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Abstract Optical microscopy is an invaluable tool to visualize biological processes
at the cellular scale. In the recent past, there has been significant interest in
studying these processes at the single molecule level. An important question that
arises in single molecule experiments concerns the estimation of the distance of
separation between two closely spaced molecules. Presently, there exists different
experimental approaches to estimate the distance between two single molecules.
However, it is not clear as to which of these approaches provides the best ac-
curacy for estimating the distance. Here, we address this problem rigorously by
using tools of statistical estimation theory. We derive formulations of the Fisher
information matrix for the underlying estimation problem of determining the dis-
tance of separation from the acquired data for the different approaches. Through
the Cramer-Rao inequality, we derive a lower bound to the accuracy with which
the distance of separation can be estimated. We show through Monte-Carlo sim-
ulations that the bound can be attained by the maximum likelihood estimator.
Our analysis shows that the distance estimation problem is in fact related to the
localization accuracy problem, the latter being a distinct problem that deals with
how accurately the location of an object can be determined. We have carried out a
detailed investigation of the relationship between the Fisher information matrices
of the two problems for the different experimental approaches considered here.
The paper also addresses the issue of a singular Fisher information matrix, which
presents a significant complication when calculating the Cramer-Rao lower bound.
Here, we show how experimental design can overcome the singularity. Throughout
the paper, we illustrate our results by considering a specific image profile that
describe the image of a single molecule.
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1 Introduction

The study of biomolecular interactions that occur within a cell is fundamental
to all areas of basic biomedical research. The optical microscope is one of the
most preferred tools to study biomolecular interactions, as it enables the direct
visualization of these processes in real time. For instance, several technological
advances in the past decade have made it possible to image individual biomolecules
with an optical microscope even in live biological cells (Moerner (2007); Ober et al
(2004a)). In many concrete applications, it is important to know the distance of
separation between the biomolecules, as this has significant biological implications.
The resolution limit of the optical microscope plays a crucial role in determining
the ability to measure the distance of separation between biomolecules. Classical
resolution criteria such as Rayleigh’s criterion, although extensively used, are well
known to be based on heuristic notions that render them inadequate for present day
microscopy systems. Therefore quantifying the resolution limit is a very important
problem with significant implications on the nature and type of studies that can
be carried out with an optical microscope.

Current experimental approaches to studying single molecule interactions can
be broadly classified into two categories. In one set of approaches, which we refer to
as the simultaneous detection approach (Figure 1A), photon emission from the point
sources occurs simultaneously during image acquisition and hence the acquired
images contain signal from both point sources (Santos and Young (2000); Ram
et al (2006a); Chao et al (2009a,b)). In the other set of approaches, which we
refer to as the separate detection approach (Figure 1C), photon emission from the
point sources are temporally separated (e.g. stochastic photoactivation (Betzig
et al (2006); Rust et al (2006); Hess et al (2006)) and blinking (Lidke et al (2005);
Lagerholm et al (2006))). Hence the acquired images typically contain signal from
only one of the point sources. For both types of approaches, the analysis of the
acquired data is carried out using a parameter estimation framework. For example,
in the case of the simultaneous detection approach the distance between the point
sources is determined by fitting a pair of suitably parameterized image profiles to
the acquired data. In the case of the separation detection approach, the analysis
involves independently localizing the point sources and then deducing the distance.
It has been reported that both approaches are capable of accurately measuring
nanometer scale distances, well below the classical resolution criteria. However, an
important question arises as to what are the fundamental performance limits of
the two experimental approaches to measure the distance of separation.

In this paper, we use the tools of statistical signal processing to investigate this
question in a rigorous manner. We formulate the resolution problem as a parameter
estimation problem of determining the distance between two closely spaced point
sources. The issue of resolvability of the two point sources then becomes a question
of how accurately the distance can be estimated, i.e., how large is the standard
deviation of the distance estimator. In this context, it is important to know what is
the lowest possible standard deviation with which the distance can be estimated,
as this can be used as a benchmark for the resolvability of the point sources. For
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this, we make use of the Cramer-Rao inequality (Rao (1965)) which, through the
inverse Fisher information matrix, provides a lower bound to the variance of any
unbiased estimator of an unknown parameter. Thus, in the present context we
interpret the Cramer-Rao lower bound of the distance parameter as a measure of
resolvability of the two point sources.

Here, we derive formulations of the Fisher information matrix for the parameter
estimation problem that underlies the data analysis for the two approaches. Our
analysis shows that the Fisher information matrices for the two techniques exhibit
very distinct behaviors. For instance, in the simultaneous detection approach the
Fisher information matrix depends on the distance of separation between the point
sources. In contrast, for the separate detection approach the Fisher information
matrix is independent of the distance of separation. As we will see, the distance de-
pendence of the Fisher information matrix has several implications. In particular,
for the simultaneous detection approach the Fisher information matrix becomes
singular when the distance goes to zero assuming that the two point sources have
identical image profiles and photon detection rates, which is typically the case in
most imaging applications. An immediate implication is that for very small dis-
tances, the Cramer-Rao lower bound of the distance will be numerically very large,
thereby predicting poor resolvability of the point sources. On the other hand, the
Fisher information matrix for the separate detection approach is invertible for all
values of the distance including when the distance is equal to zero.

Fig. 1 Different experimental approaches to determine the distance of separation between
two identical point sources. Panel A illustrates the simultaneous detection approach in which
photon emission from both point sources occurs during image acquisition. In this approach, the
data consists of a single image that contains signal from both point sources. Panel B illustrates
the special case of the simultaneous detection approach, where the image of one of the point
sources is additionally available. Here, the data consists of a pair of images where one of the
images contains signal from only one point source, whereas the other image contains signal
from both point sources. Panel C illustrates the separate detection approach, where photon
emission from the point sources are temporally separated. Here, the data consists of a pair of
images, where each image contains signal from either of the point sources.

Another problem that is of significance in the present context is the localization
accuracy problem, which deals with how accurately the location of an object can
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be determined (Wong et al (2011); Ram et al (2006b); Ober et al (2004b); Rohr
(2007)). For the separate detection approach, the localization accuracy problem
naturally arises as part of the data analysis procedure. For the simultaneous de-
tection approach, the localization accuracy problem arises as a special case where
in some applications the image of one of the point sources is additionally available
(e.g. photobleaching (Ram et al (2006a); Gordon et al (2004); Qu et al (2004)),
which, in turn, can be used as a priori information (Figure 1B). Here, we investigate
the relationship between the Fisher information matrix of the two approaches and
that of the localization accuracy problem. Our analysis shows that for the separate
detection approach, the expression for the Fisher information matrix is equivalent
to that of the localization accuracy problem, whereas for the simultaneous detec-
tion approach the equivalence is attained only when the distance of separation
between the point sources becomes very large (i.e., d → ∞). In this context, we
also investigate the singularity of the Fisher information matrix for the simultane-
ous detection approach. In particular we show that the singularity can be removed
when the location coordinates of one of the point sources is known a priori.

Previously, we have examined the distance estimation problem for optical mi-
croscopes, where we derived analytical expressions for the Fisher information ma-
trix. In Ram et al (2006a), we investigated the 2D imaging scenario for the simul-
taneous detection approach, where the point sources were assumed to be located
on the x axis of the plane of focus in the object space. In Chao et al (2009a,b),
we considered the 3D imaging scenario for the simultaneous detection approach,
where the point sources were assumed to be located anywhere in the object space.
In Chao et al (2009c), we reported numerical calculations of the Cramer-Rao lower
bound for the two detection approaches considered here. In the present work, we
rigorously analyze the relationship between the Fisher information matrices of the
two experimental approaches considered here and that of the localization accuracy
problem.

In the past, other groups have investigated the distance estimation problem
by adopting a simplified data model, where the acquired data is described as a
deterministic signal corrupted by additive noise (Helstrom (1964); Smith (2005);
Shahram and Milanfar (2004)). Because photon/light emission from a point source
is inherently a random phenomenon (Young (1996)), it is important to take into ac-
count the stochastic nature of the signal (i.e., the photon statistics) from the point
sources especially when dealing with photon-limited imaging systems (O’Sullivan
et al (1998)). In our (prior and current) work, we have adopted a stochastic frame-
work and model the acquired data as a spatio-temporal random process (marked
Poisson process). In this way we explicitly take into account the photon statistics.
Thus our results and analyses presented in this paper provide a broad framework
to investigate the resolution limits for a wide variety of low light level imaging
applications.

The paper is organized as follows. In Section 3, we derive general expressions
of the Fisher information matrix for the estimation problem that underlies the
simultaneous detection approach. We also derive the Fisher information matrix for
a concrete scenario in optical microscopy where the image of an object is considered
to be spatially invariant. In Section 4, we discuss the relationship between the
Fisher information matrix for the simultaneous detection approach and that of
the localization accuracy problem. In Section 5, we consider a special case of the
simultaneous detection approach, where we assume that the location coordinates
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of one of the point sources is known and derive the Fisher information matrix. As
we will see, the analysis of this special case provides important insights into the
relationship between the two approaches considered here. In Section 6, we derive
the Fisher information matrix for the separate detection approach. Finally, in
Section 7 we validate our results by demonstrating that the maximum likelihood
estimator of the distance attains the Cramer-Rao lower bound for the different
experimental approaches considered here. Throughout the paper, we illustrate our
results with examples relevant to single molecule microscopy.

2 Stochastic framework

We assume an acquired image to consist of the time points and the spatial coordi-
nates of the detected photons and model it as a spatio-temporal random process.
We refer to this process as the image detection process G (see Ram et al (2006b) for
details). The parameter space Θ is assumed to be an open subset of R

n and the
detector that is used to capture the photons is denoted as C, where C ⊆ R

2 is open.
The temporal part of G is modeled as an inhomogeneous Poisson process with in-
tensity Λθ called the photon detection rate and the spatial part of G is modeled
as a sequence of mutually independent random variables with densities {fθ,τ}τ≥t0

called the photon distribution profile. It is assumed that the spatial and temporal
components are mutually independent of each other and that fθ,τ satisfies the reg-
ularity conditions necessary for the calculation of the Fisher information matrix
(Ram et al (2006b); Kay (1993)).

The general expression of the Fisher information matrix for the image detection
process G is given by (Ram et al (2006b))

I(θ) =

Z t

t0

Z

C

1

Λθ(τ)fθ,τ(r)

„

∂[Λθ(τ)fθ,τ(r)]

∂θ

«T
∂[Λθ(τ)fθ,τ(r)]

∂θ
drdτ, θ ∈ Θ, (1)

where [t0, t] denotes the time interval during which the data is acquired and the
integration variable r denotes the 2D Cartesian coordinates (x,y). In the above
equation, no specific assumptions have been made regarding the functional form of
fθ,τ or Λθ. Therefore, the above expression of I(θ) is applicable to a wide variety of
imaging conditions, such as coherent/incoherent/partially-coherent light sources,
polarized illumination and detection, etc. We note that the above equation is
applicable to both stationary and moving objects, since we allow the density fθ,τ ,
which describes the image profile of the object, to vary in time.

In order to quantify and compare the performance of the various experimental
approaches considered in this paper, we make use of the Cramer-Rao inequality
(Rao (1965)), which states that for any unbiased estimator θ̂ of a n × 1 vector
parameter θ, Cov(θ̂) ≥ I−1(θ), θ ∈ Θ, where I(θ) denotes the Fisher information
matrix and it is assumed that the inverse exists. From this inequality, it immedi-
ately follows that the ith leading diagonal entry of the inverse Fisher information
matrix ( [I−1(θ)]ii) provides a lower bound to the variance of the estimates of the
ith component of the parameter vector (θi), i = 1, ..., n.

Throughout the paper, we adopt a parameterization in which the location
of the two point sources are specified in terms of their Cartesian coordinates,
i.e., (x01, y01) and (x02, y02). Hence the expressions for the Fisher information
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matrix will be given in terms of this parameterization. As we will see in subsequent
sections, this parameterization not only simplifies the derivation of the Fisher
information matrix for the different experimental approaches considered here, but
it also helps in the analysis of the relationship between the distance estimation
problem and the localization accuracy problem. To derive the Cramer-Rao lower
bound for the distance parameter d, we require the analytical expression for the
(inverse) Fisher information matrix of d. For this, we make use of the following
coordinate transformation formula (Kay (1993))

I
−1(d) =

„

∂d

∂θ

«

I
−1(θ)

„

∂d

∂θ

«T

, d ∈ [0,∞), (2)

where θ = (x01, y01, x02, y02), I−1(θ) denotes the inverse Fisher information matrix
corresponding to θ, and

„

∂d

∂θ

«T

:=
1

d

0

B

B

@

−(x02 − x01)
−(y02 − y01)
(x02 − x01)
(y02 − y01)

1

C

C

A

, θ ∈ Θ.

3 Fisher information matrix for the simultaneous detection approach

In the simultaneous detection approach, the acquired image is assumed to contain
the signal from both objects. Hence the photon detection rate Λθ and the photon
distribution profile fθ,τ can be written as

Λθ(τ) = Λθ,1(τ) + Λθ,2(τ), θ ∈ Θ, τ ≥ t0, (3)

fθ,τ (r) = εθ,1(τ)fθ,τ,1(r) + εθ,2(τ)fθ,τ,2(r), r = (x, y) ∈ C, θ ∈ Θ, τ ≥ t0, (4)

where C denotes the detector, Λθ,1, Λθ,2 and fθ,τ,1, fθ,τ,2 denote the photon de-
tection rates and the photon distribution profiles of the two objects, respectively,
and εθ,i(τ) := Λθ,i(τ)/(Λθ,1(τ) + Λθ,2(τ)), θ ∈ Θ, τ ≥ t0, i = 1, 2.

The results in this section are divided into two parts. In Section 3.1, we first
derive general expressions of the Fisher information matrix for the simultaneous
detection approach (Theorem 1). Here, we make no assumptions regarding the
specific functional form of the photon detection rates Λθ,i or the photon distribu-
tion profiles fθ,τ,i, i = 1, 2. Hence these results provide a general framework that
is applicable to a wide variety of imaging scenarios.

In Section 3.2, we consider a concrete scenario (spatially invariant case) in
optical microscopy where we assume a specific functional form for the photon dis-
tribution profiles fθ,τ,i, i = 1,2, which are expressed as a scaled and shifted version
of the image of the objects. We then derive the Fisher information matrix for this
functional form of fθ,τ,i, i = 1,2 (Theorem 2). As will be shown, the resulting
Fisher information matrix can be expressed as a product decomposition of the
form DCDT , where D is an orthogonal matrix and C is a positive semidefinite
matrix. Under weak assumptions of spatial symmetry for the image of the ob-
jects (which are typically satisfied in most situations), the product decomposition
greatly simplifies the calculation of the Fisher information matrix and also facili-
tates the derivation of an analytical expression for the inverse Fisher information
matrix (Corollary 1).
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3.1 General expression of the Fisher information matrix

In many imaging applications, the unknown parameter vector θ can be expressed
as θ = (θf , θΛ), where θf denotes the spatial component and θΛ denotes the temporal

component. The spatial component θf typically consists of parameters that specify
the location of one or more objects and the temporal component θΛ consists of
parameters that specify the photon detection rates of the objects.

In the following theorem, we express the Fisher information matrix as a 2 × 2
block matrix. The terms in the leading diagonal (i.e., Ssim and Tsim) correspond to
the Fisher information matrix of the spatial θf and temporal θΛ components while

the terms in the off-diagonal (i.e., Rsim and RT
sim) correspond to the coupling

between the spatial and temporal components. We derive expressions for three
practical scenarios. In the first scenario, we derive a general expression for the
Fisher information matrix. In the second scenario, we consider the case where
the photon detection rates are related to one another by a known scalar function
β, i.e., β(τ)Λθ,1(τ) = Λθ,2(τ) for τ ≥ t0 and θ ∈ Θ, where β(τ) ≥ 0. In some
applications, the photon detection rates of the objects are assumed to be the same,
i.e., Λθ,1(τ) = Λθ,2(τ), τ ≥ t0. We note that this condition is a special case of the
second scenario considered here with β(τ) = 1, τ ≥ t0. For this scenario we show
that the Fisher information matrix becomes block diagonal, which implies that
the spatial θf and temporal θΛ components become decoupled. We note that this
decoupling simplifies the subsequent analysis of the Fisher information matrix. In
the third scenario, we assume that the photon distribution profiles of the objects
are equal, i.e., fθ,τ,1(r) = fθ,τ,2(r) for r ∈ C, θ ∈ Θ and τ ≥ t0. This scenario
arises in many applications, where the image profiles of the objects are assumed
to be identical. For this scenario also we show that the Fisher information matrix
becomes block diagonal.

Theorem 1 Let Θ ⊆ R
n
. For θ := (θf , θΛ) ∈ Θ, let G(Λθ, {fθ,τ}τ≥t0 , C) be an image

detection process, where Λθ and fθ,τ are defined in eqs. 3 and 4, respectively. Assume

that for θ ∈ Θ, τ ≥ t0 and i = 1,2,
A1 (∂fθ,τ,i(r)/∂θΛ) = 0, r ∈ C,

A2 (∂Λθ,i(τ)/∂θf ) = 0.
1. Then the Fisher information matrix of G corresponding to the acquisition time in-

terval [t0, t] for the simultaneous detection approach is given by

Isim(θ) =

2

4

Ssim(θ) Rsim(θ)

RT
sim(θ) Tsim(θ)

3

5 , θ ∈ Θ,

where for θ ∈ Θ,

Ssim(θ) :=

Z t

t0

Z

C

Λθ(τ)

fθ,τ(r)

„

∂fθ,τ(r)

∂θf

«T
∂fθ,τ(r)

∂θf
drdτ, (5)

Rsim(θ) :=

Z t

t0

Z

C

Λθ(τ)

fθ,τ (r)

„

∂fθ,τ (r)

∂θf

«T
∂fθ,τ (r)

∂θΛ
drdτ, (6)

Tsim(θ) :=

Z t

t0

1

Λθ(τ)

„

∂Λθ(τ)

∂θΛ

«T
∂Λθ(τ)

∂θΛ
dτ
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+

Z t

t0

Z

C

Λθ(τ)

fθ,τ (r)

„

∂fθ,τ (r)

∂θΛ

«T
∂fθ,τ (r)

∂θΛ
drdτ. (7)

2. For β(τ) ≥ 0, τ ≥ t0, assume, in addition to A1 and A2, that

A3 β(τ)Λθ,1(τ) = Λθ,2(τ), τ ≥ t0 and θ ∈ Θ.

Then the Fisher information matrix of G corresponding to the acquisition time interval

[t0, t] for the simultaneous detection approach is given by

Isim(θ) =

2

4

S̃sim(θ) 0

0 T̃sim(θ)

3

5 , θ ∈ Θ,

where for θ ∈ Θ,

S̃sim(θ) :=

Z t

t0

Z

C

Λθ,1(τ)

fθ,τ,1(r) + β(τ)fθ,τ,2(r)

„

∂[fθ,τ,1(r) + β(τ)fθ,τ,2(r)]

∂θf

«T

×

∂[fθ,τ,1(r) + β(τ)fθ,τ,2(r)]

∂θf
drdτ,

T̃sim(θ) :=

Z t

t0

1 + β(τ)

Λθ,1(τ)

„

∂Λθ,1(τ)

∂θΛ

«T
∂Λθ,1(τ)

∂θΛ
dτ.

3. For θ ∈ Θ and τ ≥ t0, assume, in addition to A1 and A2, that

A4 fθ,τ,1(r) = fθ,τ,2(r) for r ∈ C.

Then the Fisher information matrix of G corresponding to the acquisition time interval

[t0, t] for the simultaneous detection approach is given by

Isim(θ) =

2

4

S̄sim(θ) 0

0 T̄sim(θ)

3

5 , θ ∈ Θ,

where for θ ∈ Θ,

S̄sim(θ) :=

Z t

t0

Λθ(τ)dτ

Z

C

1

fθ,τ,1(r)

„

∂fθ,τ,1(r)

∂θf

«T
∂fθ,τ,1(r)

∂θf
dr,

T̄sim(θ) :=

Z t

t0

1

Λθ(τ)

„

∂Λθ(τ)

∂θΛ

«T
∂Λθ(τ)

∂θΛ
dτ.

Proof See Section A.1 in Appendix for proof. ut
In many applications it is important to know whether the Fisher information

matrix I(θ) is (block) diagonal. For instance, it is well known that under certain
conditions the maximum likelihood estimator of a vector parameter θ is asymptot-
ically Gaussian distributed with mean θ and covariance I−1(θ) (see Van des Bos
(2007)). From the above Theorem, we see that if the photon detection rates can be
expressed as a scalar function of one another or if the photon distribution profiles
are identical, then I(θ) becomes block diagonal. This implies that the maximum
likelihood estimates of the spatial (θf ) and temporal (θΛ) components of the un-
known vector parameter θ are asymptotically independent. Moreover, if an efficient
estimator of θ exists (i.e., an estimator whose covariance matrix is equal to I−1(θ),
θ ∈ Θ), then the estimates of θf and θΛ are uncorrelated. Another implication of
block diagonality is that the Cramer-Rao lower bound of the spatial component θf

is independent of the number of unknown parameters in the temporal component
θΛ, and vice versa.
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Remark 1 In result 2 of Theorem 1, we showed that the Fisher information matrix
Isim(θ) is block diagonal if β(τ)Λθ,1(τ) = Λθ,2(τ) for τ ≥ t0 and θ ∈ Θ, where
β(τ) ≥ 0, τ ≥ t0, is a known scalar function. We note that Isim(θ) will be block
diagonal when Λθ,1(τ) = β(τ)Λθ,2(τ), τ ≥ t0 and θ ∈ Θ for β(τ) ≥ 0, τ ≥ t0.

3.2 Fisher information matrix for the spatially invariant case

We next investigate a concrete scenario in optical microscopy where the image
of the objects is spatially invariant, and we derive the Fisher information ma-
trix for the simultaneous detection approach. Here, we introduce a specific pa-
rameterization of the spatial component θf of the parameter vector θ given by
θf = θc = (x01, y01, x02, y02) ∈ Θc, where (x01, y01) and (x02, y02) denote the
Cartesian coordinates of the two objects, and Θc is the parameter space that is an
open subset of R

4. We consider the infinitely large detector C = R
2. For any given

imaging condition, this infinite detector provides the best case scenario, where all
the photons that reach the detector plane are detected.

In many microscopy applications, the image of an object can be considered to
be invariant with respect to shifts in the object location (Young (1996)). In the
present context, the photon distribution profile fθc,τ,i, i = 1, 2, can be expressed
as a scaled and shifted version of the image of the object and is given by

fθc,τ,i(r) =
1

M2
qi

“ x

M
− x0i,

y

M
− y0i

”

, r = (x, y) ∈ R
2, (8)

where θc ∈ Θc, τ ≥ t0, i = 1,2, M denotes the total lateral magnification of the
optical system, and qi denotes the image function of the ith object, i = 1, 2. An
image function q is defined as the image of an object at unit magnification when
the object is located at the origin of the coordinate axes. By definition, fθc,τ,i,
i = 1, 2, is assumed to satisfy the regularity conditions that are necessary for
the calculation of the Fisher information matrix. Hence we impose appropriate
conditions on the image functions, which are given in Definition 6 (see Appendix).

In many imaging experiments, the temporal component θΛ of the vector pa-
rameter θ is either assumed to be known or the photon detection rates are unknown
but assumed to be equal (Λθ,1(τ) = Λθ,2(τ), τ ≥ t0). In the former case, the Fisher
information matrix of the simultaneous detection approach Isim(θ) trivially re-
duces to that of the spatial component θf i.e., Isim(θ) = Ssim(θ), θ ∈ Θ. In the
latter case, the Fisher information matrices of the spatial and temporal compo-
nents are decoupled as shown in Result 2 of Theorem 1. Therefore in this section,
we focus our analysis on the Fisher information matrix for the spatial component
θf .

Without loss of generality, we assume that the photon detection rates of the
objects are known, and hence we have

Λθc
(τ) = Λ1(τ) + Λ2(τ), τ ≥ t0, θc ∈ Θc, (9)

where Λ1 and Λ2 denote the photon detection rates of the two objects. Further,
the photon distribution profile fθ,τ is given by

fθc,τ (r) := ε1(τ)fθc,τ,1(r) + ε2(τ)fθc,τ,2(r), r ∈ R
2, θc ∈ Θc, τ ≥ t0. (10)
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where εi(τ) = Λi(τ)/(Λ1(τ)+Λ2(τ)), and fθc,τ,i is given by eq. 8 for i = 1, 2, τ ≥ t0
and θc ∈ Θc.

In the next Theorem we derive an analytical expression of the Fisher informa-
tion matrix for the spatial component θc pertaining to the specific parameterization
of the photon detection rate Λθc

and the photon distribution profile fθc,τ given
in eqs. 9 and 10, respectively. Here, we express the Fisher information matrix
Ssim(θc) as a 2 × 2 block matrix. As we shall see in Section 4, this expression
will be used to analyze its relationship with the Fisher information matrix for
the localization accuracy problem. We also derive a product decomposition for
Ssim(θc). This decomposition simplifies the calculation of the inverse of Ssim(θc)
and enables us to obtain an analytical expression for the same (Corollary 1).

Theorem 2 Let Θc ⊆ R
4
. For θc = (x01, y01, x02, y02) ∈ Θc, let G(Λθc

, {fθc,τ}τ≥t0 , C)
be an image detection process, where Λθ and fθ,τ are given by eqs. eqs. 9 and 10, re-

spectively.

1. For θc ∈ Θc, the Fisher information matrix of the spatial component corresponding

to the acquisition time interval [t0, t] for the simultaneous detection approach is given

by

Ssim(θc) =

„

K11(θc) K12(θc)

KT
12(θc) K22(θc)

«

, (11)

where for θc ∈ Θc and i, j = 1, 2,

Kij(θc) :=

Z t

t0

Z

R
2

Λi(τ)Λj(τ)

Λ1(τ)q1(x − x01, y − y01) + Λ2(τ)q2(x − x02, y − y02)
×

 

∂qi(x−x0i,y−y0i)
∂x

∂qj(x−x0j,y−y0j)
∂x

∂qi(x−x0i,y−y0i)
∂x

∂qj(x−x0j,y−y0j)
∂y

∂qi(x−x0i,y−y0i)
∂y

∂qj(x−x0j,y−y0j)
∂x

∂qi(x−x0i,y−y0i)
∂y

∂qj(x−x0j,y−y0j)
∂y

!

dxdydτ.

(12)
2. Let d =

p

(x02 − x01)2 + (y02 − y01)2 and define Θ0
c = {(x01, y01, x02, y02) |

(x01, y01) = (x02, y02)}. Then for θc ∈ Θc\Θ0
c , the Fisher information matrix Ssim(θc)

given in result 1 of this Theorem can be written as

Ssim(θc) = D(θc)C(θc)D
T (θc),

where for θc ∈ Θc\Θ0
c

D(θc) :=

„

D̃(θc) 0

0 D̃(θc)

«

, D̃(θc) :=
1

d

„

x02 − x01 −(y02 − y01)
y02 − y01 x02 − x01

«

, (13)

C(θc) :=

„

C11(θc) C12(θc)

CT
12(θc) C22(θc)

«

, (14)

Cij(θc) :=

Z t

t0

Z

R
2

Λi(τ)Λj(τ)

Λ1(τ)q1(x + d
2 , y) + Λ2(τ)q2(x − d

2 , y)
×

 

q
′

i,x(x, y)q
′

j,x(x, y) q
′

i,x(x, y)q
′

j,y(x, y)

q
′

i,x(x, y)q
′

j,y(x, y) q
′

i,y(x, y)q
′

j,y(x, y)

!

dxdydτ, i, j = 1, 2, (15)

with

q
′

i,ζ(x, y) :=

8

<

:

∂q1(x+ d
2
,y)

∂ζ , i = 1, (x, y) ∈ R
2,

∂q2(x−
d
2

,y)

∂ζ
, i = 2, (x, y) ∈ R

2,
ζ ∈ {x, y}. (16)
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3. Assume that q1 and q2 are symmetric along the y axis with respect to y = 0, i.e.,

qi(x, y) = qi(x,−y), (x, y) ∈ R
2

and i = 1, 2. Then for θc ∈ Θc\Θ0
c and i = 1, 2,

Cij(θc) is given by

Cij(θc) :=

Z t

t0

Z

R
2

Λi(τ)Λj(τ)

Λ1(τ)q1(x + d
2 , y) + Λ2(τ)q2(x − d

2 , y)
×

 

q
′

i,x(x, y)q
′

j,x(x, y) 0

0 q
′

i,y(x, y)q
′

j,y(x, y)

!

dxdydτ. (17)

Proof Substituting for fθc,τ and Λθc
in the expression for Iff (θ) given by eq. 5

(see result 1 of Theorem 1) and using Lemma 2, we obtain result 1. For proof of
results 2 and 3, please see Section A.2 in Appendix.

ut
In result 1 of the above Theorem, we obtained a block matrix representation

of the Fisher information matrix Ssim(θc). The leading diagonal terms correspond
to the individual contributions from the two objects and the off-diagonal terms
correspond to the coupling between the two objects. As we will show in the next
Section, the coupling plays an important role in the analysis of the relationship
between the Fisher information matrix for the simultaneous detection approach
and that for the localization accuracy problem.

The product decomposition D(θc)C(θc)D
T (θc) of Ssim(θc) that we obtained

in result 2 of the above Theorem has an interesting structure. The matrix C(θc)
is a special case of Ssim(θc) where the y coordinates of the two objects are as-
sumed to be the same, i.e., y02 = y01, and the x coordinates of the two ob-
jects are equidistant from the origin. Note that the matrix D(θc) is orthogonal
(i.e.,D−1(θc) = DT (θc)). It should be pointed out that the product decomposition
holds only when (x01, y01) 6= (x02, y02), i.e., when the distance d is not equal to
zero, since at (x01, y01) = (x02, y02) the matrix D(θc) is not defined. An implica-
tion of this product decomposition is that for a given θs

c = (xs
01, ys

01, xs
02, ys

02) such
that (xs

01, y
s
01) 6= (xs

02, y
s
02), the Fisher information matrix for θs

c can be obtained
by first computing the Fisher information matrix for (−d

2 , 0, d
2 , 0) and then pre-

and post-multiplying it with D(θs
c) and DT (θs

c), respectively, where d denotes the
distance between the two objects. In many practical situations, the image of the
objects is symmetric along the y (and the x) axis. As shown in result 3 of Theorem
2, when this condition is satisfied, several entries of the matrix C(θc) become zero,
which in turn simplifies the calculation of C(θc).

Remark 2 Consider the scenario when the distance between the two objects is
zero, i.e. x01 = x02 and y01 = y02. For this scenario, the Fisher information matrix
Ssim(θc) given in result 1 of Theorem 2 is singular, if the photon detection rates
and the image functions of the two objects are identical, i.e., Λ1 = Λ2 and q1 = q2
(also see Section 4.1). However, for distinct photon detection rates and image
functions, Ssim(θc) will, in general, be invertible even when the distance between
the objects is zero.

In the following Corollary, we make use of the product decomposition of the
Fisher information matrix Ssim(θc) and the orthogonality of D(θc) to obtain an
analytical expression for the inverse of Ssim(θc) when the distance d between the
objects is non-zero.
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Corollary 1 Define Θ0
c ={(x01, y01, x02, y02) | (x01, y01) = (x02, y02)}. For θc ∈

Θc\Θ0
c , let Ssim(θc) be given by result 2 of Theorem 2, D(θc) be given by eq. 13 and

Cij(θc), i = 1, 2, be given by eq. 17. Assume that q1 and q2 are symmetric along the

y axis with respect to y = 0, i.e., qi(x, y) = qi(x,−y), (x, y) ∈ R
2
, i = 1, 2. Then for

θc ∈ Θc\Θ0
c , we have

S
−1
sim(θc) = D(θc)H(θc)D

T (θc),

where for θc ∈ Θc\Θ0
c ,

H(θc) =

„

Γ (θc) 0
0 Γ (θc)

«„

C22(θc) −C12(θc)
−C12(θc) C11(θ)

«„

Γ (θc) 0
0 Γ (θc)

«

,

Γ (θc) :=

0

@

1√
Σ11(θc)

0

0 1√
Σ22(θc)

1

A , (18)

with

Σii(θc) := [C11(θc)]ii[C22(θc)]ii − ([C12(θc)]ii)
2, i = 1,2, θc ∈ Θc\Θ0

c . (19)

Proof The expression for S−1
sim(θc) is obtained by making use of the product de-

composition of Ssim(θc) and using the expression for the inverse of a block matrix
(Zhang (1999)). ut

4 Simultaneous detection approach and the localization accuracy problem

In many optical microscopy applications, one of the central questions concerns the
accuracy with which the location of a microscopic object (e.g., single molecule,
biological sub-cellular structure such as a vesicle) can be determined, since this
has several implications on the nature and type of studies that can be carried out
(see Wong et al (2011); Ober et al (2004b)). The Fisher information matrix for
the problem of estimating the location of the ith object from its image is given by
(see Ram et al (2006b); Ober et al (2004b))

Qi :=

Z t

t0

Λi(τ)dτ

Z

R
2

1

qi(x, y)

0

B

@

“

∂qi(x,y)
∂x

”2
∂qi(x,y)

∂x
∂qi(x,y)

∂y

∂qi(x,y)
∂x

∂qi(x,y)
∂y

“

∂qi(x,y)
∂y

”2

1

C

A
dxdy, (20)

where i = 1, 2 and qi and Λi denote the image function and the photon detection
rate of the ith object, respectively, for i = 1,2. The above equation was derived
using the same stochastic framework used in this paper and it is assumed that the
image contains signal from only the ith object, i = 1,2.

In the following theorem we show how the Fisher information matrix Ssim(θc)
for the spatially invariant case of the simultaneous detection approach (Theorem 2)
is related to the Fisher information matrix for the localization accuracy problem.
Specifically, we show that when the distance tends to infinity, the Fisher informa-
tion matrix Ssim(θc) becomes equivalent to that of two independent localization
accuracy problems.
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Theorem 3 For θc = (x01, y01, x02, y02) ∈ Θc, let Ssim(θc) be given by result 1 of

Theorem 2. For i = 1,2, let Qi be given by eq. 20. Let Λ1 and Λ2, and q1 and q2 denote

the photon detection rates and the image functions of the two objects, respectively.

Assume that for i = 1,2, ζ ∈ {x, y} and y ∈ R,

A1 limx→±∞ qi(x, y) = 0,

A2 limx→±∞
∂q2(x,y)

∂ζ = 0.

Then

S
inf
sim := lim

x02→∞
Ssim(θc) = lim

x02→∞

„

K11(θc) K12(θc)

KT
12(θc) K22(θc)

«

=

0

@

Q1 0

0 Q2

1

A ,

where Kij(θc), i, j = 1,2 is given by eq. 12.

Proof See Section A.3 in Appendix for proof. ut
We would like to point out that in deriving the above result we assumed x02 to

go to infinity. In general, the above result will hold when any one of the coordinates
i.e., x01, y01 or y02 is assumed to go to infinity. From the above Theorem we see
that as the distance of separation becomes sufficiently large, the leading diagonal
terms (K11(θc) and K22(θc)) of the Fisher information matrix Ssim(θc) for the
simultaneous detection approach reduce to that of the localization accuracy prob-
lem for the two point sources (i.e., Q1 and Q2), and the off-diagonal term K12(θc)
goes to zero. Note that the off-diagonal term represents the coupling between the
two point sources.

From a practical standpoint, the knowledge of the behavior of the off-diagonal
term as a function of the distance would enable the experimenter to determine
whether it is necessary to calculate the full Fisher information matrix for the
simultaneous detection approach or to only calculate the Fisher information matrix
for the localization accuracy problem. As we will see in the next section the latter
is typically much easier to calculate, since a closed form analytical expression can
be obtained.

4.1 Example 1

We next illustrate the results derived in the prior sections by considering a specific
image function and calculate the Fisher information matrix for the simultaneous
detection approach and for the localization accuracy problem. Here, we make use
of the Cramer-Rao inequality to obtain a lower limit to the accuracy (i.e., standard
deviation) of the estimates of the parameters of interest (see below). We assume
the photon detection rates to be constant and equal i.e., Λ1(τ) = Λ2(τ) = Λ0,
τ ≥ t0. We also assume the image functions to be identical and be given by the
Airy profile, which, according to optical diffraction theory describes the image of
an in-focus point source that is illuminated by incoherent, unpolarized light (Born
and Wolf (1999)). The analytical expression for the image functions can be written
as

q1(x, y) = q2(x, y) :=
J2
1 ( 2πna

λ

p

x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2, (21)

where J1 denotes the first order Bessel function of the first kind, na > 0 denotes
the numerical aperture of the objective lens used to image the point source and
λ > 0 denotes wavelength of the detected photons.
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By making use of the Cramer-Rao inequality, we define three different quanti-
ties, namely the 2D fundamental resolution measure (FREM) for the simultaneous
detection approach, the limit to the accuracy of the location coordinates for the
simultaneous detection approach, and the fundamental limit to the localization
accuracy. Then in Corollary 2, we consider two limiting cases of the distance pa-
rameter d, i.e., d → 0 and d → ∞, and derive analytical expressions of the 2D
FREM for the simultaneous detection approach. In Section 4.1.1, we numerically
calculate the above quantities for different values of d and discuss their implica-
tions.

Definition 1 The 2D FREM for the simultaneous detection approach is de-

fined as δsim
d :=

q

I−1
sim(d), d ∈ [0,∞), where I−1

sim(d) is obtained by substituting

S−1
sim(θc) (Corollary 1) in the transformation formula given by eq. 2.

Definition 2 The limit to the accuracy of the location coordinates x0i and y0j

for the simultaneous detection approach are defined as δsim
x0i

:=
q

[S−1
sim(θc)](2i−1)(2i−1)

and δsim
y0i

:=
q

[S−1
sim(θc)](2j)(2j), respectively, where i, j = 1,2 and S−1

sim(θc) denotes

the inverse Fisher information matrix given by Corollary 1 for θc = (x01, y01, x02, y02) ∈
Θc.

Definition 3 The fundamental limit to the localization accuracy of the x-

coordinate of the ith object is defined as δloc,i
x :=

q

[Q−1
i ]11, i = 1,2, and for the

y-coordinate it is defined as δloc,i
y :=

q

[Q−1
i ]22, i = 1, 2, where Qi is given by eq.

20, for i = 1, 2.

For the specific image functions and photon detection rates considered in this
example, it can be shown that (see Ober et al (2004b)).

δloc = δloc,i
x = δloc,i

y :=
λ

2πna

p

Λ0(t − t0)
, i = 1, 2. (22)

Corollary 2 For d ∈ [0,∞), let δsim
d denote the 2D FREM for the simultaneous

detection approach. For i = 1,2, let Λi and qi denote the photon detection rate and the

image function of the ith object, respectively.

1. Assume that q1(x, y) = q2(x, y), (x, y) ∈ R
2

and Λ1(τ) = λ2(τ), τ ≥ t0. Then

limd→0 δsim
d = ∞.

2. For i = 1,2, assume that qi is radially symmetric, i.e., there exists a qi such that

qi(x, y) := qi(
p

x2 + y2), (x, y) ∈ R
2

and i = 1, 2. Then

lim
d→∞

δsim
d =

q

(δloc
rs,1)

2 + (δloc
rs,2)

2,

where for i = 1, 2,

δloc
rs,i :=

1
q

πκi

R t

t0
Λi(τ)dτ

with κi :=

Z ∞

0

1

qi(r)

„

∂qi(r)

∂r

«2

rdr. (23)

3. Let δloc be given by eq. 22. For i = 1, 2, let qi be an Airy profile that is given by eq.

21 and Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0. Then limd→∞ δsim
d =

√
2δloc.
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Proof 1. By definition δsim
d =

q

I−1
sim(d), where I−1

sim(d) is obtained by substituting

S−1
sim(θc) (Corollary 1) in the transformation formula in eq. 2. When d → 0 then

x01 → x02 and y02 → y02, and from Remark 2 it immediately follows that Ssim(θc)
is singular, where θc = (x01, y01, x02, y02) ∈ Θc and Ssim(θc) is given by eq. 5. From
this the result follows.
2. Without loss of generality, we assume that d → ∞ implies x02 → ∞. For θc =
(x01, y01, x02, y02) ∈ Θc, consider the term Ssim(θc) which is given by eq. 5. Using
Theorem 3 and Lemma 3 (see Appendix), we have

lim
x02→∞

Ssim(θc) =

»

Q1 0
0 Q2

–

=

2

4

1
(δloc

rs,1)
2 12×2 0

0 1
(δloc

rs,2)
2 I2×2

3

5 , (24)

where Qi, i = 1, 2, denotes the Fisher information matrix for the localization
accuracy problem (eq. 20) and 12×2 denotes the 2 × 2 identity matrix. Define
∆x := x02 − x01 and ∆y := y02 − y01. Consider the term

lim
x02→∞

„

∂d

∂θc

«T

= lim
x02→∞

1

d

0

B

B

@

−(x02 − x01)
−(y02 − y01)
(x02 − x01)
(y02 − y01)

1

C

C

A

= lim
x02→∞

1
q

∆2
x + ∆2

y

0

B

B

@

−∆x

−∆y

∆x

∆y

1

C

C

A

= lim
x02→∞

0

B

B

B

B

B

B

B

B

B

B

@

− 1
r

1+
∆2

y

∆2
x

− 1
r

∆2
x

∆2
y

+1

1
r

1+
∆2

y

∆2
x

1
r

∆2
x

∆2
y

+1

1

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

@

−1
0
1
0

1

C

C

A

. (25)

Using eqs. 24 and 25 in eq. 2 and taking the limit x02 → ∞, we have

lim
x02→∞

I
−1
sim(d) =

`

−1 0 1 0
´

2

4

1
(δloc

rs,1)
2 12×2 0

0 1
(δloc

rs,2)
2 I2×2

3

5

0

B

B

@

−1
0
1
0

1

C

C

A

= (δloc
rs,1)

2 + (δloc
rs,2)

2.

From this the result follows.
3. The Airy profile given in eq. 21 is radially symmetric. Hence substituting for
qi and Λi, i = 1, 2, in eq. 23, we have δloc

rs,1 = δloc
rs,2 = δloc and from this the result

immediately follows. ut

4.1.1 Results

Here we numerically calculate the various quantities defined in Definitions 1-3. For
this purpose, we assume the two point sources to be equidistant from the origin
and to lie on a line segment that passes through the origin and subtends an angle
of 45o with respect to the x-axis. We choose this specific configuration, since some
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Fig. 2 Behavior of the 2D FREM δsim
d

and the limit to the accuracy of x01 and x02, i.e.,

δsim
x01

and δsim
x02

, respectively, for the simultaneous detection approach. Panel A shows δsim
d

(�)

and δsim
x01

(◦) (the results for δsim
y01

are similar) for a distance range of 1-300 nm, while Panel B

shows the same for a distance range of 1 - 50 nm. Panel C shows δsim
d

(�) and δsim
x02

(◦) (the

results for δsim
y02

are similar) for a distance range of 1-300 nm, while Panel D shows the same
for a distance range of 1 - 50 nm. In all the panels, (—) denotes the fundamental limit to the
localization accuracy δloc (eq. 22). In panels A and C, the vertical dashed line denotes the
classical Rayleigh’s resolution limit, which is given by 0.61λ/na. For all the plots, the numerical
aperture is set to na = 1.45, the wavelength of the detected photons is set to λ = 520 nm, the
photon detection rate for both point sources is set to Λ0 = 3000 photons/s and the acquisition
time interval is set to [0,1] s. For each value of distance, the location coordinates are set to
(x01, y01) = −(0.5d cos φ, 0.5d sinφ) and (x02, y02) = (0.5d cos φ, 0.5d sinφ), with φ = π/4 for
all values of d. For the above numerical values, the Rayleigh’s resolution limit is ≈ 219 nm.

of the calculated values (i.e., particular δsim
x0i

and δsim
y0i

, i = 1,2) become equal,
which simplifies the presentation of the results.

Fig. 2 shows the behavior of the 2D FREM δsim
d as a function of the distance

of separation. The figure also shows the limit to the accuracy of x01 and x02 for
the simultaneous detection approach, i.e., δsim

x01
and δsim

x02
, respectively, (the result

for y01 and y02 are analogous) as well as the fundamental limit to the localization
accuracy δloc (eq. 22). According to Rayleigh’s resolution criterion, two identical
point sources are said to be resolved in a microscope if their distance of separation
is greater than or equal to 0.61λ/na, where na denotes the numerical aperture of the
microscope and λ denotes the wavelength of light emitted by the point sources. For
the specific numerical values considered in Figure 2, Rayleigh’s resolution limit is
≈ 219 nm, and according to this criterion distances below 219 nm cannot resolved.
In contrast, in Figure 2 we see that the numerical value of the 2D FREM δsim

d

is relatively small for a range of distances below the classical resolution limit of
219 nm. An immediate implication of this result is that if there exists an efficient



Stochastic analysis of distance estimation approaches in single molecule microscopy 17

estimator, then these distances can be determined with an accuracy as predicted
by δsim

d .
Note that as the distance of separation becomes very small, δsim

d becomes
numerically large thereby predicting poor accuracy in estimating the distance of
separation. This is expected since under the assumptions of identical photon detec-
tion rates and image functions, when the distance d goes to zero the corresponding
Fisher information matrix becomes singular and the 2D FREM δsim

d becomes in-
finitely large (result 1 of Corollary 2). As the distance of separation increases, δsim

d

becomes smaller thereby predicting a relatively high accuracy in determining the
distance between the two point sources. In particular, for large distances δsim

d ap-
proaches the fundamental limit to the localization accuracy δloc. This is expected,
as it was shown in Theorem 3 that when d → ∞, the Fisher information matrix for
the simultaneous detection approach reduces to an expression that is equivalent to
two independent localization accuracy problems. For the specific image functions
considered here, δsim

d =
√

2δloc in the limit d → ∞ (result 2 of Corollary 2).
The results for δsim

x01
and δsim

x02
are also analogous to that of δsim

d . Note that
although δsim

x01
(δsim

x02
) and δloc provide lower bounds to the accuracy with which

the x-coordinate of a point source can be determined, their behaviors are very
different. In particular, δsim

x01
and δsim

x02
depend on the distance and become infinitely

large in the limit d → 0 (see Remark 2), whereas δloc is independent of the distance
and remains finite for all values of d.

The above discussion raises the question that under what conditions δsim
x01

and
δsim
x02

, and more importantly δsim
d will remain finite as the distance goes to zero.

In the next Section, we investigate this problem by considering a specical case of
the simultaneous detection approach where we assume that one of the location
coordinates is known. As we will see in Section 5.1, for this special case the limit
to the accuracy of the distance d remains finite as d → 0 for the specific image
profiles and photon detection rates considered in the present example.

5 Special case of the simultaneous detection approach - location of one of

the objects is known

It has been shown experimentally that distances well below the classical resolution
criteria (e.g., Rayleigh’s resolution criterion) can be resolved in a regular optical
microscope when the location coordinates of one of the point sources is known a
priori (Ram et al (2006a); Gordon et al (2004); Qu et al (2004)). For example, in a
concrete experimental setting such a scenario arises when one wishes to study the
interaction between a stationary object and a slow moving object. In many cases,
the location coordinates of the stationary object can be determined a priori (for
instance from an image that only contains the stationary object) and therefore
can be assumed to be known. Thus an important question then arises as to how
accurately the distance between the two objects can be determined when the
location of one of the objects is known. Here we address this problem by deriving
the Fisher information matrix for this specific scenario.

For the present discussion, we assume that the acquired data consists of a pair
of images, where one of the images contains photons from only one of the objects
(for example, the stationary one) and the other image contains photons from both
objects. Here, we assume that the location coordinates (x01, y01) of object 1 is
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determined from the first image and the location coordinates (x02, y02) of object
2 is determined from the second image. In the following Theorem, we derive the
expression for the Fisher information matrix for the problem of estimating the
location coordinates of the objects from such a pair of images. We assume that
the photon detection rate of the objects is known. Further, we also assume the
spatially invariant case (analogous to Section 3.2), where the photon distribution
profile of the ith object fθ,τ,i, i = 1,2, is expressed as a scaled and shifted version
of the image of that object (see eq. 8).

As we will show, the Fisher information matrix reduces to that of two inde-
pendent localization accuracy problems. We also show that the Fisher information
matrix is invertible for all values of the location coordinates of the two objects in-
cluding when the location coordinates are the same (i.e., when the distance equals
zero).

Theorem 4 Let Θc ⊆ R
4

be open. For θc = (x01, y01, x02, y02) ∈ Θc, τ ≥ t0 and

i = 1,2, let fθc,τ,i and Λi denote the photon distribution profile and the photon de-

tection rate of the ith object, respectively, where fθ,τ,i is given by eq. 8. For θc ∈ Θ

and τ ≥ t0, let Λ(τ) := Λ1(τ) + Λ2(τ), and fθc,τ be given by eq. 10. For θc ∈ Θc,

let G1(Λ1, {fθc,τ,1}τ≥t0 , R
2) and G2(Λ, {fθc,τ}τ≥t0 , R

2) denote two independent image

detection processes.

1. Then for the two independent image detection processes G1 and G2, the Fisher infor-

mation matrix of the spatial component corresponding to the acquisition time interval

[t0, t] for the special case of the simultaneous detection approach is given by

Ssim,sp(θc) :=

»

Q1 0
0 K22(θc)

–

, θc ∈ Θc, (26)

where Q1 is given by eq. 20 and K22(θc), θc ∈ Θc, is given by eq. 12.

2. For θc ∈ Θc, Ssim,sp(θc) is invertible including when (x01, y01) = (x02, y02).

Proof See Section A.4 in Appendix for proof. ut
From result 1 of the above Theorem we see that the Fisher information matrix

for the special case of the simultaneous detection approach is a block diagonal
matrix. The first term Q1 (eq. 20) in the leading diagonal pertains to the Fisher
information matrix for the localization accuracy problem corresponding to the
location coordinates (x01, y01) of object 1. The second term K22(θc) (eq. 12) in
the leading diagonal is a component of the Fisher information matrix for the spa-
tially invariant case of the simultaneous detection approach in which both location
coordinates are unknown and are determined from a single image (Theorem 2).
Importantly, this component K22(θc) is equivalent to the Fisher information ma-
trix of the localization accuracy problem for the location coordinates (x02, y02) of
object 2 in the presence of an extraneous background signal given by Λ1q1, where
Λ1 and q1 denote the photon detection rate and the image function of object 1,
respectively. In this context, we would like to note that the effect of an extrane-
ous background term on the localization accuracy problem has been extensively
investigated before (Ram et al (2006b); Ober et al (2004b)).

In result 2 of the above Theorem, we showed that the Fisher information matrix
is, in general, invertible for all values of the location coordinates of the two objects
including when (x01, y01) = (x02, y02), i.e., when the distance between the two
objects is zero. This is in contrast to the result obtained in Section 3.2, where we
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saw that the Fisher information matrix for the simultaneous detection approach
becomes singular and therefore non-invertible when the distance is zero (assuming
identical image profiles and photon detection rates; see Remark 2).

This brings out a very important aspect of the analyses carried out here. Specif-
ically, the a priori knowledge of the location coordinates of one of the objects re-
duces the Fisher information matrix of the distance estimation problem to that
of two independent localization accuracy problems. More importantly, it also re-
moves the singularity of the Fisher information matrix when the distance is zero.
The above result also explains the prior experimental observations of measuring
nanometer scale distances well below the classical resolution criteria in a regular
optical microscope when a priori information regarding the location coordinates
of one of the objects is known (Gordon et al (2004); Qu et al (2004)). In the next
section, we further illustrate this through a specific example where we show that
the CRLB of the distance parameter remains finite when the distance goes to zero.

We note that in the derivation of the above theorem, the Fisher information
matrix for the second image only depends on the location coordinates of object
2, since it is assumed that the location of object 1 is known. However, since the
second image contains signal from both objects, it also provides information about
the location of object 1. Hence this can be used to improve the location estimates
of object 1. A detailed analysis of such a scenario has been previously carried out
by us, where, analogous to Theorem 4, we derived the Fisher information matrix
for a pair of images but considered the case where both location coordinates were
estimated from the second image (Ram et al (2006a)).

Remark 3 The results derived in the above Theorem pertains to the Fisher in-
formation matrix for the spatial component θf (=θc) of the unknown parameter
vector θ, and we have assumed the temporal component θΛ of θ (and in turn the
the photon detection rates of the objects) to be known. The above results will
hold even if the temporal component θΛ is unknown provided the photon detec-
tion rates of the objects are related to one another through a scalar function β,
i.e. Λθ,1(τ) = β(τ)Λθ,2(τ), θ ∈ Θ and τ ≥ t0. This is due to the fact that under this
condition, the Fisher information matrix for the spatial θf and temporal compo-
nents θΛ are decoupled (see result 2 of Theorem 1). It should be pointed out that
the assumption Λθ,1 = βΛθ,2, θ ∈ Θ is satisfied in many practical situations since
the photon detection rates of the objects are typically assumed to be the same
(i.e., β = 1).

5.1 Example 2

We now illustrate the results derived in the previous section by considering a
specific image profile. Analogous to Section 4.1, we assume the image functions q1
and q2 to be identical Airy profiles given by eq. 21 and set the photon detection
rates to be constant and equal, i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0. We also define
the 2D FREM for the special case of the simultaneous detection approach, which
we denote as δsim,sp

d
. In Corollary 3, we consider two limiting cases of the distance

parameter d, i.e., d → 0 and d → ∞ and derive analytical expressions for δsim,sp
d

for the specific image functions and photon detection rates considered here.
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Definition 4 The 2D FREM for the special case of the simultaneous detec-

tion approach is defined as δsim,sp
d

:=
q

I−1
sim,sp(d), d ∈ [0,∞), where Isim,sp(d) is

obtained by substituting S−1
sim,sp(θc) (result 2 of Theorem 4) in the transformation

formula given by eq. 2.

Corollary 3 For d ∈ [0,∞), let δsim,sp
d

denote the 2D FREM for the special case

of the simultaneous detection approach. For i = 1, 2, let Λi and qi denote the pho-

ton detection rate and the image function of the ith object, respectively. Assume that

Λ1(τ) = Λ2(τ), τ ≥ t0, q1(x, y) = q2(x, y), (x, y) ∈ R
2
, and that q1 is radially sym-

metric, i.e., there exists a q1 such that q1(x, y) = q1(
p

x2 + y2) for (x, y) ∈ R
2
.

Then

1. limd→0 δsim,sp
d

=
√

3δloc
rs,1,

2. limd→∞ δsim,sp
d

=
√

2δloc
rs,1,

where δloc
rs,1 is given by eq. 23.

3. Let q1 be an Airy profile that is given by eq. 21 and Λ1(τ) = Λ0, τ ≥ t0. Then

lim
d→0

δsim,sp
d

=
√

3δloc, lim
d→∞

δsim,sp
d

=
√

2δloc,

where δloc is given by eq. 22.

Proof 1. By definition, q1 is radially symmetric and hence from Lemma 3 it follows
that Q−1

1 = (δloc
rs,1)

212×2, where Q1 denotes the Fisher information matrix for the
localization accuracy problem of object 1 (eq. 20) and 12×2 denotes the 2 × 2
identity matrix. Using this and eq. 2, we get

(δsim,sp
d

)2 = I
−1
sim,sp(d) :=

∂d

∂θc
S
−1
sim,sp(θc)

„

∂d

∂θc

«T
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B

@
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1
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C
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T

„

Q−1
1 0
0 K−1

22 (θc)

«

0

B

B

@

−(x02 − x01)
−(y02 − y01)
(x02 − x01)
(y02 − y01)

1

C

C

A

= (δloc
rs,1)

2 +
1

d2

`

x02 − x01 y02 − y01

´

K
−1
22 (θc)

„

x02 − x01

y02 − y01

«

, d ∈ [0,∞), (27)

where Ssim,sp(θc) is given by eq. 26 and K22(θc) is given by eq. 12. Because the
photon detection rates and the image functions of the objects are assumed to be
identical, we have Q1 = Q2, where Qi, i = 1, 2, is given by eq. 20. Using this, we
have

lim
x01→x02,y01→y02

K22(θc) = lim
x01→x02,y01→y02

Z
t

t0

Z

R
2

Λ2
2(τ)

Λ1(τ)q1(x − x01, y − y01) + Λ2(τ)q2(x − x02, y − y02)
×

0

@

“
∂q2(x−x02,y−y02)

∂x

”2 ∂q2(x−x02,y−y02)
∂x

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂x

“
∂q2(x−x02,y−y02)

∂y

”2

1

A dxdydτ

=
Λ0(t − t0)

2

Z

R
2

1

q2(x − x02, y − y02)
×

0

@

“
∂q2(x−x02,y−y02)

∂x

”2 ∂q2(x−x02,y−y02)
∂x

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂x

“
∂q2(x−x02,y−y02)

∂y

”2

1

A dxdydτ
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=
1

2
Q2 =

1

2
Q1 =

1

2(δloc
rs,1)2

12×2, (28)

where we have used the shift-invariant property of Lebesgue integrals in the penul-
timate step. Define ∆x := x02 − x01 and ∆y := y02 − y01. Consider the term

lim
x01→x02,y01→y02

1

d

„

x02 − x01

y02 − y01

«

= lim
x01→x02

lim
y01→y02

0

B

B

@

1
r

1+
∆2

y

∆2
x

1
r

∆2
x

∆2
y

+1

1

C

C

A

=

„

1
0

«

. (29)

Substituting eqs. 28 and 29 in eq. 27 and taking the limit d → 0, we get

lim
d→0

(δsim,sp
d

)2 = lim
d→0

I
−1
sim,sp(d) = lim

x01→x02,y01→y02

I
−1
sim,sp(d) = (δloc

rs,1)
2+

lim
x01→x02,y01→y02

1

d2

`

x02 − x01 y02 − y01

´

K
−1
22 (θc)

„

x02 − x01

y02 − y01

«

= (δloc
rs,1)

2 + 2(δloc
rs,1)

2 (1 0)12×2

„

1
0

«

= 3(δloc
rs,1)

2.

From this the result immediately follows.
2. Proof is analogous to that of result 2 of Corollary 2.
3. The Airy profile given in eq. 21 is radially symmetric. Substituting for q1 and
Λ1 in results 1 and 2 of this Corollary, we get the desired results. ut
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Fig. 3 Behavior of the 2D FREM δsim,sp
d

for the special case of the simultaneous detection

approach. Panel A shows δsim,sp
d

for a distance range of 10 - 300 nm for the special case of the
simultaneous detection approach when the location coordinates (x01, y01) of object 1 is known
(/). The panel also shows the 2D FREM δsim

d
for the simultaneous detection approach when

both location coordinates are unknown (◦). Panel B shows the same as Panel A for a distance
range of 1 - 50 nm. In all the panels, (—) denotes the fundamental limit to the localization
accuracy δloc (eq. 22), and in Panel A the vertical dashed line denotes the Rayleigh’s resolution
limit. The numerical values used to generate the above plots are identical to those used in
Figure 2.

Figure 3 shows the 2D FREM δsim,sp
d

as a function of the distance for the
special case of the simultaneous detection approach when the location coordinates
(x01, y01) of one of the objects is assumed to be known. The figure also shows
the 2D FREM for the simultaneous detection approach δsim

d when both location
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coordinates are assumed to be unknown (Section 1), and as a reference the fun-
damental limit to the localization accuracy δloc (eq. 22). From the figure we see
that as the distance of separation decreases, the δsim

d becomes infinitely large as

d → 0. In contrast, δsim,sp
d

first increases but then decreases and then remains
finite even when d = 0. In particular, for the specific image functions and photon
detection rates considered here, δsim,sp

d
=

√
3δloc when d = 0 (result 1 of Corollary

3). An immediate implication of this result is that if the location coordinates of
one of the objects is known, then it is possible to determine very small (nanometer
scale) distances with relatively very high accuracy in an optical microscope. As
the distance of separation increases, the 2D FREM δsim,sp

d
behaves analogous to

δsim
d . In particular, δsim,sp

d
=

√
2δloc when the distance becomes infinitely large.

This implies that for very large distances of separation, the limit to the accuracy
of estimating the distance is independent of the distance and is a constant.

We would like to point out that the analyses carried out in this Section have
implications in a broader context of dealing with a singular Fisher information
matrix, which represents a significant complication in the analysis of parameter
estimation problems (e.g., see Stoica and Marzetta (2001)). In particular our re-
sults illustrate how a priori information can be used to eliminate the singularity of
the Fisher information matrix. It is important to note that the choice of a priori
information intimately depends on the specifics of the experimental design, i.e.,
how the data is captured. This further underscores the importance of carrying out
a rigorous analysis of the Fisher information matrix, as it provides the necessary
insight into choosing the most appropriate experimental approach from the point
of view of obtaining the best accuracy in estimating the parameters of interest.

6 Fisher information matrix for the separate detection approach

We next consider the case where the location coordinates of the two objects are
independently estimated from two separate images. Such a scenario arises in a
class of experimental techniques in which the photon emission from the objects
are temporally separated (e.g., stochastic photoactivation (Betzig et al (2006);
Rust et al (2006); Hess et al (2006)) and blinking (Lidke et al (2005); Lagerholm
et al (2006))). In the following Theorem, we derive an analytical expression of the
Fisher information matrix for the separate detection approach. Here, we assume
the acquired data to consist of a pair of images, where the first image contains
signal from only object 1 and the the second image contains signal from only
object 2. As we will see, the Fisher information matrix for the separate detection
approach will reduce to two independent localization accuracy problems.

Theorem 5 Let Θc ⊆ R
4

be open. For θc ∈ Θc, τ ≥ t0 and i = 1, 2, let Λi and fθc,τ,i

denote the photon detection rate and the photon distribution profile of the ith object,

respectively, where fθc,τ,i is given by eq. 8. For θc ∈ Θc, let G1(Λ1, {fθc,τ,1}τ≥t0 , R
2)

and G2(Λ2, {fθc,τ,2}τ≥t0 , R
2) denote two independent image detection processes.

1. Then for the two independent image detection processes G1 and G2, the Fisher infor-

mation matrix of the spatial component corresponding to the acquisition time interval

[t0, t] for the separate detection approach is given by

Ssep(θc) =

»

Q1 0
0 Q2

–

, θc ∈ Θc, (30)
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where Qi, i = 1,2, is given in eq. 20

2. For θc ∈ Θc, Ssep(θc) is invertible including when (x01, y01) =(x02, y02).

Proof Proof is analogous to that of Theorem 4. ut
From the above Theorem, we see that the Fisher information matrix for the

separate detection approach is block diagonal and is equivalent to two independent
localization accuracy problems in the absence of any extraneous background signal.
Note that the Fisher information matrix for the separate detection approach is
independent of the location coordinates of the objects. This is in contrast to the
simultaneous detection approach, where we saw that the Fisher information matrix
depended on the location coordinates of the two objects (Theorem 2). In addition
to this, for the simultaneous detection approach when both object coordinates
are unknown the Fisher information matrix becomes block diagonal and reduces
to that of two independent localization accuracy problems (in the absence of any
extraneous background signal) only when the distance becomes infinitely large i.e.,
d → ∞ (Theorem 3).

6.1 Example 3

To illustrate the result derived in this section, we consider a specific image function.
Analogous to Sections 4.1 and 5.1, we assume the image functions q1 and q2 to
be identical Airy profiles given by eq. 21 and set the photon detection rates to
be constant and equal, i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0. We also define the 2D
FREM for the separate detection approach δsep

d
. Then in Corollary 4, we derive an

analytical expression for δsep
d

for the specific image functions and photon detection
rates considered here.

Definition 5 The 2D FREM for the separate detection approach is defined

as δsep
d

:=
q

I−1
sep(d), d ∈ [0,∞), where I−1

sep(d) is obtained by substituting S−1
sep(θc)

(result 2 of Theorem 5) in the transformation formula given by eq. 2.

Corollary 4 For d ∈ [0,∞), let δ
sep
d

denote the 2D FREM for the separate detection

approach. For i = 1, 2, let Λi and qi denote the photon detection rate and the image

function of the ith object, respectively.

1. For i = 1,2, assume that qi is radially symmetric, i.e., there exists a qi such that

qi(x, y) := qi(
p

x2 + y2), (x, y) ∈ R
2

and i = 1, 2. Then for d ∈ [0,∞), we have

δ
sep
d

=

r

“

δloc
rs,1

”2
+
“

δloc
rs,2

”2
,

where for i = 1, 2, δloc
rs,i is given by eq. 23.

2. For i = 1, 2, let qi be an Airy profile that is given by eq. 21 and Λ1(τ) = Λ2(τ) = Λ0,

τ ≥ t0. Then for d ∈ [0,∞), δsep
d

=
√

2δloc, where δloc is given by eq. 22.

Proof 1. Using eq. 2 and Lemma 3, we have

(δsep
d

)2 = I
−1
sep(d) :=

∂d

∂θc
S
−1
sep(θc)

„

∂d

∂θc

«T
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2, d ∈ [0,∞),

where ∆x = x02−x01 and ∆y = y02−y01. From this the result immediately follows.
2. The Airy profile given in eq. 21 is radially symmetric. Hence substituting for Λi

and qi, i = 1, 2, in result 1 of this Corollary, the result immediately follows. ut
From the above result we see that the 2D FREM for the separate detection

approach δsep
d

is a constant and is independent of the distance of separation, if
the image functions of the objects are radially symmetric. More specifically, when
the image functions are assumed to be Airy profiles (eq. 21), then the 2D FREM
δsep
d

is
√

2 times the fundamental limit to the localization accuracy δloc. This is

in contrast to the simultaneous detection approach where the 2D FREM δsim
d (as

well as δsim,sp
d

) depends on the distance and only in the limiting case when d

becomes infinitely large, δsim
d =

√
2δloc (Corollary 2). An immediate implication

of the above result is that, if there exists an efficient estimator of the distance for
the separate detection approach, then all distances can be determined with the
same level of accuracy when the image profiles are radially symmetric.

7 Simulations

In the previous sections we investigated the Fisher information matrix of the dis-
tance d and calculated the 2D FREM for different experimental approaches. An
important question then arises as to whether for a given experimental approach
there exists an unbiased estimator that can attain the corresponding 2D FREM.
In this section we address this question, where we use the Maximum Likelihood
(ML) estimator to determine the distance d from simulated data and compare
its performance (i.e. standard deviation) to the 2D FREM for the different ex-
perimental approaches. We consider all three approaches, i.e., the simultaneous
detection approach, the special case of the simultaneous detection approach when
one of the object locations are known, and the separate detection approach. We
generate the acquired data through Monte-Carlo simulations which are discussed
below. Here, we consider the data generation process for an ideal (non-pixelated)
detector, where the acquired data consists of the spatial coordinates of the de-
tected photons. We then use the maximum likelihood estimation algorithm on the
simulated data to estimate the location coordinates of the objects, and from this
we deduce the distance. Table 1 lists the standard deviations of the distance es-
timates for the different experimental approaches considered here. As we will see
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A. Simultaneous detection approach
Data True value Mean Std. dev Resolution
set # of distance distance of distance measure

estimates estimates δsim
d

nm nm nm nm
1 10 10.22 5.87 5.89
2 20 20.01 4.14 4.23
3 50 49.99 2.67 2.65
4 100 99.99 2.14 2.12
5 200 200.06 1.97 1.93
6 500 500 1.64 1.68

B. Special case of the simultaneous detection approach
Data True value Mean Std. dev Resolution
set # of distance distance of distance measure

estimates estimates δsim
d

nm nm nm nm
1 10 10.15 1.56 1.81
2 20 20.03 1.68 1.82
3 50 50.03 1.85 1.85
4 100 100.02 1.91 1.91
5 200 200.03 1.78 1.74
6 500 500.01 1.56 1.6

C. Separate detection approach
Data True value Mean Std. dev Resolution
set # of distance distance of distance measure

estimates estimates δsim
d

nm nm nm nm
1 10 10.15 1.48 1.47
2 20 20.02 1.49 1.47
3 50 50.04 1.50 1.47
4 100 100.01 1.48 1.47
5 200 200.03 1.50 1.47
6 500 500.03 1.45 1.47

Table 1 Results of the maximum likelihood estimator of the distance for the different exper-
imental approaches considered here. Table A shows the results for the simultaneous detection
approach. Table B shows the results for the special case of the simultaneous detection ap-
proach, where one of the location coordinates is independently determined and is assumed to
be known. Table C shows the results of the separate detection approach. The numerical values
used to generate the data are identical to those used in Fig. 2. For all the data sets, the mean
and standard deviation are obtained from 2000 maximum likelihood estimates of the distance.

the ML estimator is unbiased and attains the 2D FREM for a range of distances
when the sample size is sufficiently large.

7.1 Data simulation

We consider the two objects to be identical point sources. We set the photon
detection rates of the two objects to be equal and constant, i.e. Λθ,1(τ) := Λ0,
τ ≥ t0 and Λθ,2(τ) := Λ0, τ ≥ t0 and assume the image functions q1 and q2
to be identical Airy profiles given by eq. 21. We generate a sequence of images
{Jθ,1,Jθ,2, ...,Jθ,Nmax

}, where Nmax denotes the total number of images. For k =
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1, . . . , Nmax, the kth image is given by Jθ,k := {Jθ,1,k,Jθ,2,k}, where

Jθ,i,k := {(xi,k
1 , yi,k

1 ), (xi,k
2 , yi,k

2 ), ...., (xi,k
Ni,k

, yi,k
Ni,k

)}, i = 1, 2, k = 1, . . . , Nmax,

(31)
denotes the signal from the ith object in the kth image for k = 1, ..., Nmax and
i = 1, 2. In the above equation, Ni,k denotes the number of detected photons from

the ith object in the kth image for i = 1, 2 and k = 1, ..., Nmax, and is a realization of
the Poisson random variable with mean Λ0(t− t0). The sequence {(xi,k

m , yi,k
m ); m =

1, ..., Ni,k)} denotes the spatial coordinates of the detected photons from the ith

object in the kth image for i = 1, 2 and k = 1, ..., Nmax, and is a realization of Ni,k

random variables with density fθc,τ,i given by eq. 8, which is generated by using
a method described in Ober et al (2004b).

7.2 Maximum likelihood estimator

For a general parameter estimation problem, the maximum likelihood estimator
can be written as argmaxθ ln(L(θ | Z) where Z denotes the data and L(θ | ·)
denotes the likelihood function. For the simultaneous detection approach, the ac-
quired data pertaining to the kth image is given by Z = Jθ,k = {Jθ,1,k,Jθ,2,k},
k = 1, ..., Nmax where Jθ,i,k is defined in eq. 31 and θ = θc = (x01, y01, x02, y02) ∈
R

4.
For the special case of the simultaneous detection approach when one of the

location coordinates are known, the acquired data consists of a pair of images
{Z1,Z2}. We assume Z1 to be the image that contains the signal from object 1, i.e.,
Z1 = Jθ1,1,k, and Z2 to be the image that contains the signal from both objects,

i.e., Z1 = {Jθ1,1,k,Jθ2,2,k}, where J is defined in eq. 31, θi = (x0i, y0i) ∈ R
2,

i = 1, 2 and k = 1, ..., Nmax. Here, we carry out two independent ML estimations
on each image, i.e., argmaxθ1

ln(L(θ1 | Z1) and argmaxθ2
ln(L(θ2 | Z2, θ̂1), where

θi := (x0i, y0i) ∈ R
2, i = 1, 2. Note that while carrying out the maximum likelihood

estimation with the second image Z2, we set the value of θ1 to be equal to θ̂1, where
ˆtheta1 denotes the maximum likelihood estimate of θ1, which is determined from

the first image.
For the separate detection approach, the acquired data consists of a pair of

images {Z1,Z2} each of which contains the image of only one of the objects.
Here, we have Z1 = Jθ1,1,k and Z2 = Jθ2,1,k, where J is defined in eq. 31 for

θi = (x0i, y0i) ∈ R
2, i = 1, 2 and k = 1, ..., Nmax. For this approach, we carry

out independent ML estimations on each image, i.e. argmaxθ1
ln(L(θ1 | Z1) and

argmaxθ2
ln(L(θ2 | Z2), where θi := (x0i, y0i) ∈ R

2, i = 1,2.
In all the three imaging scenarios, the ML estimates are determined com-

putationally by using a gradient based optimization algorithm (fminunc) in the
MATLAB programming language.

7.3 Comparison of ML estimator performance to the 2D FREM

Table 1 shows the results of the ML estimator for the different experimental ap-
proaches considered here. The table lists mean and standard deviation of the
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distance estimates as well as the 2D FREM of the distance. From the table we see
that for all the experimental approaches considered here, the mean value of the
distance estimates is very close to the true value suggesting that the ML estimator
is unbiased. Moreover, for a range of distances, the standard deviation of the dis-
tance is also consistently close to the 2D FREM thereby suggesting that the ML
estimator is capable of achieving the theoretically best possible accuracy provided
the sample size is sufficiently large. Note that the standard deviation of the ML
estimates for the separate detection approach is almost a constant for a range of
distances in agreement with the 2D FREM, which in turn shows that different
distances can be estimated with the same level of accuracy.

A comparison of the standard deviations of the distance estimates (as well
as the 2D FREMs) for the three approaches shows that for a range of distances
considered in Table 1, the separate detection approach provides the best accuracy
(i.e., the smallest 2D FREM/standard deviation) for determining the distance,
followed by the special case of the simultaneous detection approach, and then
followed by the simultaneous detection approach.
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A Appendix

Definition 6 A function q : R
2
→ [0,∞) is said to be an image function if the following

properties are satisfied (see (Ram et al, 2006b, pg 37)).
1.
R

R
2 q(x, y)dxdy = 1,

2. ∂q(x,y)
∂x

and ∂q(x,y)
∂y

exist for every (x, y) ∈ R
2
,

3.
R

R
2

˛

˛

˛

∂q(x,y)
∂x

˛

˛

˛ dxdy < ∞,
R

R
2

˛

˛

˛

∂q(x,y)
∂y

˛

˛

˛ dxdy < ∞, and

4.
R

R
2

1
q(x,y)

“

∂q(x,y)
∂x

”2
dxdy < ∞,

R

R
2

1
q(x,y)

“

∂q(x,y)
∂y

”2
dxdy < ∞, and

R

R
2

1
q(x,y)

∂q(x,y)
∂x

∂q(x,y)
∂y

dxdy

< ∞.

Lemma 1 For θ = (θf , θΛ) ∈ Θ, τ ≥ t0 and i = 1, 2, let fθ,τ,i and Λθ,i denote the photon

distribution profile and the photon detection rate of the ith object, respectively, and let Λθ and

fθ,τ be given by eqs. 3 and 4, respectively. Let C denote the detector.

1. For θ ∈ Θ and τ ≥ t0, if β(τ)Λθ,1(τ) = Λθ,2(τ) for some β(τ) ≥ 0 that is independent of

θ, then
∂fθ,τ (r)

∂θΛ
= 0, θ ∈ Θ, τ ≥ t0, r ∈ C.

2. For θ ∈ Θ and τ ≥ t0, if fθ,τ,1(r) = fθ,τ,2(r), r ∈ C, then
∂fθ,τ (r)

∂θΛ
= 0, θ ∈ Θ, τ ≥ t0,

r ∈ C.

Proof 1. For θ ∈ Θ, τ ≥ t0 and i = 1, 2, let εθ,i(τ) = Λθ,i(τ)/Λθ(τ). Consider the term

∂εθ,1(τ)

∂θΛ

+
∂εθ,2(τ)

∂θΛ

=
Λθ(τ)

∂Λθ,1(τ)

∂θΛ
− Λθ,1(τ)∂Λθ(τ)

∂θΛ

Λ2
θ
(τ)

+
Λθ(τ)

∂Λθ,2(τ)

∂θΛ
− Λθ,2(τ)∂Λθ(τ)

∂θΛ

Λ2
θ
(τ)

=
Λθ(τ)

“

∂Λθ,1(τ)

∂θΛ
+

∂Λθ,2(τ)

∂θΛ

”

− (Λθ,1(τ) + Λθ,2(τ))∂Λθ(τ)
∂θΛ

Λ2
θ
(τ)

=
Λθ(τ)

∂Λθ(τ)
∂θΛ

− Λθ(τ)
∂Λθ(τ)

∂θΛ

Λ2
θ
(τ)

= 0, θ ∈ Θ, τ ≥ t0, (32)

where we have used the fact that Λθ(τ) := Λθ,1(τ) + Λθ,2(τ), τ ≥ t0 and θ ∈ Θ. Consider the
term

∂fθ,τ (r)

∂θΛ

=
∂εθ,1(τ)

∂θΛ

fθ,τ,1(r)+εθ,1(τ)
∂fθ,τ,1(r)

∂θΛ

+
∂εθ,2(τ)

∂θΛ

fθ,τ,2(r)+εθ,2(τ)
∂fθ,τ,2(r)

∂θΛ

, (33)

where θ ∈ Θ, τ ≥ t0 and r ∈ C. Substituting A1 in eq. 33 and using eq. 32, we have for θ ∈ Θ,
τ ≥ t0 and r ∈ C

∂fθ,τ (r)

∂θΛ

= fθ,τ,1(r)

„

∂εθ,1(τ)

∂θΛ

+
∂εθ,2(τ)

∂θΛ

«

= 0.

2. Using A2 we have, εθ,1(τ) = 1
1+β(τ)

, θ ∈ Θ and τ ≥ t0, and εθ,2(τ) = β(τ)
1+β(τ)

, θ ∈ Θ and

τ ≥ t0. Since β(τ) is independent of θ for τ ≥ t0,
∂εθ,i(τ)

∂θΛ
= 0, θ ∈ Θ, τ ≥ t0 and i = 1, 2.

Substituting this in eq. 33 the result follows. ut

Lemma 2 For θc = (x01, y01, x02, y02) ∈ Θc, τ ≥ t0 and i = 1, 2, let fθc,τ,i be given by eq.

8. Let M > 0. Then for θc ∈ Θc and τ ≥ t0, we have

1.
∂fθc,τ,i(r)

∂x0i
= −M

∂fθc,τ,i(r)

∂x
, r = (x, y) ∈ R

2
, i = 1, 2.

2.
∂fθc,τ,i(r)

∂y0i
= −M

∂fθc,τ,i(r)

∂y
, r = (x, y) ∈ R

2
, i = 1, 2.

Proof 1. For θc = (x01, x02, y01, y02) ∈ Θc and i = 1, 2, define ui := x
M

−x0i and vi := y
M

−y0i.
Then for i = 1, 2, we have

∂fθc,τ,i(r)

∂x0i

=
1

M2

∂qi(
x
M

− x0i,
y
M

− y0i)

∂x0i

=
1

M2

∂qi(ui, vi)

∂ui

∂ui

∂x0i

= −
1

M2

∂qi(ui, vi)

∂ui
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=
1

M2

∂qi(
x
M

− x0i,
y
M

− y0i)

∂x

∂x

∂ui

= −M
1

M2

∂qi(
x
M

− x0i,
y
M

− y0i)

∂x
= −M

∂fθc,τ,i(r)

∂x
,

for r = (x, y) ∈ R
2
, θc ∈ Θc and τ ≥ t0.

2. Proof is similar to that of result 1. ut

Lemma 3 For i = 1, 2, let Qi be given by eq. 20, and Λi and qi denote the photon de-

tection rate and the image function of the ith object, respectively. For i = 1, 2, assume

that qi is radially symmetric with respect to the origin, i.e., there exists a qi such that

qi(x, y) = qi(
p

x2 + y2) for (x, y) ∈ R
2

and i = 1, 2. Then for i = 1, 2,

Qi =
1

(δloc
rs,i)

2
12×2,

where 12×2 denotes the 2 × 2 identity matrix and δloc
rs,i, i = 1, 2, is given by eq. 23.

Proof By definition, qi, i = 1, 2, is symmetric along the x and y axes with respect to the origin.
Using this, it can be shown that (see (Ram et al, 2006b, pg 39))

Qi =

 Z
t

t0

Λi(τ)dτ

!

Diag

"Z

R
2

1

qi(x, y)

„
∂qi(x, y)

∂x

«2

dxdy

Z

R
2

1

qi(x, y)

„
∂qi(x, y)

∂y

«2

dxdy

#

,

where diag denotes the diagonal matrix. Further, using the fact that qi, i = 1, 2, is radially
symmetric, we have

[Qi]11 =

„Z t

t0

Λi(τ)dτ

«Z

R
2

1

qi(x, y)

„

∂qi(x, y)

∂x

«2

dxdy

=

„Z t

t0

Λi(τ)dτ

«Z 2π

0

Z ∞

0

1

qi(r)

„

∂qi(r)

∂r

∂r

∂x

«2

rdrdφ

=

„Z t

t0

Λi(τ)dτ

«Z 2π

0
cos2(φ)dφ

Z ∞

0

1

qi(r)

„

∂qi(r)

∂r

«2

rdr

=

„Z t

t0

Λi(τ)dτ

«„Z 2π

0

1 + cos(2φ)

2
dφ

«

κi =

„Z t

t0

Λi(τ)dτ

«

πκi =
1

“

δloc
rs,i

”2
,

where i = 1, 2, and κi is defined in eq. 23. Similarly, we can show that for i = 1, 2, [Qi]22 =
1/(δloc

rs,i)
2. ut

A.1 Proof of Theorem 1

Proof 1. Substituting for Λθ and fθ,τ in eq. 1, and using assumptions A1 - A2 we get

Isim(θ) =

Z t

t0

Z

C

1

Λθ(τ)fθ,τ (r)

0

B

B

@

Λθ(τ)
“

∂fθ,τ (r)

∂θf

”T

Λθ(τ)
“

∂fθ,τ (r)

∂θΛ

”T

+ fθ,τ (r)
“

∂Λθ(τ)
∂θΛ

”T

1

C

C

A

×

“

Λθ(τ)
∂fθ,τ (r)

∂θf
Λθ(τ)

∂fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ(τ)
∂θΛ

”

drdτ

=

2

6

4

Ssim(θ)

„
R

t

t0

R

C

1
fθ,τ (r)

“
∂fθ,τ (r)

∂θf

”T “

fθ,τ (r)
∂Λθ(τ)

∂θΛ
+ Λθ(τ)

∂fθ,τ (r)

∂θΛ

”

drdτ

«T

R
t

t0

R

C

1
fθ,τ (r)

“
∂fθ,τ (r)

∂θf

”T “

Λθ(τ)
∂fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ(τ)

∂θΛ

”

drdτ

R
t

t0

R

C

1
Λθ(τ)fθ,τ (r)

“

Λθ(τ)
∂fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ(τ)

∂θΛ

”T “

Λθ(τ)
∂fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ(τ)

∂θΛ

”

drdτ

3

7
7
7
5

.

(34)
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By definition, fθ,τ is a probability density function, which satisfies the regularity conditions
that are necessary for the calculation of the Fisher information matrix (Kay (1993)). Hence
we have for θ ∈ Θ and τ ≥ t0,

Z

C

∂fθ,τ (r)

∂θ
dr =

0

@

R

C

∂fθ,τ (r)

∂θf
dr

R

C

∂fθ,τ (r)

∂θΛ
dr

1

A =

 

∂
∂θf

R

C
fθ,τ (r)dr

∂
∂θΛ

R

C fθ,τ (r)dr

!

=

 

∂
∂θf

1
∂

∂θΛ
1

!

=

„

0
0

«

. (35)

Using eq. 35, we have

[Isim(θ)]12 = [Isim(θ)]T21 =

Z t

t0

Z

C

1

fθ,τ (r)

„

∂fθ,τ (r)

∂θf

«T „

Λθ(τ)
∂fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ(τ)

∂θΛ

«

drdτ

=

Z t

t0

Z

C

Λθ(τ)

fθ,τ (r)

„

∂fθ,τ (r)

∂θf

«T ∂fθ,τ (r)

∂θΛ

drdτ = Rsim(θ), θ ∈ Θ. (36)

Using eq. 35 and the fact that
R

C fθ,τ (r)dr = 1 for θ ∈ Θ and τ ≥ t0, we have

[Isim(θ)]22 =

Z
t

t0

Z

C

1

Λθ(τ)fθ,τ (r)

„

Λθ(τ)
∂fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ(τ)

∂θΛ

«T „

Λθ(τ)
∂fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ(τ)

∂θΛ

«

drdτ

=

Z
t

t0

Z

C

Λθ(τ)

fθ,τ (r)

„
∂fθ,τ (r)

∂θΛ

«T ∂fθ,τ (r)

∂θΛ

drdτ +

Z
t

t0

 Z

C

„
∂fθ,τ (r)

∂θΛ

«T

dr

!

∂Λθ(τ)

∂θΛ

dτ

+

Z
t

t0

1

Λθ(τ)

„
∂Λθ(τ)

∂θΛ

«T ∂Λθ(τ)

∂θΛ

dτ+

Z
t

t0

„
∂Λθ(τ)

∂θΛ

«T Z

C

∂fθ,τ (r)

∂θΛ

drdτ = Tsim(θ), θ ∈ Θ. (37)

Substituting eqs. 36 and 37 in eq. 34, the result immediately follows.
2. Using assumptions A1 and A3 it can be shown that (∂fθ,τ (r)/∂θΛ) = 0, r ∈ C, θ ∈ Θ,
τ ≥ t0 (see result 3 of Lemma 1 in Appendix). Substituting this and using assumption A3 in
eqs. 5, 6 and 7, we obtain the desired result.
3. Using assumptions A1 and A4 it can be shown that (∂fθ,τ (r)/∂θΛ) = 0, r ∈ C, θ ∈ Θ,
τ ≥ t0 (see result 2 of Lemma 1 in Appendix). Further, by assumption A4 we have fθ,τ (r) =
fθ,τ,1(r)(εθ,1(τ) + εθ,2(τ)) = fθ,τ,1(r), r ∈ C and τ ≥ t0. Substituting these results in eqs. 5,
6 and 7, we obtain the desired result. ut

A.2 Proof of results 2 and 3 of Theorem 2

Proof 2. For θc ∈ Θc\Θ0
c , define sx := (x01+x02)/2, sy := (y01+y02)/2 and φ = tan−1((y02−

y01)/(x02 − x01)). Then we have x01 := sx − d cos φ
2

, y01 := sy − d sin φ
2

, x02 := sx + d cos φ
2

,

y02 := sy + d sin φ
2

. Substituting this in result 1 of the Theorem 2 and using the shift invariant

property of Lebesgue intergrals, we get for θc ∈ Θc\Θ0
c ,

Ssim(θc) :=

Z t

t0

Z

R
2

1

Λ1(τ)q1(x + d
2

cos φ, y + d
2

sinφ) + Λ2(τ)q2(x − d
2

cos φ, y − d
2

sin φ)
×

2

6

6

6

6

6

6

4

Λ1(τ)
∂q1(x+ d

2
cos φ,y+ d

2
sin φ)

∂x

Λ1(τ)
∂q1(x+ d

2
cos φ,y+ d

2
sin φ)

∂y

Λ2(τ)
∂q2(x−d

2
cos φ,y−d

2
sin φ)

∂x

Λ2(τ)
∂q2(x−d

2
cos φ,y−d

2
sin φ)

∂y

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

Λ1(τ)
∂q1(x+ d

2
cos φ,y+ d

2
sin φ)

∂x

Λ1(τ)
∂q1(x+ d

2
cos φ,y+ d

2
sin φ)

∂y

Λ2(τ)
∂q2(x−d

2
cos φ,y−d

2
sin φ)

∂x

Λ2(τ)
∂q2(x−d

2
cos φ,y−d

2
sin φ)

∂y

3

7

7

7

7

7

7

5

T

dxdydτ. (38)

For (x, y) ∈ R
2
, τ ≥ t0 and θc ∈ Θc\Θ0

c , let

Q+
θc

(x, y, τ) := Λ1(τ)q1(x +
d

2
cos φ, y +

d

2
sin φ), (39)
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Q−
θc

(x, y, τ) := Λ2(τ)q2(x −
d

2
cos φ, y −

d

2
sin φ). (40)

For φ ∈ (0, 2π), define Tφ : R
2
→ R

2

„

x
y

«

7→

„

u
v

«

=

„

x cos φ + y sinφ
−x sinφ + y cos φ

«

.

The transformation Tφ maps the coordinates of a point on the 2D plane when the coordinate

axes is rotated by an angle φ. Let P± := (x ± d
2

cos φ, y ± d
2

sin φ). Then

P̃± := TφP± =

„

cos φ sinφ
− sinφ cos φ

«„

x ± d
2

cos φ

y ± d
2

sinφ

«

=

„

x cos φ + y sin φ ± d
2

−x sin φ + y cos φ

«

. (41)

Using eq. 41, we have for τ ≥ t0 and θc ∈ Θc\Θ0
c ,

(Q+
θc

◦ Tφ)(x, y, τ) = Λ1(τ)q1(Tφ(x +
d

2
cos φ, y +

d

2
sinφ)) = Λ1(τ)q1(Tφ(P+))

= Λ1(τ)q1(P̃+) = Λ1(τ)q1(x cos φ + y sinφ +
d

2
,−x sinφ + y cos φ), (x, y) ∈ R

2
, (42)

(Q−
θc

◦ Tφ)(x, y, τ) = Λ2(τ)q2(x cos φ + y sinφ −
d

2
,−x sin φ + y cos φ), (x, y) ∈ R

2
. (43)

Similarly, for θc ∈ Θc\Θ0
c , τ ≥ t0 and ζ ∈ {x, y},

 

∂Q+
θc

∂ζ
◦ Tφ

!

(x, y) = Λ1(τ)
∂q1(Tφ(P+))

∂ζ
= Λ1(τ)

∂q1(P̃+)

∂ζ

= Λ1(τ)
∂q1(x cos φ + y sinφ + d

2
,−x sinφ + y cos φ)

∂ζ
, (x, y) ∈ R

2
, (44)

 

∂Q−
θc

∂ζ
◦ Tφ

!

(x, y) = Λ2(τ)
∂q2(x cos φ + y sinφ − d

2
,−x sinφ + y cos φ)

∂ζ
, (x, y) ∈ R

2
.

(45)
By definition, the determinant of the Jacobian of Tφ is given by

Det[T
′

φ] := Det

»

cos φ sinφ
− sinφ cos φ

–

= 1, φ ∈ (0, 2π), (46)

and for (u, v) := Tφ(x, y),

dudv = |Det[T
′

φ]|dxdy = dxdy. (47)

Substituting eqs. 42 - 47 in the expression for Ssim(θc) given in eq. 38 and making use of the
change of variables Theorem (Rudin (1987)) we get,

Ssim(θc) =

Z t

t0

Z

R
2

1

Q+
θc

(x, y, τ) + Q−
θc

(x, y, τ)

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(x,y,τ)

∂x
∂Q

+
θc

(x,y,τ)

∂y

∂Q
−

θc
(x,y,τ)

∂x
∂Q

−

θc
(x,y,τ)

∂y

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(x,y,τ)

∂x
∂Q

+
θc

(x,y,τ)

∂y

∂Q
−

θc
(x,y,τ)

∂x
∂Q

−

θc
(x,y,τ)

∂y

1

C

C

C

C

C

C

C

A

T

dxdydτ

=

Z t

t0

Z

Tφ(R
2
)

0

B

B

B

B

B

B

B

B

@

0

B

B

B

B

B

B

B

B

@

1

Q+
θc

+ Q−
θc

0

B

B

B

B

B

B

B

@

∂Q
+
θc

∂x
∂Q

+
θc

∂y

∂Q
−

θc

∂x
∂Q

−

θc
∂y

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

∂Q
+
θc

∂x
∂Q

+
θc

∂y

∂Q
−

θc

∂x
∂Q

−

θc
∂y

1

C

C

C

C

C

C

C

A

T
1

C

C

C

C

C

C

C

C

A

◦ Tφ

1

C

C

C

C

C

C

C

C

A

(x, y, τ)Det|T
′

φ|dxdydτ
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=

Z t

t0

Z

R
2

1

Q+
θc

(Tφ(P+)) + Q−
θc

(Tφ(P−))

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(Tφ(P+))

∂x
∂Q

+
θc

(Tφ(P+))

∂y

∂Q
−

θc
(Tφ(P−))

∂x
∂Q

−

θc
(Tφ(P−))

∂y

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(Tφ(P+))

∂x
∂Q

+
θc

(Tφ(P+))

∂y

∂Q
−

θc
(Tφ(P−))

∂x
∂Q

−

θc
(Tφ(P−))

∂y

1

C

C

C

C

C

C

C

A

T

dxdydτ

=

Z t

t0

Z

R
2

1

Q+
θc

(P̃+) + Q−
θc

(P̃−)

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(P̃+)

∂x
∂Q

+
θc

(P̃+)

∂y

∂Q
−

θc
(P̃−)

∂x
∂Q

−

θc
(P̃−)

∂y

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

∂Q
+
θc

(P̃+)

∂x
∂Q

+
θc

(P̃+)

∂y

∂Q
−

θc
(P̃−)

∂x
∂Q

−

θc
(P̃−)

∂y

1

C

C

C

C

C

C

C

A

T

dxdydτ

=

Z
t

t0

Z

R
2

1

Λ1(τ)q1(x cos φ + y sin φ + d
2 ,−x sin φ + y cos φ) + Λ2(τ)q2(x cos φ + y sin φ − d

2 ,−x sin φ + y cos φ)
×

0

B
B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)
∂q1(x cos φ+y sin φ+ d

2
,−x sin φ+y cos φ)

∂x

Λ1(τ)
∂q1(x cos φ+y sin φ+ d

2
,−x sin φ+y cos φ)

∂y

Λ2(τ)
∂q2(x cos φ+y sin φ−

d
2

,−x sin φ+y cos φ)

∂x

Λ2(τ)
∂q2(x cos φ+y sin φ−

d
2

,−x sin φ+y cos φ)

∂y

1

C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)
∂q1(x cos φ+y sin φ+ d

2
,−x sin φ+y cos φ)

∂x

Λ1(τ)
∂q1(x cos φ+y sin φ+ d

2
,−x sin φ+y cos φ)

∂y

Λ2(τ)
∂q2(x cos φ+y sin φ−

d
2

,−x sin φ+y cos φ)

∂x

Λ2(τ)
∂q2(x cos φ+y sin φ−

d
2

,−x sin φ+y cos φ)

∂y

1

C
C
C
C
C
C
C
C
C
C
C
C
A

T

dxdydτ

=

Z
t

t0

Z

R
2

1

Λ1(τ)q1(u + d
2 , v) + Λ2(τ)q2(u − d

2 , v)

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)

„

cos φ
∂q1(u+ d

2
,v)

∂u
− sin φ

∂q1(u+ d
2

,v)

∂v

«

Λ1(τ)

„

sin φ
∂q1(u+ d

2
,v)

∂u
+ cos φ

∂q1(u+ d
2

,v)

∂v

«

Λ2(τ)

„

cos φ
∂q2(u−

d
2

,v)

∂u
− sin φ

∂q2(u−
d
2

,v)

∂v

«

Λ2(τ)

„

sin φ
∂q2(u−

d
2

,v)

∂u
+ cos φ

∂q2(u−
d
2

,v)

∂v

«

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

×

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)

„

cos φ
∂q1(u+ d

2
,v)

∂u
− sin φ

∂q1(u+ d
2

,v)

∂v

«

Λ1(τ)

„

sin φ
∂q1(u+ d

2
,v)

∂u
+ cos φ

∂q1(u+ d
2

,v)

∂v

«

Λ2(τ)

„

cos φ
∂q2(u−

d
2

,v)

∂u
− sin φ

∂q2(u−
d
2

,v)

∂v

«

Λ2(τ)

„

sin φ
∂q2(u−

d
2

,v)

∂u
+ cos φ

∂q2(u−
d
2

,v)

∂v

«

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

T

dudvdτ, θc ∈ Θc, (48)

where u := x cos φ + y sinφ and v := −x sin φ + y cos φ. Further, for θc ∈ Θc\Θ0
c , τ ≥ t0 and

(x, y) ∈ R
2
, we have

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)

„

cos φ
∂q1(u+ d

2
,v)

∂u
− sin φ

∂q1(u+ d
2

,v)

∂v

«

Λ1(τ)

„

sin φ
∂q1(u+ d

2
,v)

∂u
+ cos φ

∂q1(u+ d
2

,v)

∂v

«

Λ2(τ)

„

cos φ
∂q2(u−

d
2

,v)

∂u
− sin φ

∂q2(u−
d
2

,v)

∂v

«

Λ2(τ)

„

sin φ
∂q2(u−

d
2

,v)

∂u
+ cos φ

∂q2(u−
d
2

,v)

∂v

«

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

=

2

6
6
6
6
6
6
6
4

cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 cos φ − sin φ

0 0 sin φ cos φ

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
4

Λ1(τ)
∂q1(u+ d

2
,v)

∂u

Λ1(τ)
∂q1(u+ d

2
,v)

∂v

Λ2(τ)
∂q2(u−

d
2

,v)

∂u

Λ2(τ)
∂q2(u−

d
2

,v)

∂v

3

7
7
7
7
7
7
7
7
7
7
7
5
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=
1

d

2

6
6
6
6
6
6
6
4

x02 − x01 −(y02 − y01) 0 0

y02 − y01 x02 − x01 0 0

0 0 x02 − x01 −(y02 − y01)

0 0 y02 − y01 x02 − x01

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
4

Λ1(τ)
∂q1(u+ d

2
,v)

∂u

Λ1(τ)
∂q1(u+ d

2
,v)

∂v

Λ2(τ)
∂q2(u−

d
2

,v)

∂u

Λ2(τ)
∂q2(u−

d
2

,v)

∂v

3

7
7
7
7
7
7
7
7
7
7
7
5

= D(θc)

0

B
B
B
B
B
B
B
B
B
B
B
@

Λ1(τ)q
′

1,x(x, y)

Λ1(τ)q
′

1,y(x, y)

Λ2(τ)q
′

2,x(x, y)

Λ2(τ)q
′

2,y(x, y)

1

C
C
C
C
C
C
C
C
C
C
C
A

,

where D(θc) is defined in eq. 13, q
′

i,ζ
, i = 1, 2, ζ ∈ {x, y} is given by eq. 16 and we have

used the fact that cos φ := (x02 − x01)/d and sin φ := (y02 − y01)/d. Substituting the above
expression in eq. 48, the result immediately follows.

3. To prove this result we need to show that the off-diagonal terms of Cij(θc) are zero, for

i, j = 1, 2 and θc ∈ Θc\Θ0
c . For θc ∈ Θc\Θ0

c , τ ≥ t0 and (x, y) ∈ R
2
, let

W 1
θc

(x, y, τ) := Λ1(τ)q1(x +
d

2
, y), W 2

θc
(x, y, τ) := Λ2(τ)q2(x −

d

2
, y). (49)

Define TY : R
2
× [t0,∞) → R

2
× [t0,∞), (x, y, τ) 7→ (x,−y, τ). Since q1 and q2 are symmetric

along the y axis with respect to y = 0, we have W 1
θc

(x, y, τ) = (W 1
θc

◦ TY )(x, , y, τ) and

W 2
θc

(x, y, τ) = (W 2
θc

◦ TY )(x, , y, τ) for θc ∈ Θc\Θ0
c , (x, y) ∈ R

2
and τ ≥ t0. This implies that

for θc ∈ Θc\Θ0
c , (x, y) ∈ R

2
and τ ≥ t0, we have

U±
θc

(x, y, τ) = Λ1(τ)q1(x −
d

2
, y) ± Λ2(τ)q2(x +

d

2
, y) = (U±

θc
◦ TY )(x, y, τ), (50)

∂W i
θc

(x, y, τ)

∂x
=

 

∂W i
θc

∂x
◦ TY

!

(x, y, τ), i = 1, 2, (51)

∂W i
θc

(x, y, τ)

∂y
= −

 

∂W i
θc

∂y
◦ TY

!

(x, y, τ), i = 1, 2. (52)

Consider the term [C11(θc)]12, where C11(θc) is given by eq. 15. Using eqs. 50, 51 and 52 we
have

[C11(θc)]12 =

Z t

t0

Z

R
2

1

Λ1(τ)q1(x + d
2
, y) + Λ2(τ)q2(x − d

2
, y)

×

 

Λ1(τ)
∂q1(x + d

2
, y)

∂x

! 

Λ2(τ)
∂q1(x + d

2
, y)

∂y

!

dxdydτ

=

Z t

t0

Z

R
2

1

U+
θc

(x, y, τ)

∂W 1(x, y, τ)

∂x

∂W 1
θc

(x, y, τ)

∂y
dxdydτ

= −

Z t

t0

Z

R
2

1

(U+
θc

◦ TY )(x, y, τ)

 

∂W 1
θc

∂x
◦ TY

!

(x, y, τ)

 

∂W 1
θc

∂y
◦ TY

!

(x, y, τ)dxdydτ

= −

Z t

t0

Z

R
2

  

1

U+
θc

∂W 1
θc

∂x

∂W 1
θc

∂y

!

◦ TY

!

(x, y, τ)dxdydτ

=

Z t

t0

Z

R
2

1

U+
θc

(x, y, τ)

∂W 1
θc

(x, y, τ)

∂x

∂W 1
θc

(x, y, τ)

∂y
dxdydτ = −[C11(θc)]12, θc ∈ Θc\Θ

0
c ,

where we have used the change of variables theorem in the final step. From the above equation
it follows that [C11(θc)]12 = [C11(θc)]21 = 0, θc ∈ Θc\Θ0

c . Similarly, by using eqs. 50, 51 and
52, we can show that [C12(θc)]12 = [C12(θc)]21 = 0, and [C22(θc)]12 = [C22(θc)]21 = 0 for
θc ∈ Θc\Θ0

c . From this the result follows. ut
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Lemma 4 For θc = (x01, y01, x02, y02) ∈ Θc, let K12(θc) be given by eq. 12 and for i = 1, 2
let Qi be given by eq. 20. Then for θc ∈ Θc and i, j = 1, 2, we have

[K12(θc)]ij ≤
q

[Q1]ii[Q2]jj < ∞.

Proof Define ∆x = x02 − x01 and ∆y = y02 − y01. Applying the Cauchy-Schwarz inequality
to the term [K12(θc)]11 and using the fact that Λ1, Λ2, q1, q2 ≥ 0, we have for θc ∈ Θc

[K12(θc)]11 =

Z t

t0

Z

R
2

Λ1(τ)Λ2(τ)

Λ1(τ)q1(x, y) + Λ2(τ)q2(x − ∆x, y − ∆y)
×

∂q1(x, y)

∂x

∂q2(x − ∆x, y − ∆y)

∂x
dxdydτ

≤

 

Z t

t0

Z

R
2

Λ1(τ)Λ2(τ)

Λ1(τ)q1(x, y) + Λ2(τ)q2(x − ∆x, y − ∆y)

„

∂q1(x, y)

∂x

«2

dxdydτ

! 1
2

×

 

Z t

t0

Z

R
2

Λ1(τ)Λ2(τ)

Λ1(τ)q1(x, y) + Λ2(τ)q2(x − ∆x, y − ∆y)

„

∂q2(x − ∆x, y − ∆y)

∂x

«2

dxdydτ

! 1
2

≤

„Z t

t0

Λ2(τ)dτ

«
1
2

 

Z

R
2

1

q1(x, y)

„

∂q1(x, y)

∂x

«2

dxdydτ

! 1
2

×

„Z t

t0

Λ1(τ)dτ

«
1
2

 

Z

R
2

1

q2(x − ∆x, y − ∆y)

„

∂q2(x − ∆x, y − ∆y)

∂x

«2

dxdy

! 1
2

=

 

Z t

t0

Λ1(τ)dτ

Z

R
2

1

q1(x, y)

„

∂q1(x, y)

∂x

«2

dxdy

! 1
2

×

 

Z t

t0

Λ2(τ)dτ

Z

R
2

1

q2(x, y)

„

∂q2(x, y)

∂x

«2

dxdy

! 1
2

=
p

[Q1]11[Q2]22 < ∞,

where we have used the shift invariant property of Lebesgue integrals in the penultimate step,
and we have used the properties of image functions (see definition 6) in the last step. Similarly,
we can prove the other results. ut

A.3 Proof of Theorem 3

Proof Consider the term K11(θc) given in eq. 12. By definition, the integral expression of
K11(θc) is measurable for every θc ∈ Θc. Define ∆x := x02 − x01 and ∆y := y02 − y01. Using
the shift invariant property of Lebesgue integrals, and the fact that qi(x, y) ≥ 0 and Λi(τ) ≥ 0

for i = 1, 2, (x, y) ∈ R
2

and τ ≥ t0, we have for θc ∈ Θc

K11(θc) :=

Z t

t0

Z

R
2

Λ2
1(τ)

Λ1(τ)q1(x, y) + Λ2(τ)q2(x − ∆x, y − ∆y)
×

0

B

B

@

“

∂q1(x,y)
∂x

”2 ∂q1(x,y)
∂x

∂q1(x,y)
∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

“

∂q1(x,y)
∂y

”2

1

C

C

A

dxdydτ

≤

Z t

t0

Z

R
2

Λ2
1(τ)

Λ1(τ)q1(x, y)

0

B

B

@

“

∂q1(x,y)
∂x

”2 ∂q1(x,y)
∂x

∂q1(x,y)
∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

“

∂q1(x,y)
∂y

”2

1

C

C

A

dxdydτ = Q1.

(53)
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By definition of the image function (see Definition 6), we have for ζ1 = x and ζ2 = y,
R

R
2

1
q1(x,y)

∂q1(x,y)
∂ζi

∂q1(x,y)
∂ζj

dxdy < ∞ for i, j = 1, 2. This implies that K11(θc) is domi-

nated by the expression given in eq. 53 for every θc ∈ Θc. By definition of the image function

(see Definition 6), q1(x, y) and ∂q1(x,y)
∂x

are continuous for every x ∈ R. Hence the integrand of

K11(θc) is continuous for every x ∈ R. Hence by using the Theorem on changing integration
and limits for Lebesgue integrals (see (Apostol, 1974, pg 281)), we have
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where we have used assumption A1 in the next to last step. Similarly, we can show that
limx02→∞ K22(θc) = Q2. For the term K12(θc), by definition, the integrand is measurable.
Further by definition of the image function, the integrand of K12(θc) is continuous for every
x ∈ R. From Lemma 4 (see Appendix) we know that the entries of K12(θc) are dominated
by integral expressions that are independent of θc ∈ Θc and are bounded. Hence using the
above results pertaining to K12(θc) and assumptions A1 and A2, we apply the Theorem on
changing integration and limits for Lebesgue integrals (see (Apostol, 1974, pg 281)) to obtain

lim
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ut

A.4 Proof of Theorem 4

Proof 1. The image detection processes G1 and G2, which describe the first and second images,
respectively, are assumed to be statistically independent of each other. Hence the general
expression for the Fisher information matrix can be written as

Ssim,sp(θc) = Ssim,sp,1(θc) + Ssim,sp,2(θc), θc ∈ Θc,

where Ssim,sp,1 and Ssim,sp,2 denote the Fisher information matrices corresponding to the
image detection processes G1 and G2, respectively. In the present case, we assume without loss
of generality that (x01, y01) to be the location coordinates that is determined from the first
image. Then it immediately follows that Ssim,sp,1(θc) = Q1 for θc ∈ Θc, where Q1 denotes
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the Fisher information matrix for the localization accuracy problem corresponding to object 1
and is given by eq. 20.

To derive an expression for Ssim,sp,2(θc), we make use of the fact that for the second
image the location coordinates (x01, y01) of object 1 can be assumed to be known a priori,
since it is already determined from the first image. Hence for the second image only the location
coordinates (x02, y02) of the second object are the unknown parameters. Hence from this it
immediately follows that the expression for Ssim,sp,2(θc) will be identical to K22(θc) which is
a component of the Fisher information matrix Ssim(θc) for the problem of estimating θc when
the location coordinates of both objects are unknown (Theorem 2).

2. To show that Ssim,sp(θc) is invertible, we require that Q
−1
1 and K

−1
22 (θc) exist for every

θc ∈ Θc. We prove the result by contradiction. Define ∆x := x01 − x02 and ∆y = y01 − y02.
For θc ∈ Θc, consider the term
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where for θc ∈ Θc,

hθc
(x, y, τ) :=

Λ2
2(τ)

Λ1(τ)q1(x − ∆x, y − ∆y) + Λ2(τ)q2(x, y)
, (x, y) ∈ R

2
, τ ≥ t0.

Assume that there exists an image function q2 such that the Fisher information matrix K22(θc)
is singular for θc ∈ Θc. Hence by eq. 54, it immediately follow that

Det[K22(θc)] =
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= 0, θc ∈ Θc.

Note that the above expression pertains to the limiting case of equality of the Cauchy-Schwarz
inequality applied to the term T2. Hence by applying the condition for equality, we have for
k 6= 0

∂q2(x, y)

∂x
− k

∂q2(x, y)

∂y
= 0, (x, y) ∈ R

2
. (55)

The above equation is analogous to the classical one-dimensional transport equation whose
solutions are given by ((Strauss, 1992, pg 6-7))

q2(x, y) = F (x +
y

k
), (x, y) ∈ R

2
,

where F is defined on R. As q2 is an image function satisfying the regularity conditions, we

know that q2 is continuous on R
2
. Hence it follows that F is also continuous on R. Further,

q2(x, y) ≥ 0, (x, y) ∈ R
2

and hence F (x) ≥ 0, x ∈ R. This implies that there exists a constant
K > 0 and a finite interval I = (a, b) ⊂ R such that F (x) ≥ K, x ∈ I. Making use of the fact
that

R

R
2 q2(x, y)dxdy = 1 (since q2 is an image function) and substituting for q2 in terms of

F , we have
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=
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which is a contradiction. Hence K22(θc) is invertible for θc ∈ Θc. Similarly we can show that
Q1 is also invertible. From this the result follows. ut


