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a b s t r a c t

A three-dimensional (3D) resolution measure for the conventional optical microscope is introduced
which overcomes the drawbacks of the classical 3D (axial) resolution limit. Formulated within the con-
text of a parameter estimation problem and based on the Cramer-Rao lower bound, this 3D resolution
measure indicates the accuracy with which a given distance between two objects in 3D space can be
determined from the acquired image. It predicts that, given enough photons from the objects of interest,
arbitrarily small distances of separation can be estimated with prespecified accuracy. Using simulated
images of point source pairs, we show that the maximum likelihood estimator is capable of attaining
the accuracy predicted by the resolution measure. We also demonstrate how different factors, such as
extraneous noise sources and the spatial orientation of the imaged object pair, can affect the accuracy
with which a given distance of separation can be determined.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The resolution of the optical microscope in two dimensions (2D)
(i.e., the resolution in one focal plane) has been the subject of much
research. There, an intrinsic assumption is that the objects of inter-
est reside in a focal plane of the microscope. In many applications,
however, the objects of interest are not confined to a plane of focus.
Instead, they are located in three-dimensional (3D) space. An
important example is the imaging of biological interactions at
the level of individual biomolecules inside a cell, which has been
made possible with the advent of single molecule microscopy
(e.g., [1,2]). Monitoring the distance of separation between closely
spaced biomolecules is of importance as the distance information
often characterizes the nature of the biological interaction. In such
applications, the problem of determining the distance separating
the objects of interest becomes one of resolution in 3D.

Compared to 2D (transversal) resolution, fewer constraints can
be assumed with 3D (axial) resolution concerning the object pair of
interest. In the 2D case, the position of each object is completely
described by an x coordinate and a y coordinate, since both objects
are assumed to lie in a focal plane. In the 3D context, no such
assumption can be made, and the positional information of each
object must include its location along the z dimension. The z
dimension also introduces many more possibilities in terms of spa-
tial orientation for the 3D scenario. Whereas in a 2D setting all pos-
sible orientations of two objects are confined to rotation within a
ll rights reserved.
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focal plane, in a 3D setting the two objects can be rotated freely
in all three directions.

The classical 3D resolution limit [3–5] specifies for the 3D sce-
nario a threshold distance of separation below which two point
sources are deemed indiscernible. More specifically, the classical
criterion gives the minimum distance by which two like point
sources that are aligned parallel to the optical (z-)axis can be sep-
arated, and yet still be distinguishable. This minimum distance dmin

is given by the expression [5]

dmin ¼
2kn
n2

a
; ð1Þ

where k is the wavelength of the photons detected from the point
source pair, n is the refractive index of the medium containing
the point source pair, and na is the numerical aperture of the objec-
tive lens. Just as the 2D resolution criterion due to Rayleigh heuris-
tically specifies the minimum resolvable distance in a focal plane to
be the distance from the center to the first minimum of the Airy dif-
fraction pattern, Eq. (1) is the distance from the center to the first
minimum of the classical 3D point spread function of Born and Wolf
[3] along the optical axis. Though a good rule of thumb when the
image is detected with the unaided human eye, the 3D classical cri-
terion has important drawbacks.

First, as is the case with Rayleigh’s criterion, the 3D classical
limit is deterministic and neglects the stochastic nature of the pho-
ton emission process. As such, it does not take into account the
number of detected photons, which one would expect to be an
important factor that affects resolvability. Intuitively, one would
expect a closely spaced pair of point sources to be more easily re-
solved if a larger number of photons are emitted. On the other
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Fig. 1. Pair of point sources situated in 3D space. The point sources are separated by
a distance d, and the midpoint between them is given by the coordinates ðsx; sy; szÞ.
The spatial orientation of the point source pair is described by the angle x which
the line segment P1P2 connecting the pair forms with the positive z-axis (i.e., optical
axis), and the angle / which the xy-plane projection of that line segment forms with
the positive x-axis.
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hand, even point source pairs that are spaced far apart beyond the
classical limit, but emit only very few photons over the observation
period, would be expected to be difficult to resolve.

Second, the classical criterion does not consider the precise
location of the point source pair in 3D space, and moreover, its
applicability is limited to the specific spatial orientation wherein
the point sources are aligned parallel to the optical axis. It is not
unreasonable to think that both the location and the orientation
of the point source pair can affect resolvability. One might expect,
for example, that given two point sources, it would be more diffi-
cult to distinguish them if they are located far from the focal plane.
One might also predict that, everything else being equal, it would
be harder to determine the distance of separation when the two
point sources are aligned parallel to the optical axis. Distance esti-
mation is expected to be particularly difficult in this case because
this orientation corresponds to one point source being located di-
rectly in front of, and hence obscuring, the other.

Third, the fact that it neglects important parameters such as the
photon count and the point source pair’s axial location suggests
that the classical criterion might in some cases predict too high a
limit. For example, if an objective lens with a numerical aperture
of na ¼ 1:45 is used in conjunction with an immersion oil of refrac-
tive index n ¼ 1:515 to collect photons of wavelength k ¼ 655 nm
from a pair of fluorophores, then the classical criterion predicts the
smallest resolvable distance to be dmin ¼ 944 nm. This nearly 1-lm
barrier seemingly makes it impossible to study biomolecular inter-
actions, which typically take place at low nanometer-scale
distances.

To address these drawbacks of the classical 3D resolution limit,
we take a parameter estimation approach to evaluating resolution
in 3D. Specifically, we adopt the theoretical framework that is laid
out in [6]. This mathematical framework models the intrinsically
stochastic nature of the photon detection process in optical micros-
copy, and provides the foundation on which specific problems such
as point source localization [7] and resolution [8] can be formu-
lated. In [8], the resolution problem is considered strictly in the
2D context.

Within the stochastic framework, we propose an information-
theoretic 3D resolution measure for the conventional optical
microscope which, instead of specifying a smallest resolvable dis-
tance as does the classical criterion, predicts how accurately a gi-
ven distance can be determined. Analogous to its 2D counterpart
[8], it predicts that given a sufficient number of photons from the
point source pair, arbitrarily small distances of separation can be
determined with prespecified accuracy. Additionally, this resolu-
tion measure takes into account the precise location and spatial
orientation of a point source pair. Therefore, it is applicable to
point sources that are situated in any arrangement with respect
to one another in 3D space.

Since our resolution measure indicates the accuracy with which
a given distance can be determined in the context of a parameter
estimation problem, it is of practical importance to know that
there are estimation algorithms that can in fact achieve the pre-
dicted accuracy. Therefore, we also demonstrate in this paper,
using simulated images of point source pairs in 3D space, that
the maximum likelihood estimator is able to attain the accuracy
indicated by the resolution measure.

By predicting arbitrarily small distances to be resolvable with
prespecified accuracy, the 3D resolution measure effectively im-
plies that the classical 3D resolution limit can be surpassed. This
is demonstrated with a comparison of what the mathematical for-
mulae yield and with our estimations on simulated images. As
other groups have demonstrated the determination of distances
below the classical limit via the use of non-conventional optical
microscopy techniques (e.g., [9]), the significance of our result lies
in the fact that it indicates the conventional optical microscope to
be capable by itself of overcoming the classical barrier. Indeed,
superresolution approaches based on frequency domain band
extrapolation, for example, have been proposed in the 3D context
for the conventional optical microscope (e.g., [10]).

We begin by presenting in Section 2 the 3D resolution measure
for noise-free (i.e., no extraneous noise) imaging with an ideal
detector of infinite and continuous area. We use it to illustrate
how the resolution measure is affected by the number of photons
detected from, and the separation distance of, a pair of point
sources. In Section 3, we consider the resolution measure for prac-
tical imaging scenarios where extraneous noise sources (e.g., sam-
ple autofluorescence, detector dark current, detector readout) are
present and the detector is non-ideal (i.e., has finite and pixelated
area). The effects of extraneous noise, detector pixelation, and the
lateral magnification of the microscope are demonstrated. In Sec-
tion 4, we consider the resolution measure’s dependence on two
attributes of a point source pair that are unique to the 3D context
– its spatial orientation with respect to, and its location along, the
optical axis. In Section 5, we present a specially derived resolution
measure that directly compares with the classical 3D resolution
limit. We follow in Section 6 with the results of our maximum like-
lihood distance estimations on simulated images, and conclude our
paper in Section 7 with a summary and a discussion on the practi-
cal usage of the resolution measure.
2. The 3D fundamental resolution measure

2.1. Resolution as a parameter estimation problem

We approach resolution from the perspective of how accurately,
rather than whether, a given distance separating two objects (e.g.,
two point sources) can be determined. To quantify this accuracy,
the task of determining the separation distance in 3D is formulated
as a parameter estimation problem. From the acquired image, the
parameter vector to be estimated consists of six parameters that
describe how the two objects to be resolved are situated in 3D
space. This vector is given by h ¼ ðd;/;x; sx; sy; szÞ; h 2 H, where
H is the parameter space that is an open subset of R6. As shown
in Fig. 1 for two point sources, sx; sy, and sz are the spatial coordi-
nates of the midpoint of the line segment that connects the two ob-
jects, d is the length of the line segment (i.e., the distance that
separates the objects), / is the angle which the xy-plane projection
of the line segment forms with the positive x-axis, and x is the an-
gle which the line segment forms with the positive optical axis.
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This six-parameter vector is to be estimated from an acquired im-
age of the pair of objects using an estimation algorithm.

In any parameter estimation problem, it is important to know
the accuracy of a chosen estimation algorithm in terms of the stan-
dard deviation of its estimates. For the category of algorithms re-
ferred to as unbiased estimators (i.e., estimators that on average
attain the correct result), the well-known Cramer-Rao inequality
in estimation theory [11] provides a bound on their accuracy. This
inequality is a general result which states that the covariance ma-
trix of any unbiased estimator ĥ of the unknown parameter vector
h is no smaller than the inverse of the Fisher information matrix
IðhÞ, i.e.,

CovðĥÞP I�1ðhÞ; ð2Þ

where for an N-parameter h;N a positive integer, IðhÞ is an N-by-N
matrix whose elements are functions of the N parameters in h. In
other words, this result asserts that the accuracy of any unbiased
estimator is no better than the bound on the right-hand side of
Eq. (2). It is important to emphasize that the right-hand side bound
of Eq. (2) is not specific to a particular unbiased estimator ĥ. Instead,
it is independent of the estimation algorithm that is used, and
therefore serves as a useful benchmark for comparing different
estimators.

Due to its general applicability to all unbiased estimators, we
base our 3D resolution measure on the accuracy benchmark pro-
vided by the Cramer-Rao inequality. For our resolution problem,
the unknown parameter vector h is the six-parameter vector given
above, and the Fisher information matrix IðhÞ is a 6-by-6 matrix
where the rows and columns correspond to the six parameters in
the given order. Since the distance of separation d corresponding
to element (1,1) of the matrix is what we are interested in, and
since it is customary to express accuracy in terms of the standard
deviation rather than the variance, the resolution measure, which
we denote by d3D

d , is given by the square root of element (1,1) of
the inverse of the 6-by-6 Fisher information matrix, i.e.,

d3D
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�1ðhÞ�11

q
. Put another way, the 3D resolution measure is

a lower bound on the standard deviation of the estimates of any
unbiased estimator of the distance d. As such, large values of the
resolution measure indicate poor accuracy, while small values
indicate good accuracy.

Note that while our result is taken in the end from a single ele-
ment of the inverse Fisher information matrix, it is, in general, nec-
essary that we work with a 6-by-6 matrix. This is because in the
most realistic case, we do not know the true value of any of the
six parameters that collectively characterize the location of a given
object pair. We therefore need to estimate all six parameters from
the acquired image, and accordingly the Fisher information matrix
needs to be one that accounts for all six unknown parameters.
Eliminating one or more parameters from being estimated, and
hence reducing the size of the Fisher information matrix, would
in general imply knowledge of the true value of each of the ex-
cluded parameters.

The Fisher information matrix IðhÞ takes different forms
depending on the assumptions we make concerning the conditions
for image acquisition. In what follows in this section, we present
the Fisher information matrix for imaging under ideal conditions.
In Section 3, we present the Fisher information matrix for image
acquisition under less than ideal, but practical conditions.

2.2. The 3D generalized fundamental resolution measure (3D g-FREM)

In our stochastic framework, the data that is collected for each
detected photon consists of the spatial coordinates as well as the
time point at which the photon hits the image detector. More spe-
cifically, the image formed from the detected photons is modeled
as a spatio-temporal random process [12], which we refer to as
the image detection process [6]. Assuming the ideal scenario where
imaging is carried out using an unpixelated (i.e., continuous area)
detector of infinite area and in the absence of any extraneous noise
sources, the Fisher information matrix for an image acquired dur-
ing the time interval ½t0; t� is given by [6,7,12]

IðhÞ ¼
Z t

t0

Z
R2

1
KhðsÞfh;sðx; yÞ

@½KhðsÞfh;sðx; yÞ�
@h

� �T

� @½KhðsÞfh;sðx; yÞ�
@h

dxdyds; h 2 H; ð3Þ

where Kh is the time-varying intensity function of the inhomoge-
neous Poisson process that models the time points at which the
photons are detected, and ffh;sgsPt0

are the density functions of
the sequence of independent random variables that model the spa-
tial coordinates of the detected photons. The superscript symbol T
denotes the transpose of the row vector of partial derivatives
@½KhðsÞfh;sðx;yÞ�

@h .
Since no assumptions are made concerning the parameter vec-

tor h and the functions Kh and ffh;sgsPt0
, the Fisher information

matrix as presented in Eq. (3) is applicable to any acquired image
(i.e., an image of any number of objects arranged in any arbitrary
fashion with respect to one another). To calculate it for a specific
setting, appropriate definitions are needed for h;Kh, and ffh;sgsPt0

.
For the resolution problem at hand, the acquired image is that of a
pair of objects, and the parameter vector h consists of the six
parameters as given in Section 2.1. Accordingly, we define the
intensity function of the Poisson process to be the sum of the pho-
ton detection rates K1 and K2 of the two objects, i.e.,
KhðsÞ ¼ K1ðsÞ þK2ðsÞ; s P t0. Similarly, the density function fh;s
is a weighted sum of the images of the two objects, and is given
by

fh;sðx; yÞ ¼
1

M2 �1ðsÞqz01 ;1
x
M
� x01;

y
M
� y01

� �h
þ�2ðsÞqz02 ;2

x
M
� x02;

y
M
� y02

� �i
; ð4Þ

where ðx; yÞ 2 R2; �iðsÞ ¼ KiðsÞ=ðK1ðsÞ þK2ðsÞÞ; i ¼ 1;2; s P t0;M is
the lateral magnification of the microscope, ðx01; y01; z01Þ and
ðx02; y02; z02Þ are the 3D spatial coordinates of the locations (e.g.,
centers of mass) of the two objects in the object space, and qz01 ;1

and qz02 ;2 are the image functions of the two objects. An image func-
tion qz0

is defined as the image of an object at unit lateral magnifi-
cation when the object is located at ð0; 0; z0Þ; z0 2 R, in the object
space [6]. The location coordinates of the two objects are functions
of the unknown parameter vector h, and are explicitly given by
x01 ¼ sx þ d sin x cos /=2; y01 ¼ sy þ d sin x sin /=2; z01 ¼ sz þ d cos
x=2; x02 ¼ sx � d sin x cos /=2; y02 ¼ sy � d sin x sin /=2, and z02 ¼
sz � d cosx=2.

We refer to d3D
d;gfrem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�1ðhÞ�11

q
, where IðhÞ is that of Eq. (3) with

Kh and ffh;sgsPt0
given as described for the resolution problem, as

the 3D generalized fundamental resolution measure, or 3D g-FREM
for short. It is called ‘‘generalized” because it allows for two general
objects whose images are described by potentially different image
function models. We refer to it as ‘‘fundamental” because it as-
sumes a noise-free image acquisition using a detector of infinite
and continuous area. The 3D g-FREM gives the best accuracy for
separation distance estimation that is theoretically achievable for
a given set of imaging conditions and object pair attributes (i.e.,
for a given numerical aperture, detected wavelength, immersion
medium refractive index, distance of separation, spatial orienta-
tion, etc.). As such, it shows how much room there is for improve-
ment when a similar, but less than ideal imaging setup (i.e.,
pixelated detector of finite size and presence of extraneous noise
sources; discussed in Section 3) is used. It also demonstrates that
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our theoretical framework is a general one that can accommodate
any realization of the image detection process. For example, the
photon detection rates K1 and K2 of the two objects can be mod-
eled as constants or time-varying functions, and the image func-
tions qz01 ;1 and qz02 ;2 can correspond to image models of any
objects including, for instance, point spread functions based on
scalar or vectorial diffraction models (e.g., [13–15]).

2.3. The 3D fundamental resolution measure (3D FREM)

The 3D g-FREM of Section 2.2 provides a general expression
from which resolution measures for more specific scenarios can
be derived. An important scenario of interest is one where the ob-
jects to resolve are two like point sources whose images are de-
scribed by the classical 3D point spread function of Born and
Wolf [3]. These conditions are among the assumptions made by
the classical 3D resolution limit, and therefore are necessary if
comparisons are to be made with the classical criterion (see Sec-
tion 5). For this special scenario, we define a special case of the
3D g-FREM called the 3D fundamental resolution measure (3D
FREM). The 3D FREM is conceptually analogous to the 3D g-FREM
in that it gives the best theoretically attainable accuracy for dis-
tance estimation. However, it applies specifically to the conditions
we have described.

Denoted by d3D
d;frem, the 3D FREM is by definition the square root

of element (1,1) of the inverse of the Fisher information matrix for
the assumed special conditions. Specifically, this matrix is derived
from Eq. (3) for two point sources that emit photons of the same
wavelength and the same constant detection rate
ðK1ðsÞ ¼ K2ðsÞ ¼ K0; s P t0Þ, and for image functions that are gi-
ven by the Born and Wolf point spread function. Under these con-
ditions, the Fisher information matrix is conveniently expressed as
a product of the scalar quantity K0 � ðt � t0Þ (i.e., the expected pho-
ton count detected from each point source) and a 6-by-6 matrix.
Accordingly, the 3D FREM can be written as

d3D
d;frem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3D

0 ðdÞ
2 �K0 � ðt � t0Þ

s
; ð5Þ

where
Fig. 2. Dependence of the 3D resolution measure (3D FREM) on (a) the expected photon
count dependence is shown for three point source pairs that differ only in their distanc
count per point source ðK0 � ðt � t0ÞÞ is varied from 250 to 100,000 photons. The dashed c
detection rates of the point sources as additional unknown parameters. (b) The distance
point source is set to 2500 photons. The resolution measure is expressed as a percentage o
(b), each point source pair is centered on the optical axis 350 nm above the focal plane ð
the xy-plane ð/ ¼ 60�Þ, and forms a 45� angle with the positive optical axis ðx ¼ 45�Þ. Eac
object space medium is set to n ¼ 1:515, and the numerical aperture of the objective le
C3D
0 ðdÞ ¼

Z
R2

1
fhðx; yÞ

@fhðx; yÞ
@h

� �T
@fhðx; yÞ
@h

dxdy

" #�1
8<
:

9=
;

11

;

h 2 H: ð6Þ

In the expression for the function C3D
0 ðdÞ, the subscript 11 denotes

element (1,1) of the inverse of the 6-by-6 matrix inside the square
brackets. The density function fhðx; yÞ is given by

fhðx; yÞ ¼
1

2M2 qz01

x
M
� x01;

y
M
� y01

� �
þ qz02

x
M
� x02;

y
M
� y02

� �h i
;

ðx; yÞ 2 R2; ð7Þ

where the image functions qz01
and qz02

are of the form

qz0
ðx; yÞ ¼ 4pn2

a

k2

Z 1

0
J0

2pna

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
q

� �
ej

pn2
a z0
nk q2qdq

����
����

2

;

ðx; yÞ 2 R2; z0 2 R: ð8Þ

In the Born and Wolf image function of Eq. (8), na denotes the
numerical aperture of the objective lens, k denotes the wavelength
of the detected photons, and n denotes the refractive index of the
immersion medium. The Born and Wolf 3D point spread function
is based on scalar diffraction theory, and evident from the phase
term in Eq. (8), is symmetric along the optical axis with respect to
the focal plane ðz0 ¼ 0 nmÞ.

2.4. Dependence on photon count

The number of photons detected from a point source pair of
interest is a quantity that should have an impact on how well
the two point sources can be distinguished. The more photons
(i.e., data) that are collected, the easier one should be able to deter-
mine the distance of separation. This idea is reflected in our reso-
lution measure.

The 3D FREM of Eq. (5) is the square root of the ratio of two
independent terms – the expected photon count K0 � ðt � t0Þ that
is detected from each point source, and the function C3D

0 ðdÞ of Eq.
(6) that depends on the rest of the parameters, including the dis-
tance of separation d. Whatever the value of C3D

0 ðdÞ given an arbi-
trarily small distance of separation d, the expected photon count
count and (b) the distance of separation of a pair of point sources. (a) The photon
es of separation: d ¼ 50 nm ð�Þ, 100 nm ð�Þ, and 200 nm ð}Þ. The expected photon
urves correspond to resolution measures that have been computed with the photon
dependence is shown for a point source pair where the expected photon count per
f the distance, and the horizontal line corresponds to an error of 10%. In both (a) and
ðsx; sy; szÞ ¼ ð0 nm;0 nm;350 nmÞÞ, projects at a 60� angle from the positive x-axis in
h point source emits photons of wavelength k ¼ 655 nm. The refractive index of the

ns is set to na ¼ 1:45.
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K0 � ðt � t0Þ can be increased independently to obtain an arbitrarily
small value for the resolution measure, and hence an arbitrarily
good accuracy for determining the distance of separation. There-
fore, Eq. (5) shows that, given enough photons from the point
source pair, arbitrarily small distances in 3D can be determined
with the desired accuracy.

Fig. 2a shows the photon count dependence of the 3D FREM for
three point source pairs that differ only in their distances of sepa-
ration. For each of the three distances of separation shown, an in-
verse square root dependence is seen as the 3D FREM decreases,
and therefore the accuracy for distance estimation improves, with
increasing expected photon count. For a distance of d ¼ 200 nm,
for example, the 3D FREM predicts an accuracy of�40:12 nm when
an expected 350 photons are detected from each point source. This
accuracy is approximately �20% of the 200 nm distance. By
increasing the expected photon count to 1500 photons per point
source, the accuracy is improved to �19:38 nm, which is approxi-
mately �10% of the 200 nm distance.

By specifying the unknown parameter vector h to consist only of
the six parameters that describe the location of an object pair, an
implicit assumption is made that all other attributes of the object
pair are either known or can be independently estimated. It is as-
sumed, for example, that the photon detection rate K0 of each
point source is known. In practice, however, it may be difficult to
independently determine the photon detection rates of the two
point sources. For such cases, the vector h can be extended to in-
clude the photon detection rates K1 and K2 of the point sources,
and accordingly an 8-by-8 Fisher information matrix can be com-
puted to obtain the resolution measure. In Fig. 2a, resolution mea-
sures computed using the 8-by-8 matrix are shown as dashed
curves. These dashed curves show that, under the same conditions,
treating the photon detection rates as unknown parameters will
slightly worsen the accuracy with which the distance of separation
can be estimated. However, it is important to note that the shape,
and hence the behavior, of the resolution measure as a function of
photon count remains unaltered.

2.5. Dependence on distance of separation

In addition to the photon count dependence, Fig. 2a demon-
strates the effect of the distance of separation on the resolution
measure. Intuitively, one would expect that larger separation dis-
tances are easier to determine than smaller ones, since in the latter
case there is more overlap of the images of the two point sources.
One way to see this in Fig. 2a is that given an expected number of
detected photons, the resolution measure for a larger distance is
smaller than that for a smaller distance. Another way to appreciate
the distance dependence is by comparing the photon counts re-
quired to determine the three distances with the same level of
accuracy. For a distance of 200 nm, a �23:74 nm accuracy is
achieved when an expected 1000 photons are detected from each
point source. This accuracy is approximately �12% of 200 nm.
When the distance is halved to 100 nm, more than ten times the
expected number of photons (12,000) are needed from each point
source to obtain an accuracy of �12:18 nm. This accuracy is about
�12% of the 100 nm distance, and hence corresponds to the same
level of accuracy. If the distance is halved again to 50 nm, then
even at an expected 100,000 photons per point source, the resolu-
tion measure still predicts an accuracy of �7:90 nm, which is
approximately �16% of the 50 nm distance.

The distance dependence is illustrated directly in Fig. 2b, where
the 3D FREM corresponding to an expected 2500 photons per point
source is shown as a function of separation distance. Here, the y-
axis of the plot is given as a percent error, which is just the ratio
of the 3D FREM to the distance, expressed as a percentage. Using
such a plot, one can easily determine the minimum distance that
can be estimated with a particular percent error. In Fig. 2b, for in-
stance, the intersection of the percent error curve and the horizon-
tal line indicates that, for the conditions assumed, a distance of
175 nm or greater can be determined with an error that is no worse
than �10%.
3. The 3D practical resolution measure

In Section 2 we presented resolution measures (3D g-FREM and
3D FREM) for the best imaging scenario where a detector of infinite
and continuous area and noise-free conditions are assumed. In a
practical experiment, however, the photon detector (e.g., a
charge-coupled device camera) is pixelated and has a finite area.
Furthermore, photons that arise from extraneous noise sources
such as the autofluorescence of the sample and the readout process
of the detector contribute to the total number of photons collected
by the detector. When these data-deteriorating experimental fac-
tors are to be accounted for, the 3D g-FREM and the 3D FREM no
longer apply, and instead, the 3D generalized practical resolution
measure (3D g-PREM) and the 3D practical resolution measure
(3D PREM) are used. The practical resolution measures take into
account the pixelation and finite size of the detector, and model
spurious photons (e.g., sample autofluorescence, detector dark cur-
rent) in the acquired image as additive Poisson noise, and measure-
ment noise (e.g., detector readout) as additive Gaussian noise.

3.1. The 3D generalized practical resolution measure (3D g-PREM)

In a practical imaging scenario, the image acquired during the
time interval ½t0; t� by a pixelated detector consisting of Np pixels
is modeled as a sequence of independent random variables
fIh;1; . . . ;Ih;Npg, where Ih;k ¼ Sh;k þ Bk þWk; k ¼ 1; . . . ;Np. In the
expression for Ih;k; k ¼ 1; . . . ;Np; Sh;k is a Poisson random variable
representing the number of photons from the two objects that
are detected at the kth pixel, and it depends on the same unknown
parameter vector h ¼ ðd;/;x; sx; sy; szÞ; h 2 H, as before. The ran-
dom variable Bk is also Poisson-distributed, but denotes the num-
ber of spurious photons due to noise sources such as sample
autofluorescence that are detected at the kth pixel. The random
variable Wk is a Gaussian random variable denoting the number
of photons due to measurement noise at the kth pixel. The three
random variables at each pixel are independent of each other,
and it is assumed that Bk and Wk; k ¼ 1; . . . ;Np, are independent
of the unknown parameter vector h.

We note that throughout this paper, the term ‘‘noise” refers to the
extraneous noise accounted for by the random variables Bk and/or
Wk at the kth pixel. What is sometimes referred to as shot noise
(i.e., the inherent fluctuations in the number of photons emitted by
the object pair of interest) is accounted for by our modeling of the ac-
quired image as a spatio-temporal random process. Therefore, even
in the ‘‘noise-free” case, the shot noise is taken into consideration.

It can be shown [6] that the number of photons detected from
the two objects at each pixel has a mean (i.e., Sh;k; k ¼ 1; . . . ;Np, is
distributed with mean) given by

lhðk; tÞ ¼
Z t

t0

Z
Ck

KhðsÞfh;sðx; yÞdxdyds; ð9Þ

where ½t0; t� is the acquisition time interval, Ck is the region in the
xy-plane occupied by the kth pixel, KhðsÞ ¼ K1ðsÞ þK2ðsÞ; s P t0,
is the sum of the photon detection rates of the two objects, and
fh;sðx; yÞ is the density function given by Eq. (4).

In the absence of measurement noise ðWk ¼ 0; k ¼ 1; . . . ;NpÞ,
the Fisher information matrix for an image acquired by a pixelated
detector during the time interval ½t0; t� is given by [6]
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IðhÞ ¼
XNp

k¼1

1
lhðk; tÞ þ bðk; tÞ

@lhðk; tÞ
@h

� �T
@lhðk; tÞ

@h
; ð10Þ

where for k ¼ 1; . . . ;Np;lhðk; tÞ is as given in Eq. (9), and bðk; tÞ is the
mean number of spurious photons at the kth pixel due to noise
sources such as sample autofluorescence (i.e., mean of the Poisson
noise random variable BkÞ. Note that by setting bðk; tÞ ¼ 0; k ¼
1; . . . ;Np, additive Poisson noise due to spurious photons is re-
moved, and an expression is obtained which accounts only for the
effects of pixelation. If measurement noise is present, the Fisher
information matrix is given by [6]
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ð11Þ
where for k ¼ 1; . . . ;Np; mhðk; tÞ ¼ lhðk; tÞ þ bðk; tÞ;gk and rk denote,
respectively, the mean and the standard deviation of the number
of photons introduced by the detector readout process at the kth
pixel (i.e., mean and standard deviation of the Gaussian noise ran-
dom variable WkÞ, and

ph;kðzÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rk

X1
l¼0

½mhðk; tÞ�le�mhðk;tÞ

l!
e
�1

2
z�l�gk

rk

� �2

; z 2 R: ð12Þ

The 3D g-PREM is then defined to be d3D
d;gprem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�1ðhÞ�11

q
, where

IðhÞ is given by either Eq. (10) or Eq. (11), depending on whether
measurement noise is present.

3.2. The 3D practical resolution measure (3D PREM)

Analogous to the derivation of the 3D FREM from the 3D g-FREM,
the 3D PREM ðd3D

d;premÞ is obtained by evaluating the 3D g-PREM for
two like point sources that emit photons of the same wavelength
and the same constant detection rate. Furthermore, the image of
each point source is assumed to be described by the Born and Wolf
image function of Eq. (8). In other words, the 3D PREM is realized by
evaluating lhðk; tÞ of Eq. (9) with K1ðsÞ ¼ K2ðsÞ ¼ K0; s P t0, and
with fh;sðx; yÞ replaced by fhðx; yÞ of Eq. (7).

Note that even with the assumptions made for the 3D PREM, the
expected photon count K0 � ðt � t0Þ, which appears in the expres-
sions lhðk; tÞ and mhðk; tÞ, cannot in general be factored out from
Eqs. (10) and (11). The only exception is when neither additive
Poisson nor additive Gaussian noise sources are present (i.e.,
bðk; tÞ ¼ 0; k ¼ 1; . . . ;Np, in Eq. (10)). Therefore, when extraneous
noise sources are present, the resolution measure cannot be ex-
pressed as in Eq. (5), where the photon count appears as an inde-
pendent term of a ratio. As a result, the simple inverse square
root dependence of the resolution measure on the photon count
does not hold in the presence of noise sources. However, despite
a more complex dependence, the resolution measure still improves
with increasing photon count.

In the remainder of this section, we use the 3D PREM to illus-
trate how the accuracy for distance determination is affected by
detector pixelation, noise, and magnification.

3.3. Effects of pixel size and extraneous noise

We recall from Section 2.2 that the framework on which the
resolution measure is based records for each detected photon the
spatial coordinates at which the photon hits the detector. In the
ideal imaging scenario, we assume that the continuous area of
the image detector allows the recording of these coordinates with
arbitrary precision. When the detector area is pixelated, however,
this arbitrary precision is lost since the spatial coordinates of a gi-
ven photon can only be recorded with a precision that is up to the
size of a single pixel. We therefore expect that the larger the pixel
size, the worse the precision, and accordingly the higher the value
of the resolution measure. On the other hand, as the pixel size be-
comes very small, the loss of precision becomes limited and the va-
lue of the resolution measure will approach that for the ideal
scenario.

In a practical scenario, photons that arise from extraneous Pois-
son and/or Gaussian noise sources will deteriorate the quality of
the signal in each pixel. Therefore, the presence of extraneous
noise will always result in a poorer (larger) resolution measure.
However, given a fixed region of interest (i.e., portion of the detec-
tor area), the precise effect of noise in conjunction with pixelation
depends on how a particular type of noise is modeled. For example,
in the case of Poisson noise such as that due to sample autofluores-
cence, the mean number of spurious photons over the entire region
of interest can be modeled as a constant, regardless of the number
of pixels that comprise the region. Therefore, given the same region
of interest, and assuming uniform allocation of the spurious pho-
tons over the region, the mean number of spurious photons per
pixel will be higher for a larger pixel size and lower for a smaller
pixel size. In contrast, noise due to the detector readout process
can be modeled as Gaussian noise with the same mean and stan-
dard deviation at each pixel, regardless of what the size of the pixel
is. As we will see for a fixed region of interest, these two types of
noise sources will introduce different degrees of deterioration to
the resolution measure depending on the specific pixel size.

In Fig. 3a, we show the effects of detector pixelation and extra-
neous noise on the resolution measure. The point source pair is as-
sumed to be the same as the one with the 200 nm separation
distance that is considered in Fig. 2a, and its image is assumed to
be centered on a 500 lm by 500 lm region of interest with square
pixels. The flat line at the bottom of the plot is the value of the 3D
FREM, and represents the best accuracy that is theoretically attain-
able for the given conditions. The remaining curves show the 3D
PREM for different types and combinations of noise sources, in
each case as a function of pixel size.

When no extraneous noise sources are present and pixelation is
the only deteriorating factor, the figure shows that, as discussed
above, the PREM improves (decreases) and converges to the FREM
as the pixel size is decreased. The convergence to the FREM is ex-
pected since in the limiting case, a pixel size of 0 lm means the
continuous detector area assumed by the FREM. When additive
Poisson noise with a constant mean over the entire region of inter-
est is uniformly allocated to each pixel, the PREM also decreases
with decreasing pixel size, but its value is consistently larger than
that of the pixelation only scenario. The figure confirms that the
PREM will not converge to the FREM in this case because whereas
the FREM assumes a noise-free image acquisition, the PREM here
entails a constant level of noise due to spurious photons.

The remaining two curves in Fig. 3a entail additive Gaussian
noise with identical mean and standard deviation at any given pix-
el, regardless of the pixel size. When it is the only noise source
present, the PREM decreases with decreasing pixel size as in the
case of Poisson noise, but only down to a certain pixel size before
it begins to increase as the pixel size decreases further. This is be-
cause while the number of photons collected from the point source
pair continues to decrease in each pixel as the pixel size becomes
smaller, the readout noise in each pixel remains unchanged and
causes significant deterioration of the signal to noise ratio. The fi-
nal PREM curve shows that the same U shape is observed when



Fig. 3. Dependence of the 3D resolution measure (3D PREM) on (a) the detector pixel size and (b) the magnification of the objective lens in the presence of different types and
combinations of noise sources: noise-free ð�Þ, additive Poisson noise (e.g., sample autofluorescence) ð�Þ, additive Gaussian noise (e.g., detector readout) (�), and additive
Poisson and Gaussian noise ð}Þ. The 3D fundamental resolution measure (�), which represents the best possible accuracy for distance determination, is also shown for
comparison. (a) The area of the region of interest consisting of square pixels is fixed at 500 lm by 500 lm. Therefore, the number of pixels Np is inversely related to the pixel
size. If present, the mean of the additive Poisson noise for each pixel is set to bðk; tÞ ¼ 28;880=Np photons. The magnification of the objective lens is set to M ¼ 100. (b) The
region of interest consists of a 21-by-21 pixel array with a pixel size of 13 lm by 13 lm. If present, the mean of the additive Poisson noise for each pixel is set to bðk; tÞ ¼ 80
photons. In both (a) and (b), the mean and standard deviation of the additive Gaussian noise, if present, are set to gk ¼ 0 e� and rk ¼ 8 e� for each pixel, respectively. The
point source pair is axially centered at 350 nm above the focal plane ðsz ¼ 350 nmÞ, and is positioned in the xy-plane such that its image is centered on the region of interest.
The point sources are separated by a distance of d ¼ 200 nm, and the orientation is such that the pair projects at a 60� angle from the positive x-axis in the xy-plane ð/ ¼ 60�Þ,
and forms a 45� angle with the positive optical axis ðx ¼ 45�Þ. Each point source emits photons of wavelength k ¼ 655 nm, and the expected photon count from each is set to
K0 � ðt � t0Þ ¼ 5000 photons. The refractive index of the object space medium is set to n ¼ 1:515, and the numerical aperture of the objective lens is set to na ¼ 1:45.
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both Poisson and Gaussian noise sources are present. However,
consistently larger PREM values are expected due to the additional
Poisson noise.

3.4. Effect of magnification

The pixelation of the detector and the finite size of a region of
interest also mean that the magnification of the objective lens
has an important effect on the resolution measure. When the lat-
eral magnification is small, the image of a closely spaced point
source pair will largely be confined to a single pixel. In this case,
very little information on the distance of separation can be ex-
tracted from the collected data. On the other hand, when the mag-
nification is large, considerable portions of the image of the point
source pair will fall outside of the region of interest. As a result,
a significant amount of information on the distance of separation
will be lost. Therefore, for both low and high magnifications, we
should expect a poor accuracy for determining the distance of sep-
aration, and accordingly a large value for the resolution measure.

Fig. 3b shows the 3D PREM as a function of magnification for the
same point source pair and the same types and combinations of
extraneous noise sources as in Fig. 3a. The point source pair is
again positioned such that its image is centered on the region of
interest, which in this case is assumed to be a 21-by-21 array
of 13 lm by 13 lm pixels. For all four types and combinations of
noise sources shown, the same pattern is observed. As expected,
the resolution measure takes on large values at small magnifica-
tion values wherein the image of the point source pair is concen-
trated mostly in a single pixel. However, the value of the
resolution measure quickly drops as the magnification is increased
and the image of the point source pair is distributed across more
pixels. A steady deterioration (i.e., increase) is then observed as
the magnification continues to increase and more of the image of
the point source pair falls outside of the region of interest. The flat
line at the bottom of the plot is again the 3D FREM which repre-
sents the best theoretically attainable accuracy. Note that despite
the magnification M being present in the density functions of
Eqs. (4) and (7), it is canceled out by substitution when the Fisher
information matrices for the 3D g-FREM and the 3D FREM are de-
rived. The fundamental resolution measures are therefore indepen-
dent of the magnification, and accordingly the 3D FREM is shown
as a constant function of magnification in Fig. 3b.
4. Effects of orientation and axial location

In this section, we investigate the dependence of the 3D resolu-
tion measure on a point source pair’s spatial orientation with re-
spect to the optical axis as well as its location along that axis.
These attributes are specific to a point source pair situated in 3D
space, and one would expect both how the point source pair is ori-
ented and its distance from the focal plane to have an impact on
how accurately the distance of separation can be determined.

4.1. Dependence on orientation

According to the classical resolution criteria, the optical micro-
scope is better at resolving distances in 2D than in 3D. Consider
again a point source pair that emits photons at a wavelength of
k ¼ 655 nm. If both point sources are brought into the plane of fo-
cus ðx ¼ 90�; sz ¼ 0 nm; see Fig. 1), then Rayleigh’s criterion, given
by 0:61k=na, yields 276 nm as the smallest resolvable distance
when a 1.45 NA objective is used. This is in significant contrast
to the nearly 1-lm limitation in 3D (see Section 1) when the same
point source pair is aligned parallel to the optical axis ðx ¼ 0�Þ. The
classical results therefore agree with the intuition that, provided
everything else is identical, it is easier to determine the distance
of separation when the two point sources are positioned side-by-
side in the focal plane (2D) than when one is positioned directly
in front of the other (3D, x ¼ 0�Þ.

Our resolution measure predicts results that are analogous. In
general, provided that all other parameters remain the same, a gi-
ven distance of separation can be determined with the best accura-
cies when the orientation of the point source pair approaches the
side-by-side configuration in an xy-plane. In contrast, the poorest
accuracies can be expected when the orientation approaches the



Fig. 4. Dependence of the 3D resolution measure (3D PREM) on (a) the 3D orientation (angle xÞ and (b) the axial location of a point source pair. (a) The resolution measures
corresponding to three different types and combinations of noise sources are shown: noise-free ð�Þ, additive Poisson noise (e.g., sample autofluorescence) ð�Þ, and additive
Poisson and Gaussian (e.g., detector readout) noise ð}Þ. (b) The resolution measure corresponding to additive Poisson and Gaussian noise ð}Þ is shown as a function of the
axial position of the first point source ðz01Þ. The focal plane is located at z01 ¼ 0 nm. The dashed curve corresponds to resolution measure that has been computed with the
mean of the additive Poisson noise at each pixel, and the photon detection rates of the point sources, as additional unknown parameters. In both (a) and (b), with the
exception of the magnification of the objective lens which is set to M ¼ 100, and with the exception of the angle x in (a) and the axial position in (b) which are varied along
the x-axes of the respective plots, the attributes of the point source pair as well as the noise and experimental parameters are as given for Fig. 3b.
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front-and-back configuration wherein the point sources are
aligned parallel to the optical axis. This can be seen in Fig. 4a,
which shows the dependence of the 3D PREM on the orientation
angle x for two point sources that are separated by 200 nm. The
three curves shown differ only in the types of noise sources that
are present. In all three cases, the side-by-side scenario ðx ¼ 90�Þ
corresponds to the smallest resolution measure and hence the best
accuracy, while orientations approaching the front-and-back sce-
nario ðx 	 0�Þ correspond to the highest resolution measures and
hence the worst accuracies.

Unlike the classical criteria, the resolution measure is able to ac-
count for intermediate orientations between the two special cases.
In Fig. 4a, the curves show that as we rotate the point source pair
out of and away from the xy-plane (decrease the angle xÞ, we be-
gin to lose accuracy slowly but steadily until roughly an angle half
way between the xy-plane and the optical axis ðx ¼ 45�Þ is formed
with the optical axis. Then, as the point source pair is rotated fur-
ther towards the front-and-back orientation ðx < 45�Þ, the deteri-
oration in accuracy becomes significantly sharper before
eventually leveling off at very small values of x. By comparing
the three curves, we can see that the presence of additive Poisson
and/or Gaussian noise sources only makes the situation worse for
x < 45� as it significantly augments the deterioration of the reso-
lution measure.

4.2. Dependence on axial location

Intuitively, one would expect that the farther two point sources
are from the focal plane, the more they will appear in the acquired
image to be a single point source, and hence the more difficult it
will be to determine the distance that separates them. This is cor-
roborated by the curve shown in Fig. 4b, which illustrates how the
value of the 3D PREM changes as a point source pair is moved
along the optical axis from 2 lm below the focal plane to 2 lm
above. The resolution measure is shown as a function of the axial
position z01 of the first point source, and the focal plane is located
at z01 ¼ 0 nm. With the exception of axial locations within roughly
half a micron from the focal plane, the curve shows that as the
point source pair is moved away from the focal plane in either
direction along the optical axis, the value of the resolution measure
increases, and hence the accuracy for determining the distance of
separation worsens.

The exception to the rule for axial locations within half a micron
from the focal plane can be explained by the fact that the accuracy
with which the axial position of a point source can be determined
deteriorates drastically when the point source is near the focal
plane [16,17]. Since the problem of resolving two point sources
can be viewed equivalently as determining the locations of the
two point sources, this inability to accurately localize a near-focus
point source has similar implications for the resolution problem. As
shown in Fig. 4b, the ability to accurately determine the distance of
separation is severely compromised by either of the two point
sources being very close to the focal plane. While a relatively small
but significant increase in the value of the resolution measure is al-
ready observed as the point source pair approaches the focal plane
from within a half-micron distance, sharp deteriorations are seen
around z01 ¼ 0 nm and around z01 	 141:42 nm. The former corre-
sponds to the first point source being very close to the focal plane,
and the latter corresponds to the second point source being very
close the focal plane. Note that the symmetry of the curve in
Fig. 4b is due to the z-symmetry of the Born and Wolf 3D point
spread function with respect to the focal plane, and is not generally
expected for all point spread functions.

The dashed curve in Fig. 4b represents the 3D PREM when the
mean bðk; tÞ of the additive Poisson noise at each pixel (assumed
to be the same for all pixels), as well as the photon detection rates
K1 and K2 of the two point sources, are introduced as additional
unknown parameters (i.e., PREM computed with a 9-by-9 Fisher
information matrix). Similar to what we saw with the FREM in
Fig. 2a, only a small deterioration of the PREM is observed, and
hence the additional unknowns do not significantly impact the res-
olution measure. This serves as an example that by computing and
comparing resolution measures for different sets of unknown
parameters, one can quantitatively assess the significance of a
parameter. For another example, given the conditions assumed
by Fig. 4b, one may choose to exclude the possibly insignificant an-
gle / from the unknown parameter vector h. For the point corre-
sponding to z01 ¼ 400 nm, for instance, the value of the PREM
essentially remains at �20:93 nm when / is excluded from h and
a 5-by-5 Fisher information matrix is used instead.
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5. Comparison with the classical criterion

In Section 2.3, we presented the 3D fundamental resolution
measure (3D FREM) which makes important assumptions that
are shared by the classical 3D resolution limit (Eq. (1)). Specifically,
it assumes the objects of interest to be a pair of like point sources
whose images are described by the Born and Wolf point spread
function. However, whereas the 3D FREM expression of Eq. (5) ap-
plies generally to a point source pair with an arbitrary spatial ori-
entation in 3D space, the classical 3D resolution limit assumes the
two point sources to be oriented parallel to the optical axis
ðx ¼ 0�Þ. Therefore, to make a direct comparison between the
two, we evaluate the FREM with the assumption that we know
the angle x ¼ 0�. We also discard the angle / as one of the un-
known parameters since it has no meaning when x ¼ 0�. This
leaves us with the parameter vector h ¼ ðd; sx; sy; szÞ; h 2 H, where
H is the parameter space that is an open subset of R4. The 3D FREM
expression that results from the corresponding 4-by-4 Fisher infor-
mation matrix can be written as
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Note that like the classical 3D resolution limit, the 3D FREM of Eq.
(13) is a product involving the term kn=n2

a . However, whereas in
the classical criterion the term kn=n2

a is multiplied by the constant
2, in the 3D FREM it is multiplied by a more complex term that de-
pends nonlinearly on the expected photon count K0 � ðt � t0Þ and
the function C3D

0 ðdÞ. Through the function C3D
0 ðdÞ, the 3D FREM is

nonlinearly dependent on the separation distance d and the term
kn=n2

a itself, which occurs in reciprocal form in the inner integrals
H�b;c and H�b;s.

We recall the example from Section 1 where a fluorophore pair
emitting at a wavelength of k ¼ 655 nm is imaged using an objec-
tive lens of numerical aperture na ¼ 1:45 and an immersion oil of
refractive index n ¼ 1:515. Whereas the classical criterion indicates
944 nm as the smallest resolvable distance for these imaging condi-
tions, the 3D FREM of Eq. (13) predicts that smaller distances can be
determined accurately. For example, if the fluorophore pair is cen-
tered on the optical axis 350 nm above the focal plane ððsx; sy; szÞ ¼
(0 nm, 0 nm, 350 nm)), this 3D FREM predicts that a distance of
200 nm can be resolved with an accuracy of �19:65 nm, which is
approximately �10% of 200 nm. It also predicts that a distance of
100 nm can be determined with an accuracy of �20:78 nm, which
is about �21% of 100 nm. Importantly, these accuracies are based
on the expectation that 20,000 and 62,500 photons per point source
are detected, respectively. As previously discussed and shown in
Fig. 2a for a point source pair with a more general orientation, these
accuracies are not fixed, but instead can be improved by collecting
more photons from the pair of fluorophores.

6. Maximum likelihood estimation with simulated data

By definition, the 3D resolution measure is a lower bound on
the standard deviation of the distance estimates of any unbiased
estimator. In other words, it is the best (i.e., the smallest) standard
deviation that can be expected for a set of distance estimates ob-
tained using an unbiased estimation algorithm. Here, we show that
the maximum likelihood estimator is capable of achieving the
accuracy as per the resolution measure. We demonstrate this by
performing maximum likelihood estimations on simulated images
of point source pairs in 3D space. For each data set, we calculate
the standard deviation of the estimated distances of separation,
and show that it comes close to the corresponding 3D PREM. We
also show, by way of these estimations, that distances well below
the classical 3D resolution limit can in fact be determined with the
desired accuracy. In what follows, we use the notation of Section 3
in our descriptions.

6.1. Estimation

Maximum likelihood estimation was performed on data sets
that are deteriorated by different noise sources. For a noise-free
image or one where only additive Poisson noise was present, the
maximum likelihood estimation was realized by maximizing the
log-likelihood function for Poisson-distributed data. This function
is given by

lnðLðhjz1; . . . ; zNp ÞÞ ¼
XNp

k¼1

ln
½mhðk; tÞ�zk e�mhðk;tÞ

zk!

� �

¼
XNp

k¼1

zk ln½mhðk; tÞ� � mhðk; tÞ � lnðzk!Þð Þ; ð14Þ

where Np is the number of pixels in the pixel array, and for
k ¼ 1; . . . ;Np; zk is the simulated photon count at the kth pixel
ðzk ¼ Sh;k þ BkÞ, and mhðk; tÞ is the mean photon count at the kth pixel
ðmhðk; tÞ ¼ lhðk; tÞ þ bðk; tÞÞ. Note that if Poisson noise is absent, then
zk ¼ Sh;k and mhðk; tÞ ¼ lhðk; tÞ; k ¼ 1; . . . ;Np. Also, since our data sets
were simulated based on the conditions assumed by the 3D PREM,
lhðk; tÞ is obtained by computing Eq. (9) with the same constant
photon detection rate for each point source ðKhðsÞ ¼ K1ðsÞþ
K2ðsÞ ¼ 2K0Þ, and with the density function fh;sðx; yÞ replaced by
fhðx; yÞ of Eq. (7).

For an image where additive Gaussian noise was present, poten-
tially along with additive Poisson noise, the maximum likelihood
estimation was realized by maximizing the log-likelihood function

lnðLðhjz1; . . . ; zNp ÞÞ ¼
XNp

k¼1

lnðph;kðzkÞÞ; ð15Þ

where for k ¼ 1; . . . ;Np; zk ¼ Sh;k þ Bk þWk if Poisson noise is also
present, or zk ¼ Sh;k þWk if not, and ph;kðzkÞ is the probability density
function of zk given by Eq. (12), with lhðk; tÞ given by Eq. (9) and
computed as described above.



Table 1
Results of maximum likelihood estimations.

Data set
no.

Noise
sourcesa

Expected photon count per
point source

Orientation angle x
(degrees)

Distance of
separation d (nm)

Mean of d
estimates (nm)

Resolution
measure (nm)

Std. dev.b of d
estimates (nm)

1 None 5000 45 200 200.58 12.12 12.50
2 P 5000 45 200 200.39 17.52 16.78
3 P + G 5000 45 200 200.84 20.18 19.35
4 P + G 5000 55 170 172.32 17.18 16.65
5 P + G 50,000 0 200 198.79 18.35 18.56
6 P 5,000,000 0 50 49.22 5.28 5.61

Results of maximum likelihood estimations on six sets of 500 simulated images of point source pairs in 3D space. For each data set, the mean and standard deviation of the
estimates of the distance of separation are shown along with the corresponding resolution measure (3D PREM) and the values of the parameters that are different between
the data sets. For all data sets, the region of interest consists of a 15-by-15 pixel array with a pixel size of 13 lm by 13 lm. The point source pair is axially centered at 350 nm
above the focal plane ðsz ¼ 350 nmÞ, and is positioned in the xy-plane such that its image is centered on the pixel array. Except in data sets 5 and 6 where the angle / does not
apply, the angle that the xy-plane projection of the point source pair forms with the positive x-axis is set to / ¼ 60� . In all cases, each point source emits photons of
wavelength k ¼ 655 nm. With the exception that the magnification of the objective lens is set to M ¼ 100, all other experimental parameters as well as the Poisson and
Gaussian noise parameters are as given for Fig. 3b.

a P denotes Poisson noise, P+G denotes Poisson and Gaussian noise.
b Standard deviation.
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We performed estimations on six sets of simulated data which
differ in parameters such as the distance of separation, the spatial
orientation, and the types of noise sources that are present (see
Table 1). For all data sets, the generation of simulated images in
the form of 15-by-15 pixel arrays and the subsequent estimation
and analysis were carried out using the technical programming
language of MATLAB (The MathWorks, Inc., Natick, MA) and its
optimization toolbox. Specifically, we made use of the core func-
tionalities that are part of the software packages EstimationTool
[18] and FandPLimitTool [19].

We note that in the software implementation of the maximum
likelihood estimator, we minimize the negative of the log-likeli-
hood functions of Eqs. (14) and (15). Also, for data which were
either noise-free (data set 1) or contained only additive Poisson
noise (data sets 2 and 6), the term � lnðzk!Þ in Eq. (14) was dropped
because it depends only on the simulated photon count zk and is
hence a constant. For data set 6 which was simulated with very
high photon counts, an additional constant offset �zkðln zk � 1Þ
was introduced and the entire summation was scaled with the
constant factor 1=Np (i.e., inverse of the number of pixels). This
constant-offset/scaled log-likelihood function is known as the I-
divergence [20], and we found it effective in preventing numerical
difficulties encountered by the estimator in working with other-
wise large numerical values of the log-likelihood function due to
the high photon counts.

Each image was simulated as follows. Each element k of a 15-
by-15 pixel array was assigned the mean photon count detected
at the kth pixel from the point source pair, as given by the sum
of two Born and Wolf 3D point spread functions (see Eq. (8)). In
other words, we computed lhðk; tÞ of Eq. (9) for the kth pixel in
the same way as described above in the discussion of the log-like-
lihood functions. If additive Poisson noise was to be introduced,
then a constant bðk; tÞ representing the mean number of spurious
photons at the kth pixel was next added to each element k of the
15-by-15 array to yield lhðk; tÞ þ bðk; tÞ. An image without additive
Gaussian noise was then immediately realized by a second 15-by-
15 pixel array where the photon count in each element k was a
random number Sh;k or Sh;k þ Bk drawn from the Poisson distribu-
tion with mean given by element k of the first pixel array, i.e., with
mean lhðk; tÞ or lhðk; tÞ þ bðk; tÞ, respectively. If Gaussian noise was
to be introduced, then a random number Wk drawn from the nor-
mal distribution with the specified mean gk and standard deviation
rk was added to each element k of the second pixel array to yield
the photon count Sh;k þWk if there was no Poisson noise, or
Sh;k þ Bk þWk if Poisson noise was present.

For each data set, five hundred simulated images were gener-
ated as described, and estimations were performed using the
appropriate maximum likelihood estimator. For the first four data
sets, all six parameters that describe the geometry of a point source
pair in 3D space (Section 2.1) were assumed to be unknown and
estimated. However, for data sets 5 and 6, only the distance d
and the coordinates sx; sy, and sz were estimated. This is because
we assumed that we know the point source pair to be in the special
front-and-back orientation ðx ¼ 0�Þ, and therefore excluded the
angles x and / from the unknown parameter vector h as we did
in the derivation of Eq. (13).

We note that due to the Born and Wolf point spread function’s
z-symmetry with respect to the focal plane z ¼ 0 nm, the image
produced by two point sources with axial positions z01 and z02

will be identical to the image generated when the axial position
of point source 1 is changed to �z01 and/or the axial position of
point source 2 is changed to �z02. If both z01 and z02 are nonzero,
then the flipping of exactly one of the point sources with respect
to the focal plane will result in a different separation distance d
despite the image remaining the same. Consequently, estimations
performed on a given image can potentially yield different dis-
tance estimates. For our estimations here, we have assumed that
both point sources are located above the focal plane. In practice,
this ambiguity does not present a problem if the investigator
knows that the point sources of interest are always confined to
one side of the focal plane (e.g., placing the focal plane at the
plasma membrane of a cell so that the interior of the cell is en-
tirely above or below the focal plane). We stress that this ambigu-
ity exists only within the context of the actual distance
estimation, and that it is not an issue when it comes to the theory
or computation of the resolution measure.

6.2. Results

Table 1 shows that in each of the six scenarios, the mean of the
distance estimates closely matches the true distance of separation.
In addition, in each data set the standard deviation of the distance
estimates comes close to the resolution measure (3D PREM). These
results therefore demonstrate that the maximum likelihood esti-
mator is capable of achieving the accuracy predicted by the resolu-
tion measure.

Each of the first three data sets entails two point sources that
are separated by a distance of d ¼ 200 nm and form a 45� angle
with the positive optical axis ðx ¼ 45�Þ. These three scenarios dif-
fer only in the noise sources that are present during image acqui-
sition. Data set 1 is noise-free, while data set 3 has the highest
level of noise. Therefore, of the first three data sets, data set 1
has the best accuracy with a resolution measure of �12:12 nm
and a standard deviation of �12:50 nm, whereas data set 3 has
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the worst accuracy with a resolution measure of �20:18 nm and a
standard deviation of �19:35 nm.

Data set 4, in conjunction with data set 3, provides an example
of a tradeoff between two attributes of a point source pair – the
distance of separation and the orientation. The parameters of data
sets 3 and 4 are identical in every way except in two respects.
While data set 4 has a smaller, less accurately estimable separation
distance of d ¼ 170 nm (Section 2.5), it also has a more favorable
orientation of x ¼ 55� (Section 4.1). As a result, the smaller dis-
tance of 170 nm can be estimated with the same level of accuracy
as for data set 3 (i.e., in data sets 3 and 4, the standard deviation is
approximately �10% of the respective mean distance).

Data set 5 involves a point source pair that is aligned parallel to
the optical axis ðx ¼ 0�Þ. This orientation is the one assumed by
the classical 3D criterion and is the most difficult to resolve (Sec-
tion 4.1). As a result, a much larger number of photons (50,000
per point source) must be collected (Section 2.4) in order to obtain
an approximately �10% level of accuracy. Data set 6 shows for this
special orientation that a distance of separation four times smaller
ðd ¼ 50 nmÞ can also be estimated with an approximately�10% le-
vel of accuracy, but at the cost of detecting 100 times the number
of photons (5,000,000) from each point source. Importantly,
according to the classical 3D resolution limit, the smallest resolv-
able distance given the experimental parameters used here is
944 nm. Therefore, data sets 5 and 6 serve as examples that, given
enough photons from the point source pair, distances significantly
smaller than indicated by the classical limit can be determined
accurately.

7. Conclusions

Using the tools of information theory, we have proposed a 3D
resolution measure which approaches resolution from the perspec-
tive of how accurately a given distance between two objects in 3D
space can be determined. Based on a mathematical framework that
allows the calculation of resolution measures for different imaging
conditions, we have considered two important realizations that,
like the classical 3D resolution limit, assume the imaging of two
like point sources whose images are given by the Born and Wolf
3D point spread function. The 3D fundamental resolution measure
(3D FREM) is specific to noise-free imaging with a detector of infi-
nite and continuous area, while the 3D practical resolution mea-
sure (3D PREM) accounts for the practical scenario where the
data is complicated by the presence of extraneous noise sources
and the detector is pixelated and of finite size.

Using the 3D FREM and the 3D PREM, we have illustrated the
dependence of the resolution measure on various attributes of a
point source pair such as its orientation, and on experimental set-
tings such as the lateral magnification of the microscope. Impor-
tantly, the resolution measure shows that by detecting a
sufficient number of photons from a point source pair, arbitrarily
small distances of separation can be estimated with prespecified
accuracy. This result implies that distances smaller than indicated
by the 3D classical criterion can be determined accurately, and we
have shown this to be the case with a comparison of the mathe-
matical formulae as well as with estimations using simulated
images. By definition a lower bound on the accuracy (i.e., standard
deviation) with which a given distance can be determined using
any unbiased estimator, we have also shown with the estimations
that the maximum likelihood estimator is capable of attaining the
resolution measure.

Our mathematical framework is such that it allows the custom-
ization of the unknown parameter vector h. Though we have pre-
sented a vector comprising the six unknown parameters that
describe the 3D geometry of an object pair, in practice the precise
parameters to include in the vector should depend on what is actu-
ally known and unknown in a particular circumstance. As we have
shown with the extension of h to include the photon detection
rates K1 and K2 of two point sources (Sections 2.4 and 4.2) and
the mean bðk; tÞ of the Poisson (background) noise (Section 4.2),
the mean gk of the Gaussian (detector readout) noise at the kth pix-
el can, for example, also be included if it is not known. It should be
pointed out, however, that the inclusion of noise parameters as un-
knowns is not always necessary since one could also determine the
readout noise (e.g., [21]) and the background noise (e.g., [22]) inde-
pendently of the distance estimation.

In our illustration of the resolution measure, we have used the
Born and Wolf 3D point spread function to describe the image of a
point source as it is the model from which the classical 3D resolu-
tion limit is derived. In practice, however, the resolution measure
should be computed using a point spread function that best models
the acquired data. For example, in the presence of refractive index
mismatches between sample, immersion medium, etc., the Gib-
son–Lanni model [13] or a vectorial model (e.g., [14,15]) might
be more suitable.
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