, we have

53 = 2 7dT/ 1 (QW) dady = (0)/ d(;S/M Jiler) ,,
T Jio Mo JBo(L) 22+ y o Jo : ’

2 Jiw) 1= (J3(aB) + J(aB)
Ao o w Ao/ (t — to)

Using result 2 of Corollary 5.1 the result follows.

2. Substituting for A§ and ¢ in the integral expression of [I5(6)]11 ([Ig(0)]22) that is given in eq. 30, we have
for g € {u,l},

¢ 1 o (1 _2\\?
I = = — | — [ — T a2
L5(O)1 = [T5(0))22 meéd)l o (5 (gze ™)) dady




Ao(t—to)/ x? _dedy Ao(t—to) /27r /1\/1130 3 _02 A()(t—to) /1\/?0 9 _p2
= —" —e 207 = d e 2dp=——55" e 22pd
o) A ¢ .7 P .7 pdp

2mo? o2 2 2mo?

- 402

_ AO(t—tO)/(A?o)Qwe_ 1 —e—%(%f (1+%(A50)2>
0

1t _a?ey? (t—to) (27, [T _o2 (t—to) [ . _2°
15(0))ss = —— | —d 2 dady = d dp = 2 d
T = 5752 J,, B T/Bo(ﬁne T T2 /0 ¢/o A T /0 pe 2ap

B)? _1
_ (t2—jxt0) /(1\/10) e_%dw: 1—e 2(
0 0

Using result 2 of Corollary 5.1 we obtain the desired result. °

From the above Corollary we see that for both image functions, the localization accuracy bounds for zg
(yo) and the bounds for the limit of the accuracy of Ag reduce to simple formulae. Note that the above
results for the upper and lower bounds hold only if the point (Mxzy, Myp) is located on the detector . In
most experimental situations this condition is satisfied.

We now discuss the results derived in Corollary 5.2 by considering a finite-sized square detector. Fig. 2A
(Fig. 2B) shows the behavior of the limit of the localization accuracy /[I=1(6)]11 for xo for a square detector
corresponding to the Airy profile (2D Gaussian profile) as a function of detector size. A reduced detector
detects relatively lower number of photons than an infinite detector. Hence the limit of the localization
accuracy for the reduced detector is greater (worse) than the fundamental limit of the localization accuracy
that is calculated for the infinite detector (see Corollary 4.2). As the detector size increases, more photons
are detected by the reduced detector and the limit of the localization accuracy approaches the fundamental
limit. Fig. 2A (Fig. 2B) also shows the behavior of the localization accuracy bounds given by eq. 33 (eq.
35) for a square detector corresponding to the Airy profile. Here, we see that the localization accuracy
bounds provide a tight bound, as they are consistently close to the limit of the localization accuracy for the
square detector.

Note that the behavior of the limit of the localization accuracy for a square detector also depends on
the functional form of the image function. In the case of the 2D Gaussian profile (see Fig. 2B), the limit of
the localization accuracy for a square detector with side length 80 um is close to the fundamental limit of
the localization accuracy. However, this is not the case for the Airy profile (see Fig. 2A), where even for a
square detector with side length 140 pm, the limit of the localization accuracy does not come close to the
fundamental limit. In a practical application such as single molecule data analysis, the above observation
provides guidelines for choosing the optimal size of the region of interest on the acquired image. Moreover,
it also shows the importance of using the correct image function, as this influences the behavior of the limit
of the localization accuracy.

Fig. 2C (Fig. 2D) shows the variation of the limit of the accuracy /[I-1(6)]s3 of Ay for a square
detector corresponding to the Airy profile (2D Gaussian profile) as a function of detector size. Analogous
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to the behavior of the limit of the localization accuracy, the limit of the accuracy of Ay approaches the
fundamental limit of the accuracy of Ag (= /Ao/(t — to), see eqs. 21 and 23) as the detector size increases.
Moreover, the behavior of the limit of the accuracy of Ay also depends on the functional form of the image
function. Fig. 2C (Fig. 2D) also shows the behavior of the upper and lower bounds to the limit of the
accuracy of Ay that given by eq. 34 (eq. 36) for a square detector corresponding to the Airy profile (2D
Gaussian profile). Similar to the localization accuracy bounds (Figs. 2A and 2B), we see that the upper

and lower bounds for the limit of the accuracy of Ay provide a tight bound.

5.3 Effects of pixelation

In all our results so far the detector C is such that the acquired data consist of the time points and the
spatial coordinates of the detected photons. However, in the presence of pixelation the acquired data consist
of the number of detected photons at each pixel. We next show how this data can be described in terms
of the photon distribution profile and the photon detection rate of an image detection process. Here, we
follow an approach that was introduced in [7] to address the localization problem. This approach will be
generalized and applied to the general parameter estimation problem that is discussed in this paper. Let
Gl(Ag, { fel,r}TZtovc) denote an image detection process that models the detected photons from the object
of interest. The pixelated version of the detector C is defined as a collection {C1,...,Cy,} of open, disjoint
subsets of R? such that U,iVile = C, where N, denotes the total number of pixels. For k =1,..., N, and
t > to, assume that ny photons are detected in the pixel Cy during the time interval [to, ¢]. Let K denote the
total number of detected photons from the object of interest, i.e., Zgi 1 i = K. Then it can be shown that
for k = 1,...,Np, ny is independently Poisson distributed with mean py(k,t) = ftto e, Aé(T)fel,T(T)d’l“dT,
® € ©. Similarly, the number of detected photons at the k" pixel during the time interval [to,?] from
a background component G2(A2, {f2?},;>4,,C) is independently Poisson distributed with mean 3(k,t) =
ftto Je, A2(7) f2(r)drdr, 6 € ©. Hence the acquired data in the time interval [to,t] from a pixelated detector

can be described by a collection {Zy 1, ..., Zy Np} of random variables given by
Top=Spr+ By, 0€0, k=1,...,Np.

Using the standard expression for the Fisher information matrix of a Poisson distribution ([13]), the
Fisher information matrix for {Zg1,...,Zgn,} corresponding to the time interval [to,?] is given by
Np

B 1 Opg(kyt)\ " Opg (k. t)
10 =2 o+ 5D ( a0 > o0 (37)

In a pixelated detector the acquired image contains measurement noise, which, for example, arises due

to the readout process ([25]). At each pixel this can be modeled as a Gaussian random variable W}, with

2

mean 7, and variance o, .,
K

k =1,...,N,. The acquired image is then given by Zy = Sy + B + Wy,

#€0,k=1,...,N, To derive the Fisher information matrix for the present case, we first note that Zy ;, is
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a sum of a Poisson and independent Gaussian random variable, and its probability density function is given

by (see [25])

1 >, [v(k, t))le ekt 7%(24&)2

e Tw,k

pok(z) := ,
V2Towk 1= l!
where vy(k,t) := po(k,t) + B(k,t), k =1,...,Np. If {n1,...,nn,} denotes the acquired data, then the log

ze€R, k=1,...,Np,

likelihood function is given by L£(0 | ni,...,nn,) := Z]kVL In[pg x(ng)], @ € © and the partial derivative of
the log-likelihood function with respect to 6 is given by

OLMO | n1,...,nn) <2 [Opg(k,t)
B = [Ty Gt - 1) e, (3)
where
oo Uve(kt)]i=Le—volkst) e
3 )l [ve( )(]l—l)! \/ﬂlow,ke 2( kyw ) -
Co.x(2) = , 0€O, k=1,...,N,, z€R.

Pok(2)
It can be shown that E[(gx(ng)] = 1 for § € © and k = 1,..., N,. Further, it can be verified that the

random variables {Zy1,...,Zy, Np} are mutually independent. Using these results and eq. 38, the Fisher
information matrix for {Zy1,...,Zg n,} corresponding to the time interval [to,] is given by
T
0LO | n1,...,nn,)\ OLEO|ni,...,nN,)
10)=E ( ol 00
Np Np T
Opg(k,t Opg(m, t
=E|> > < Mea(e )> Mée ) (Co,k (n1)Co.m (m) — Cok (k) — Com (nim) + 1)
k=1m=1
- Np (aug(k,t))T Opg(k,t) (E[C2 ()] — 1)
T= U a0 6.k
A (Opglk,t)\" Opg(m,t)
v () P Bl Bl ()]~ 1)
k#m,km=1

—l—ny,

ZOO [Vg(k,t)]l71€7]/0(k’t) ) 1 6_%<Zaw’k
I=1 (l_l)' V27r0w,k
A

Pok(2)

) 2
)dzl , 0 €0.(39)

3 <8ue<k,t>)T Opo (k. )
=\ o0 o0

The above expressions are valid for general intensities pg(k,t) (vo(k,t)), k = 1,...,Np, t > to. These
intensities depend on the photon distribution profiles fg -, 7 > 2o, through the above identities. The approach
is therefore generally applicable to a large class of photon distributions profiles/image functions. Note that
in the above expressions no assumptions are made about the size or shape of the pixels. In [10] an expression
was derived that is essentially a special case of eq. 37, i.e. for a two-dimensional estimation problem of the
location parameters for a Gaussian photon distribution profile in a stationary imaging scenario for square
pixels in the absence of Gaussian noise.
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5.4 Example

In this section we present a numerical comparison of the standard deviation of the maximum likelihood
estimator and the performance limit for the problem of estimating the 2D location of a stationary point
source. All calculations are carried out in the Matlab programming language [26]. The image function
of the point source is described by the Airy profile given in eq. 20. The parameter vector 6 is given by
0 = (x0,y0) and it is assumed that the photon detection rate of the point source is a constant and is known,
ie, Aj(t) := A}, 0 € ©, 7 > t;. The data consists of a sequence of 50 images of the point source that
are simulated for a finite-sized detector in the presence of noise sources. Maximum likelihood estimation
is carried out by using a gradient based search algorithm [27]. Table 1 lists the standard deviations of the
maximum likelihood estimates of the 2D location that are calculated for three different imaging conditions.
The performance limit is calculated by using the expression for the Fisher information matrix given in eq.
39. From the table we see that for all the data sets, the standard deviation of the maximum likelihood
estimator comes close to the performance limit. For example, in data set 1 the performance limit predicts
an accuracy not smaller than £5.01 nm to determine the zy and the yg coordinates of the point source. The
corresponding standard deviations of the maximum likelihood estimator for the x¢ and the yy coordinates are
4+5.4 nm and £5.19 nm, respectively. Note that due to the finite number of location estimates, the standard
deviations can be greater or smaller than the performance limit. With the increase in the number of location
estimates, further agreement can be expected between the standard deviations and the performance limit.
We note that the simulations presented here supplement the results given in [7], where the performance
of the maximum likelihood estimator has been compared with the performance limit for other imaging

conditions.
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Table 1:

Data Pixel No. of pixels | Photon | True location of | Performance | Mean of the Standard Mean of the Standard
set size in the detection | point source in limit to ML estimator deviation ML estimator deviation
No. simulated rate A} object space determining for xg of the ML for yo of the ML

image N, (x0,Y0) o and yo estimator for xg estimator for yg
(um X pum) photon/s (nm,nm) (nm) (nm) (nm) (nm) (nm)
1 9.6 X 9.6 15 x 15 1000 (720,720) 5.01 720.43 5.4 720.43 5.19
2 13 x 13 11 x 11 5000 (715,715) 1.47 715.05 1.57 715.08 1.57
3 16 x 16 9x9 5000 (720,720) 1.57 719.82 1.40 720.12 1.66

The table lists the performance limit to determining the 2D location of a point source along with the standard deviation of the maximum likelihood

estimator for different imaging conditions. For all calculations the magnification is set to be M = 100, the numerical aperture is set to be n, = 1.4,

the emission wavelength is set to be A¢;, = 520 nm, the mean of the background component is set to be G(k,t) = 30 photons/pixel/s, the acquisition

time is set to be 1 s, the mean and the standard deviation of the measurement noise are set to be n, =0, k =1,..., N, and o, = 8 e~ /pixel (rms),

k=1,...,Np, respectively, where N, denotes the total number of pixels in the simulated image. For all the data sets, the point source is positioned

at the center of the pixel array, the performance limit is calculated for a pixelated detector in the presence of noise sources and the standard deviation

of the maximum likelihood estimator for zy and gy are obtained from 50 estimates of the point source locations.




—=——————— Object space ————————— = —== Image space ——— g

Detector

NQ _

Optical lens system
(Objective lens + Tube lens)

Detector plane

Figure 1: The schematic shows the main components of an optical microscope based imaging setup. Here,
an object located in the object space is imaged by an optical lens system and the image of the object is
captured by the detector that is located in the image space. The location of the object in the object space
is denoted by (z0, yo, 20)-
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Figure 2: Panel A shows the behavior of the limit of the localization accuracy of xy (yo) for a square detector
corresponding to the Airy profile (o) as a function of detector size and Panel B shows the same for the 2D
Gaussian profile (e). Panel C shows the behavior of the limit of the accuracy of Ag for a square detector
corresponding to the Airy profile (o) as a function of detector size and Panel D shows the same for the 2D
Gaussian profile (). In all the panels the corresponding fundamental limit of the accuracy (—) and the
upper (¢) and lower (%) bound to the limit of the accuracy for the square detector are shown. For a square
detector with side length s, the position of the point source on the detector is set to be r. = (s/2,5/2),
the radius of the lower circular bounding detector B, (I) is | = s/2 and the radius of the upper circular
bounding detector B, (u) is u = s/4/2. For the Airy profile, the numerical aperture is set to be n, = 1.4
and the wavelength of the detected photons is set to be A = 0.52 ym. The parameter o corresponding to
the Gaussian profile is set to be ¢ = 0.083 um and is determined by fitting a 2D Gaussian profile to a Airy
profile (n, = 1.4, A = 0.52 um) through the least squares criterion. For all the plots, Ag = 10* photons/s,
the acquisition time is set to be ¢t = 50 ms (with tp = 0) and the magnification is set to be M = 100.
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