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ABSTRACT

Owing to its high quantum efficiency, the charge-coupled de-
vice (CCD) is an important imaging tool employed in biolog-
ical applications such as single molecule microscopy. Under
extremely low light conditions, however, a CCD is generally
unsuitable because its readout noise can easily overwhelm the
weak signal. Instead, an electron-multiplying charge-coupled
device (EMCCD), which stochastically amplifies the acquired
signal to drown out the readout noise, can be used. We have
previously proposed a framework for calculating the Fisher
information, and hence the Cramer-Rao lower bound, for es-
timating parameters (e.g., single molecule location) fromthe
images produced by an optical microscope. Here, we develop
the theory that is needed for deriving, within this framework,
performance measures pertaining to the estimation of param-
eters from an EMCCD image. Our results allow the compar-
ison of a CCD and an EMCCD in terms of the best accuracy
with which parameters can be estimated from their acquired
images.

Index Terms— Branching process, electron multiplica-
tion, Fisher information, single molecule microscopy

1. INTRODUCTION

The charge-coupled device (CCD) is an important image de-
tector that has found utility in diverse areas such as high sensi-
tivity cellular microscopy and astronomy. The high quantum
efficiency of a typical CCD enables it to detect a large fraction
of the photons which impact its surface. However, a CCD is
unsuitable for imaging under extremely low light conditions,
since its measurement noise can overwhelm the signal when
relatively few photons are detected from the imaged object.
Measurement noise is added when the signal is read out from
the CCD, and is commonly called the readout noise (e.g., [1]).

An intended solution for overcoming the readout noise
under low light conditions is the electron-multiplying charge-
coupled device (EMCCD). An EMCCD is similar to a CCD
in that it accumulates electrons in proportion to the number
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of photons it detects. Unlike a CCD, however, it can increase
the number of electrons substantially via a multiplicationpro-
cess, thereby generating an amplified signal that can effec-
tively drown out the readout noise. The multiplication occurs
as electrons are transferred through a gain register consist-
ing of typically several hundred stages. Specifically, eachin-
put electron to any given stage can, with certain probabilities,
generate secondary electrons that are transferred, along with
the input electron itself, to the next stage for further amplifi-
cation. Given such a cascade, a large number of electrons can
be produced at the output of the gain register per initial elec-
tron, even with the usually small probabilities for secondary
electron generation (typically 0.01 to 0.02 [2] for one sec-
ondary electron per input electron per stage, and even smaller
for more than one secondary electron per input electron).

From an image captured using a CCD or an EMCCD cam-
era, parameters of interest can be estimated to obtain useful
information about the imaged object. In single molecule mi-
croscopy (e.g., [3]), for example, an important problem has
been the estimation of the location of a fluorescent molecule
(e.g., [4, 5]). In this context, a general framework [6] has been
proposed for calculating the Fisher information, and hencethe
Cramer-Rao lower bound [7], for the estimation of parameters
from an image produced by a microscope. Using this frame-
work, accuracy limits have been derived for estimating, for
example, the location coordinates of a single molecule (e.g.,
[5]). These performance measures, however, have assumed
the image to have been acquired with a CCD.

In this paper, we develop the theory that is necessary
for deriving performance measures for estimating parameters
from an EMCCD image. To arrive at the Fisher information
for EMCCD data, an expression is needed for the probability
distribution of the electron count that results from the multi-
plication process described above. To this end, we model the
stochastic multiplication as a branching process (e.g., [8]),
as others have done for EMCCDs (e.g., [9, 2]). However,
as opposed to its typical description as a Bernoulli event,
we describe the generation of secondary electrons using a
geometric model of multiplication.

In addition to the derivation of a Fisher information ex-
pression for EMCCD data, we introduce the notion of a “noise
coefficient” which enables the comparison of the Fisher infor-



mation for different data models via a scalar quantity. Using
the noise coefficient, we compare the Fisher information for
CCD and EMCCD data as a function of the expected signal
level. This is motivated by the fact that electron multiplication
is a random process that introduces stochasticity of its ownto
the data, and hence should only be used when relatively low
signal levels are expected. Comparison using the noise coef-
ficient importantly allows a quantitative determination, based
on the expected signal level, of the choice between the CCD
and the EMCCD from the perspective of Fisher information.

The material presented in this paper represents an impor-
tant subset of the content of [10]. In Section 2, we present a
general result from which the Fisher information expressions
for all data models considered in this paper can be derived.
Based on this result, we also define the noise coefficient. In
Section 3, a Fisher information expression is presented for
data that can be described as the output of a branching pro-
cess with a geometric model of multiplication, with added
readout noise. By comparing its corresponding noise coef-
ficient with the noise coefficient for CCD data, we examine
the usefulness of multiplication as a function of the expected
signal level. In Section 4, the theory developed in previous
sections for a single signal is generalized for a collectionof
independent signals which comprise a CCD or an EMCCD
image. An example is given which applies the generalized
theory to the localization of a single molecule from an image.

2. THE NOISE COEFFICIENT

The first part of this paper deals with the analysis of the in-
formation content of a scalar random variable that models the
data in a single pixel of an electron-multiplying image detec-
tor. Specifically, the signal that impinges upon the detector is
modeled as a Poisson random variable, since photon emission
(e.g., by a fluorescent molecule), and hence the detection of
those photons by a camera, are typically modeled as Poisson
processes. However, the data in the pixel is a readout noise-
corrupted version of the signal that may have been amplified
with the intention to drown out the added noise.

We are interested in calculating the Fisher information
matrix pertaining to parameter estimation problems such as
the localization of a single molecule from its image. These
estimation problems take on a typical form. The probability
distribution of the incident Poisson signal is parameterized by
its meanν. However, the meanν itself is a function of the
parameter vectorθ that is of interest (e.g., the location coor-
dinates of a single molecule). We first give an expression for
the Fisher information of a random variable using this specific
parameterization (see [10] for the proof).

Theorem 2.1 LetZν be a continuous (discrete) random vari-
able with probability density (mass) functionpν , whereν is a
scalar parameter. Letν = νθ be a reparameterization ofpν

through the possibly vector-valued parameterθ ∈ Θ, where

Θ is the parameter space. We use the notationZθ (pθ) to de-
noteZνθ

(pνθ
), θ ∈ Θ. Then the Fisher information matrix

I(θ) of Zθ with respect toθ is given by
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Note that the scalar expectation term in Eq. 1 is just the Fisher
information ofZθ with respect toνθ.

Two corollaries follow from Theorem 2.1 which pertain
to data acquired under two important scenarios. The first
corollary (see [10] for the proof) gives the Fisher informa-
tion matrix for the ideal scenario where a Poisson-distributed
number of electrons are read out from a device without being
corrupted by readout noise. This scenario represents the best
case wherein a CCD is able to read out a signal without intro-
ducing readout noise, and will serve as the benchmark against
which practical scenarios are compared. From here onwards,
the functionνθ will represent the mean of the Poisson signal.

Corollary 2.1 Let Zθ be a Poisson random variable with
meanνθ > 0, such that its probability mass function is

pθ,P (z) =
e−νθ νz

θ

z! , z = 0, 1, . . . . The Fisher information
matrix IP (θ) of Zθ is given by

IP (θ) =
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·
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The second corollary (see [10] for the proof) gives the
Fisher information matrix for the practical scenario where
readout noise is added to a Poisson-distributed number of
electrons when they are read out from a device. Readout noise
is typically modeled as a Gaussian random variable, and is as-
sumed to be such by this corollary. This scenario corresponds
to the practical operation of a CCD.

Corollary 2.2 LetZθ = Vθ + W , whereVθ is a Poisson ran-
dom variable with meanνθ > 0, andW is a Gaussian ran-
dom variable with meanηw and varianceσ2

w. Let Vθ and
W be stochastically independent of each other, and letW
be not dependent onθ. The probability density function of
Zθ is then the convolution of the Poisson probability mass
function with meanνθ and the Gaussian probability density
function with meanηw and varianceσ2

w, given bypθ,R(z) =
1√

2πσw

∑∞
j=0

e−νθ ν
j
θ

j! e−
1
2 (

z−j−ηw
σw

)
2

, z ∈ R. The Fisher in-

formation matrixIR(θ) of Zθ is given by
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Note thatpθ,R in the above corollary can be found in [1].
By Theorem 2.1 and demonstrated by Corollaries 2.1 and

2.2, different distributions of the random variableZθ will
yield Fisher information matrices that differ from one another
via the Fisher information ofZθ with respect toνθ (i.e., via



the scalar expectation term of Eq. 1). Hence, we introduce,
for the purpose of comparing the Fisher information of differ-
ent data models, a “noise coefficient” based on this quantity.
Since Eq. 2 represents the best case scenario (i.e., a Poisson
signal that is not corrupted by readout noise), we take its
Fisher information with respect toνθ (i.e., the quantity1

νθ
) as

the reference, and define the noise coefficient as follows.

Definition 2.1 Let Zθ be a continuous (discrete) random
variable with probability density (mass) functionpθ. Let pθ

be parameterized byθ through the meanνθ > 0 of a Poisson-
distributed random variable. Then thenoise coefficient(with
respect toνθ) of Zθ, denoted byα, is given by

α = νθ · E
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The noise coefficient of Eq. 4 is just the ratio of the Fisher
information ofZθ to that of the ideal, uncorrupted Poisson
signal, both with respect toνθ. Using this quantity, the Fisher
information matrixI(θ) of a random variable which satisfies
the conditions of Definition 2.1 can be expressed asI(θ) =
α · IP (θ), whereIP (θ) is the matrix of Eq. 2.

For the ideal scenario of Corollary 2.1 where the data is
Poisson-distributed, the noise coefficient is triviallyαP = 1.
For the practical scenario of Corollary 2.2 where Gaussian-
distributed readout noise is added to the Poisson signal, the
noise coefficientαR is just

αR =

0
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and the Fisher information matrixIR(θ) can be expressed as
IR(θ) = αR · IP (θ).

The results presented so far, as well as the result to be
presented in Section 3, involve data that can be described as
a Poisson signal with meanνθ that may have been stochasti-
cally multiplied (i.e., amplified) by some random functionM

before potentially being corrupted by some additive readout
noiseW . Since neither the stochasticity introduced by the
multiplication nor the readout noise is dependent onθ, they
contribute no additional information aboutθ. Therefore, the
noise coefficientα for these data models can be expected to
be at most 1 (i.e., at mostαP ). We state this result formally
in the following theorem (see [10] for the proof).

Theorem 2.2 Let Θ be a parameter space and letZθ =
M(Vθ) + W , θ ∈ Θ, whereVθ is a Poisson random vari-
able with meanνθ > 0, M is a random function, andW is
a scalar-valued random variable. We assume thatVθ, M ,
and W are stochastically independent. Then, for the noise
coefficientα of Zθ, 0 ≤ α ≤ 1.

3. GEOMETRIC SIGNAL MULTIPLICATION

As mentioned in Section 1, we model electron multiplication
as a branching process (e.g., [8]) that is geometrically mul-
tiplied. Specifically, an initial Poisson-distributed number of

electrons are fed into a series of stages where, in each stage,
an input electron can generate secondary electrons, such that
the probability of obtainingk electrons per input electron per
stage (including the input electron itself) is given by the zero
modified geometric distribution [11] defined as follows.

Definition 3.1 A zero modified geometric distributionis a
probability distribution(pk)k=0,1,... given by

pk =



a, k = 0,

(1 − a)(1 − b)bk−1, k = 1, 2, . . . ,
(6)

where0 ≤ a < 1 and0 ≤ b < 1.

The zero modified geometric distribution has meanm = 1−a
1−b

and varianceσ2 = (1−a)(b+a)
(1−b)2 , and has a probability gener-

ating function of linear fractional form. Due to this special
property, the probability distribution of the number of elec-
trons XN,θ at the output of anN -stage branching process
with a zero modified geometric model of multiplication can
be expressed explicitly without recursion (e.g., [8]). Thezero
modified geometric distribution also importantly allows the
possibility of having zero or more electrons per input electron
per stage (including the input electron itself). This makesit
suitable for modeling electron multiplication in an EMCCD,
where more than one secondary electron can be generated per
input electron per stage [9], and where electron loss mecha-
nisms may exist. Note that by setting the parametera = 0,
the zero modified geometric distribution of Eq. 6 reduces
to the standard geometric distributionpk = (1 − b)bk−1, k
= 1,2,. . . , with meanm = 1

1−b
and varianceσ2 = b

(1−b)2 .
While the more general zero modified geometric distribution
will be used in the theorem that follows, the standard geomet-
ric distribution will be used for all subsequent illustrations.

In [10], a probability mass function was derived, using the
theory of probability generating functions, for the numberof
electronsXN,θ at the output of anN -stage branching process
with an initial Poisson-distributed number of electrons and a
zero modified geometric model of multiplication. Since the
dataZθ in a given pixel of an EMCCD is modeled as the sum
of XN,θ and a Gaussian random variableW representing the
readout noise, the probability density function ofZθ is just
the convolution of the mass function ofXN,θ and a Gaussian
density function. The following Theorem gives this density
function and the corresponding Fisher information.

Theorem 3.1 Let Zθ = XN,θ + W , where XN,θ, N ∈
{0, 1, . . . }, is the number of particles at the output of anN -
stage branching process with an initial Poisson-distributed
particle count with meanνθ > 0 and a zero modified geo-
metric model of multiplication, andW is a Gaussian random
variable with meanηw and varianceσ2

w. LetXN,θ andW be
stochastically independent, and letW be not dependent onθ.
1. The probability density function ofZθ is, for z ∈ R,

pθ,GeomR(z) =
e
−νθ
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2. The noise coefficient corresponding topθ,GeomR is
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The Fisher information matrix ofZθ is IGeomR(θ) = αGeomR·
IP (θ), with IP (θ) as given in Eq. 2.

The termmN in Eqs. 7 and 8 is called themean gain, and is
the average number of particles (i.e., electrons) at the output
of the multiplication process given a single initial particle.

To demonstrate a comparison of the Fisher information
of different data models using the noise coefficient, Fig. 1
plots αGeomR of Eq. 8 (witha = 0 for standard geometric
multiplication) for different mean gain values, andαR of Eq.
5, as a function of the meanνθ of the initial electron count. As
per Theorem 2.2, the plot shows thatαGeomR andαR have
values between 0 and 1 regardless of the value ofνθ. The
Fisher information matricesIGeomR(θ) andIR(θ) are hence
no greater thanIP (θ) of the ideal scenario of Corollary 2.1.

Fig. 1 further shows, for the settings specified therein, that
αGeomR is greater thanαR for νθ values of up to roughly 60
electrons. In this range ofνθ values, a higher mean gain gen-
erally yields a largerαGeomR. Beyond roughlyνθ = 60 elec-
trons, however,αGeomR starts to drop belowαR in order of
decreasing mean gain. By roughlyνθ = 130 electrons, mul-
tiplication with any of the given mean gain values produces
an αGeomR that is less thanαR. Fig. 1 thus demonstrates
that multiplication is beneficial only when the expected sig-
nal level is relatively small (or equivalently, when the read-
out noise level is relatively significant). Importantly, this is
demonstrated quantitatively as a function of the expected sig-
nal level, and from the perspective of Fisher information.

4. GENERALIZATION TO AN IMAGE

The theory of the previous sections applies to a single pixel
of a CCD-based detector. However, by assuming the data in
different pixels of an image to be independent measurements,
the Fisher information matrix for an image is just the sum of
the Fisher information matrices for its pixels. For an imageof
K pixels, its Fisher information matrix can thus be written as
Iim(θ) =

∑K
k=1 Ik(θ) =

∑K
k=1 αk · IP,k(θ), where the no-

tation is as before and the subscriptk denotes quantity for the
kth pixel. It follows that for an idealK-pixel image of uncor-
rupted Poisson signals, (i.e.,αk = 1 for k = 1, . . . ,K), its
Fisher information matrix is justIim,P (θ) =

∑K
k=1 IP,k(θ).
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Fig. 1. Noise coefficientαGeomR (Eq. 8 witha = 0), for the scenario

of a Poisson-distributed signal that is amplified by multiplication and subse-

quently corrupted by readout noise. The noise coefficient isshown as a func-

tion of the meanνθ of the signal, which ranges in value from 0.29 to 199.70.

The signal is amplified throughN = 536 stages (as in the gain register of

a CCD97 chip, E2V Technologies, Chelmsford, UK) of standard geometric

multiplication, and the different curves correspond to mean gain values of

mN = 1.01 (∗), 1.03 (◦), 1.06 (×), 1.31 (�), 1.71 (·), 4.98 (2), 14.49 (+),

and 1015.46 (4). The readout noise is Gaussian with meanηw = 0 and

standard deviationσw = 8, and as a reference, the red curve shows the noise

coefficientαR (Eq. 5) for the scenario where there is no signal amplification.

Using these expressions, we next give an inequality (see [10]
for the proof) which relatesIim(θ) for a practical image to
Iim,P (θ) for its corresponding ideal image.

Theorem 4.1 Let Iim(θ) =
∑K

k=1 αk · IP,k(θ), and let

Iim,P (θ) =
∑K

k=1 IP,k(θ). Let αmin and αmax denote,
respectively, the smallest and the largest elements in the
sequence(αk)k=1,...,K . Then we have

αmin · Iim,P (θ) ≤ Iim(θ) ≤ αmax · Iim,P (θ).

Theorem 4.1 can be used to assess, in terms of the Fisher
information, how close a practical image is to its correspond-
ing ideal image. It will be used in the example that follows.

To conclude this paper, we apply our theory to the local-
ization of a fluorescent molecule. We consider the estima-
tion of the location of an in-focus point source (i.e., single
molecule) from its image as observed through a fluorescence
microscope and detected by a CCD or an EMCCD camera.
For this problem, the mean of the Poisson-distributed elec-
tron count at thekth pixel of the device due to the photons
detected from the point source can be shown to be [6]

νθ,k =
Nphoton

M2

Z

Ck

q(x/M − x0, y/M − y0)dxdy, (9)

whereNphoton is the expected number of photons detected
from the point source,M is the magnification of the micro-
scope,Ck is the region in thexy-plane occupied by the pixel,
x0 andy0 are thex andy coordinates of the point source in the
object space where it resides, andq is the classical Airy point
spread function (see [10] for the definition) which describes
the image formed from the detected photons.



Fig. 2. Noise coefficient (αR for (a), αGeomR for (b)) profile for (a) a

CCD image and (b) an EMCCD image of an in-focus point source. Thepoint

source is assumed to emit photons of wavelengthλ = 680 nm, which are

collected by an objective lens with magnificationM = 100 and numeri-

cal aperturena = 1.4. The image of the point source is given by the Airy

point spread function, and is centered on an 11-by-11 array of 16 µm by

16 µm pixels (i.e.,x0 = y0 = 880 nm, assuming the upper left corner of

the pixel array is(0, 0)). The expected number of detected photons is set to

Nphoton = 200. In (a), readout noise with meanηw = 0 e− and standard

deviationσw = 8 e− is assumed for every pixel. In (b), the standard devia-

tion is higher atσw = 24 e−, and standard geometric multiplication with a

mean gain ofm536 = 1015.46 is assumed.

Noise coefficients are computed for an 11-by-11 pixel ar-
ray (i.e., image), with the mean initial electron countνθ,k (Eq.
9) at thekth pixel calculated with the point source attributes
and imaging parameters given in Fig. 2. For the CCD sce-
nario, Fig. 2(a) shows thatαR of Eq. 5 is relatively small for
every pixel, with the center pixel having the maximumαR

of only 0.471. By Theorem 4.1, this implies that the Fisher
information for this scenario is less than half of that for the
ideal scenario. For the EMCCD scenario, Fig. 2(b) shows
that αGeomR of Eq. 8 is at least 0.5 in every pixel, demon-
strating a significant increase in the information content of
every pixel due to the high mean gain multiplication that is
assumed. The minimumαGeomR value is 0.502, which im-
plies, by Theorem 4.1, that the Fisher information for this
scenario is greater than half of that for the ideal scenario.

The observations made about the Fisher information are
reflected in the limits of the localization accuracy calculated
for the ideal, the CCD, and the EMCCD data models. Shown
in Table 1, the ideal scenario of Poisson data has the best ac-
curacy limit of 8.18 nm. In comparison, the CCD scenario
has a significantly worse accuracy limit of 20.18 nm due to
the addition of readout noise. In contrast, with the use of
high mean gain multiplication to drown out the readout noise,
the EMCCD scenario has a much improved accuracy limit of
11.17 nm. By defining the estimated parameters as the coor-
dinates of the point source, i.e.,θ = (x0, y0), these limits of
accuracy were obtained as the square root of the Cramer-Rao
lower bound on the variance of the estimates ofx0.

Table 1 also shows, for each data model, the mean and
standard deviation of the estimates of thex0 coordinate from

Table 1. Limits of the localization accuracy and results of
maximum likelihood estimations using simulated images

Mean of Limit of the Standard
No. of True x0 esti- localization deviation

Data x0 esti- x0 mates accuracy ofx0 esti-
model mates (nm) (nm) (nm) mates (nm)

Ideal 1000 880 879.81 8.18 8.31
CCD 1000 880 880.20 20.18 19.91
EMCCD 1000 880 879.92 11.17 11.42

maximum likelihood estimations (see [10] for details) carried
out on 1000 simulated images of the point source. For each
data scenario, the mean of the estimates recovers reasonably
closely the true value ofx0, while the standard deviation of
the estimates comes reasonably close to the corresponding
limit of the localization accuracy. These results suggest that
the maximum likelihood estimator is capable of attaining the
Cramer-Rao lower bound.
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