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ABSTRACT of photons it detects. Unlike a CCD, however, it can increase

Owing to its high quantum efficiency, the charge-coupled de'Ehe number of eIectronfs substantlal_ly viaa multiplicagioo-
cess, thereby generating an amplified signal that can effec-

vice (CCD) is an important imaging tool employed in biolog- . N

ical applications such as single molecule microscopy. lrJndet'Vely drown out the readout noise. The muI_tlpI|ca_t|0n oscu
extremely low light conditions, however, a CCD is generallyf’iS electrqns are transferred through a gain register densis
unsuitable because its readout noise can easily overwhelm t'n9 of typically sever_al hundred stage_s. Speqﬂcally, gaf:_h
weak signal. Instead, an electron-multiplying chargepted put electron to any given stage can, with certain probaae_kBth
device (EMCCD), which stochastically amplifies the acagiire gengrate secondar y electrons that are transferred, al.m_hg w
signal to drown out the readout noise, can be used. We ha\yge input electron itself, to the next stage for further afipl

previously proposed a framework for calculating the Fishe ation. Given such a cascade, a Iarge number of e_Ie_c_trons can
information, and hence the Cramer-Rao lower bound, for es2¢ produced at the output of the gain register per initialele
' X tron, even with the usually small probabilities for secayda

c)zJectron generation (typically 0.01 to 0.02 [2] for one sec-
ndary electron per input electron per stage, and evenamall

timating parameters (e.g., single molecule location) fthe
images produced by an optical microscope. Here, we devel
the theory that is needed for deriving, within this framekyor :
performance measures pertaining to the estimation of pararﬁOr more tha_n one secondary e_Iectron per input electron).
eters from an EMCCD image. Our results allow the compar- From an image captured using a CCD or an EMCCD cam-

ison of a CCD and an EMCCD in terms of the best accurac;‘?ra’ parameters of interest can be estimated to obtainlusefu

with which parameters can be estimated from their acquireﬁﬁormation about the imaged object. .In single molecule mi-
images. croscopy (e.g., [3]), for example, an important problem has

' o been the estimation of the location of a fluorescent molecule
Index Terms— Branching process, electron multiplica- (e.g., [4, 5]). In this context, a general framework [6] hasi

tion, Fisher information, single molecule microscopy proposed for calculating the Fisher information, and hehee
Cramer-Rao lower bound [7], for the estimation of paranseter
1. INTRODUCTION from an image produced by a microscope. Using this frame-

work, accuracy limits have been derived for estimating, for

The charge-coupled device (CCD) is an important image deexample, the location coordinates of a single molecule,(e.g
tector that has found utility in diverse areas such as highise [5]). These performance measures, however, have assumed
tivity cellular microscopy and astronomy. The high quantumthe image to have been acquired with a CCD.
efficiency of a typical CCD enables it to detect a large fiacti In this paper, we develop the theory that is necessary
of the photons which impact its surface. However, a CCD idor deriving performance measures for estimating pararsete
unsuitable for imaging under extremely low light condispn from an EMCCD image. To arrive at the Fisher information
since its measurement noise can overwhelm the signal whdéar EMCCD data, an expression is needed for the probability
relatively few photons are detected from the imaged objectistribution of the electron count that results from the tinul
Measurement noise is added when the signal is read out froplication process described above. To this end, we model the
the CCD, and is commonly called the readout noise (e.g., [1])stochastic multiplication as a branching process (e.d), [8

An intended solution for overcoming the readout noiseas others have done for EMCCDs (e.g., [9, 2]). However,
under low light conditions is the electron-multiplying ebe-  as opposed to its typical description as a Bernoulli event,
coupled device (EMCCD). An EMCCD is similar to a CCD we describe the generation of secondary electrons using a
in that it accumulates electrons in proportion to the numbegeometric model of multiplication.

This work was supported in part by the National InstituteHeflth In.addltlon to the denvatlo.n of a Fisher mfprmatlon e?(-
(RO1 GM071048 and RO1 GMO85575) Corresponding author, email: Pression for EMCCD data, we introduce the notion of a “noise
ober@utdallas.edu. coefficient” which enables the comparison of the Fisheninfo




mation for different data models via a scalar quantity. gsin © is the parameter space. We use the notatigr(py) to de-

the noise coefficient, we compare the Fisher information fonote Z,,, (p,,), § € ©. Then the Fisher information matrix
CCD and EMCCD data as a function of the expected signal(¢) of Zy with respect td is given by

level. This is motivated by the fact that electron multiption T )

is a random process that introduces stochasticity of itstown 1(0) = (%) v E [(6 1n(p9(2))) } ) (1)

the data, and hence should only be used when relatively low o6 06 0

S,'Q”a' !evels are expected. Compar!son usmg.the.nmse CoeI{Iote that the scalar expectation termin Eq. 1 is just thedfish
ficient importantly allows a quantitative determinatioaskd information of Z, with respect tosg.

on the expected signal level, of the choice between the CCD Two corollaries follow from Theorem 2.1 which pertain
and the EMCCD from the perspeciive of Fisher information. y; 45 acquired under two important scenarios. The first

The material presented in this paper represents an impOgyoljary (see [10] for the proof) gives the Fisher informa-
tant subset of the content of [10]. In Section 2, we present g, matrix for the ideal scenario where a Poisson-disteitiu
general result from which the Fisher information expressio ,,mper of electrons are read out from a device without being
for all data models considered in this paper can be derivedqnted by readout noise. This scenario represents tte be
Based on this result, we also define the noise coefficient. 1R;se wherein a CCD is able to read out a signal without intro-
Section 3, a Fisher information expression is presented fQjcing readout noise, and will serve as the benchmark agains
data that can be described as the output of a branching prgmich practical scenarios are compared. From here onwards,

cess with a geometric model of multiplication, with addede functiony, will represent the mean of the Poisson signal.
readout noise. By comparing its corresponding noise coef-

ficient with the noise coefficient for CCD data, we examineCorollary 2.1 Let Z, be a Poisson random variable with
the usefulness of multiplication as a function of the expect meéanvs > 0, such that its probability mass function is
signal level. In Section 4, the theory developed in previougy p(z) = < ZG! Yoz = 0,1,.... The Fisher information
sections for a single signal is generalized for a collectbn matrixIp(6) of Z, is given by

independent signals which comprise a CCD or an EMCCD

image. An example is given which applies the generalized Ip(0) = (

theory to the localization of a single molecule from an image

T
e\ " Avp i @)
tol7} 90 vy
The second corollary (see [10] for the proof) gives the
Fisher information matrix for the practical scenario where
readout noise is added to a Poisson-distributed number of

. . . . . _electrons when they are read out from a device. Readout noise
The first part of this paper deals with the analysis of the in- y

formation content of a scalar random variable that models thIS typically modeled as a Gaussian random variable, and is as
: : . L sumed to be such by this corollary. This scenario correspond
data in a single pixel of an electron-multiplying image dete

tor. Specifically, the signal that impinges upon the detesto to the practical operation of & CCD.

modeled as a Poisson random variable, since photon emissiéiorollary 2.2 LetZy = Vy + W, whereVj is a Poisson ran-
(e.g., by a fluorescent molecule), and hence the detection oM variable with meam, > 0, and W is aQGaussian ran-
those photons by a camera, are typically modeled as Poiss@M Variable with meam,, and variances,. LetV, and

; o : be stochastically independent of each other, andiléet
processes. However, the data in the pixel is a readout noisgg ot dependent of. The probability density function of

corrupted version of the signal that may have been amplifiegt, is then the convolution of the Poisson probability mass

with the intention to drown out the added noise. function with meansy and the Gaussian probability density
We are interested in calculating the Fisher informationfunction with meam,, and variancesr,, given bypg r(2) =

matrix pertaining to parameter estimation problems such as Ly 6_3'7 Y% o~3(5")" . ¢ R. The Fisher in-

the_ Iocz_ihzatlon of a single molecu_le from its image. Th_e_sqor;;‘]’éjtion matrixiz(6) of Zy is given by

estimation problems take on a typical form. The probability

distribution of the incident Poisson signal is parametstiay

its meanv. However, the mean itself is a function of the

parameter vecto# that is of interest (e.g., the location coor- » L amiemm2 N 2

dinates of a single molecule). We first give an expression for( ~ 1 ( eV & Vﬁ_leﬁ( ) ) dz—l). @)

2. THE NOISE COEFFICIENT

81/9 )T 3”9

1r(6) = (W 20

the Fisher information of a random variable using this speci —oo Po.R(2) \ V2mow T G =1

arameterization (see [10] for the proof).
P ( [10] proof) Note thatpy r in the above corollary can be found in [1].

Theorem 2.1 Let Z, be a continuous (discrete) random vari- By Theorem 2.1 and demonstrated by Corollaries 2.1 and
able with probability density (mass) functipp, wherev is a 2.2, different distributions of the random variahlg will
scalar parameter. Let = vy be a reparameterization ¢f,  Yyield Fisher information matrices that differ from one et
through the possibly vector-valued parameflee ©, where via the Fisher information oy with respect tay, (i.e., via



the scalar expectation term of Eq. 1). Hence, we introduceslectrons are fed into a series of stages where, in each, stage
for the purpose of comparing the Fisher information of diffe an input electron can generate secondary electrons, sath th
ent data models, a “noise coefficient” based on this quantityhe probability of obtaining: electrons per input electron per
Since Eq. 2 represents the best case scenario (i.e., a Poisstage (including the input electron itself) is given by tleea
signal that is not corrupted by readout noise), we take itsnodified geometric distribution [11] defined as follows.

Fisher information with respect tg (i.e., the quantityu%) as

the reference, and define the noise coefficient as follows. ~ Definition 3.1 A zero modified geometric distributiois a

. . . probability distribution(py)k=o0.1,... given by
Definition 2.1 Let Zy be a continuous (discrete) random (Pr)k=0.1

variable with probability density (mass) functign. Letpy a, k=0,
be parameterized b through the meamy > 0 of a Poisson- Pr = { (1—a)(1 =0, k=1,2,..., )
distributed random variable. Then tmeise coefficienfwith
respect tayy) of Zy, denoted byy, is given by where0 < a < 1and0 <b < 1.
- (aﬂ 1n(p9(z))>2:| . ()  The zero modified geometric distribution has meas= 1=}
Ve and variancer? = % and has a probability gener-

The noise coefficient of Eq. 4 is just the ratio of the Fisherating function of linear fractional form. Due to this spdcia
information of Z, to that of the ideal, uncorrupted Poisson property, the probability distribution of the number of @le
signal, both with respect tey. Using this quantity, the Fisher trons X at the output of anV-stage branching process
information matrixI(6) of a random variable which satisfies with a zero modified geometric model of multiplication can
the conditions of Definition 2.1 can be expressed@3$ =  be expressed explicitly without recursion (e.qg., [8]). Heeo
a-Ip(6), wherelp(0) is the matrix of Eq. 2. modified geometric distribution also importantly allowsth
For the ideal scenario of Corollary 2.1 where the data iossibility of having zero or more electrons per input elect

For the. practical scenaria of Corallary 2.2 where, Gaussiare! S1age (including the input electron itsel). This maktes
distributed readout noise is added to the Poisson sigrel, trouitable for modeling electron multiplication in an EMCCD,
noise coefficienty is just where more than one secondary electron can be generated per

L aminan2 2 input electron per stage [9], and where electron loss mecha-
an— (7 vo ( e Ve i vi~le 5 (=5m) ) e Ve) nisms may exist. Note that by setting the parametet 0,
J_por(2) | V2row 5 (G-1! the zero modified geometric distribution of Eq. 6 reduces
)  to the standard geometric distributipp = (1 — b)b*~1, k
and the Fisher information matri (¢) can be expressed as = 1,2,..., with meann = ;1; and variancer®> = ﬁ
Ir(0) = ar - 1p(0). While the more general zero modified geometric distribution
The results presented so far, as well as the result to bgill be used in the theorem that follows, the standard geemet
presented in Section 3, involve data that can be described @8 distribution will be used for all subsequent illustaats.
a Poisson signal with mean that may have been stochasti-  |n[10], a probability mass function was derived, using the
cally multiplied (i.e., amplified) by some random functidf  theory of probability generating functions, for the numbér
before potentially being corrupted by some additive readouglectronsX v 4 at the output of adV-stage branching process
noise V. Since neither the stochasticity introduced by thewith an initial Poisson-distributed number of electrons an
multiplication nor the readout noise is dependentiothey  zero modified geometric model of multiplication. Since the
contribute no additional information abofit Therefore, the  dataZ, in a given pixel of an EMCCD is modeled as the sum
noise coefficienty for these data models can be expected tqf Xy and a Gaussian random variablé representing the
be at most 1 (i.e., at mostp). We state this result formally readout noise, the probability density function&f is just
in the following theorem (see [10] for the proof). the convolution of the mass function &fy 4 and a Gaussian
Theorem 2.2 Let © be a parameter space and l&f, =  density function. The following Theorem gives this density
M(Vy) + W, 0 € ©, whereVj is a Poisson random vari- function and the corresponding Fisher information.
able with meany > 0, M is a random function, andil’ is
a scalar-valued random variable. We assume thgt M,
and W are stochastically independent. Then, for the nois

Theorem3.1Llet Zy = Xng + W, where Xy, N €
{0,1,...}, is the number of particles at the output of &h
E'stage branching process with an initial Poisson-distrdalit

coefficientr of Zp, 0 < o < 1. particle count with meamy > 0 and a zero modified geo-
metric model of multiplication, antd’ is a Gaussian random
3. GEOMETRIC SIGNAL MULTIPLICATION variable with meany,, and variancer?2. Let Xy o andW be

stochastically independent, and Iét be not dependent ah

As mentioned in Section 1, we model electron multiplicationl' The probability density function d is, for = € R,

as a branching process (e.g., [8]) that is geometrically- mul
tiplied. Specifically, an initial Poisson-distributed nioen of Po,Geomr ()

A
e V0B

- V2o
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=1 j=0

whereA = (1 — a)(m — 1)m”Y, B = b(m"™ — )m + (1 — a)(m — 1),
C =b(m" —1)m,D =m"N (1 —a)’(m —1)>, m = 1=% # 1,and (151)
denotes 1 — 1 choosej”.

2. The noise coefficient correspondin®iQceomr 1S
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The Fisher information matrix &y isIgeomr(0) = aGeomr:
1p(0), withIp(6) as given in Eq. 2.

The termm” in Egs. 7 and 8 is called theean gainand is

the average number of particles (i.e., electrons) at thpudut

of the multiplication process given a single initial palic

oN

GeomR
o

o
o2}

o
N

Noise coefficient a
o
o

Mean initial particle count Vg

Fig. 1. Noise coefficientvgeomr (EQ. 8 witha = 0), for the scenario
of a Poisson-distributed signal that is amplified by multiplion and subse-
guently corrupted by readout noise. The noise coefficiesti@gsvn as a func-
tion of the meanyy of the signal, which ranges in value from 0.29 to 199.70.
The signal is amplified throughV = 536 stages (as in the gain register of
a CCD97 chip, E2V Technologies, Chelmsford, UK) of standardngetric
multiplication, and the different curves correspond to meaim galues of

To demonstrate a comparison of the Fisher informationn® = 1.01 (x), 1.03 ¢), 1.06 (x), 1.31 ¢), 1.71 ¢), 4.98 (0), 14.49 (),
of different data models using the noise coefficient, Fig. Jand 1015.464). The readout noise is Gaussian with mean = 0 and
plots ageomr Of EQ. 8 (witha = 0 for standard geometric standard deviation,, = 8, and as a reference, the red curve shows the noise

multiplication) for different mean gain values, ang of Eq.

5, as a function of the meag of the initial electron count. As

per Theorem 2.2, the plot shows th&t....r andagr have
values between 0 and 1 regardless of the valugyof The
Fisher information matricekz.omr(6) andI(6) are hence
no greater thalip(¢) of the ideal scenario of Corollary 2.1.

Fig. 1 further shows, for the settings specified thereir, tha‘l’heorem 4.1 Let T,
aceomr IS greater thamy for v values of up to roughly 60 ' tm
electrons. In this range of values, a higher mean gain gen-

erally yields a largetvgeom r. Beyond roughlyy = 60 elec-
trons, howeverageomr Starts to drop belowtr in order of
decreasing mean gain. By roughly = 130 electrons, mul-

coefficientap (Eq. 5) for the scenario where there is no signal amplification

Using these expressions, we next give an inequality (s€e [10
for the proof) which relateg;,,,(9) for a practical image to
I, p(60) for its corresponding ideal image.

0) = Y ax - Ipk(h), and let

L p(0) = S5 Ipi(6). Let apin and ayq. denote,
respectively, the smallest and the largest elements in the
sequencéay)g—1,... k. Then we have

Omin * Iim,P(e) < Ii'm(g) < Qmaz Ii'rnA,P(e)~

tiplication with any of the given mean gain values produces

an ageomrp that is less thamvr. Fig. 1 thus demonstrates

Theorem 4.1 can be used to assess, in terms of the Fisher

that multiplication is beneficial only when the expected sig information, how close a practical image is to its correspon
nal level is relatively small (or equivalently, when thedea [Ng idealimage. It will be used in the example that follows.

out noise level is relatively significant). Importantlyjghs

demonstrated quantitatively as a function of the expedted s

nal level, and from the perspective of Fisher information.

4. GENERALIZATION TO AN IMAGE

To conclude this paper, we apply our theory to the local-
ization of a fluorescent molecule. We consider the estima-
tion of the location of an in-focus point source (i.e., segl
molecule) from its image as observed through a fluorescence
microscope and detected by a CCD or an EMCCD camera.
For this problem, the mean of the Poisson-distributed elec-
tron count at the*" pixel of the device due to the photons

The theory of the previous sections applies to a single pixedletected from the point source can be shown to be [6]

of a CCD-based detector. However, by assuming the data in
different pixels of an image to be independent measurements
the Fisher information matrix for an image is just the sum of

N 1oton
v = Nototon /C qla/M — z0,y/M — yo)dzdy,  (9)
k

the Fisher information matrices for its pixels. For an imafie where Npyot0n iS the expected number of photons detected
K pixels, its Fisher information matrix can thus be written asfrom the point source)! is the magnification of the micro-

Lim(0) = Yr 1,.(0) = S0, ai - Ipx(6), where the no-

tation is as before and the subscripdenotes quantity for the

kth pixel. It follows that for an ideak -pixel image of uncor-
rupted Poisson signals, (i.ey, = 1fork = 1,..., K), its
Fisher information matrix is jusk;,, p(0) = Z,f:l Ipk(6).

scope (Y is the region in thery-plane occupied by the pixel,
xo andy, are ther andy coordinates of the point source in the
object space where it resides, anid the classical Airy point
spread function (see [10] for the definition) which descsibe
the image formed from the detected photons.



GeomR

Noise coefficient op

Noise coefficient o,

Fig. 2. Noise coefficientdr for (a), ageomr for (b)) profile for (a) a
CCD image and (b) an EMCCD image of an in-focus point source. pbive
source is assumed to emit photons of wavelength: 680 nm, which are
collected by an objective lens with magnificatidd = 100 and numeri-

Table 1. Limits of the localization accuracy and results of

maximum likelihood estimations using simulated images

Mean of Limitofthe Standard
No. of True =z esti- localization  deviation
Data zg esti-  xg mates accuracy of( esti-
model mates (nm)  (nm) (nm) mates (nm)
Ideal 1000 880 879.81 8.18 8.31
CCD 1000 880 880.20 20.18 19.91
EMCCD 1000 880 879.92 11.17 11.42

maximum likelihood estimations (see [10] for details) azdr
out on 1000 simulated images of the point source. For each
data scenario, the mean of the estimates recovers reagonabl

cal aperturen, = 1.4. The image of the point source is given by the Airy
point spread function, and is centered on an 11-by-11 arfay6qum by
16 um pixels (i.e..xp = yo = 880 nm, assuming the upper left corner of
the pixel array i50, 0)). The expected number of detected photons is set to
Nphoton = 200. In (a), readout noise with mean, = 0 e~ and standard
deviationo,, = 8 e~ is assumed for every pixel. In (b), the standard devia-
tion is higher ar,, = 24 e, and standard geometric multiplication with a

mean gain 0in®3% = 1015.46 is assumed.

closely the true value af(, while the standard deviation of
the estimates comes reasonably close to the corresponding
limit of the localization accuracy. These results suggest t
the maximum likelihood estimator is capable of attaining th
Cramer-Rao lower bound.
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