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Abstract: In fluorescence microscopy, high-speed imaging is often
necessary for the proper visualization and analysis of $astcellular
dynamics. Here, we examine how the speed of image acquisiffects the
accuracy with which parameters such as the starting positnal speed of
a microscopic non-stationary fluorescent object can benagtd from the
resulting image sequence. Specifically, we use a Fishemnaion-based
performance bound to investigate the detector-dependtatt of frame
rate on the accuracy of parameter estimation. We demoestrat when a
charge-coupled device detector is used, the estimatiarmacg deteriorates
as the frame rate increases beyond a point where the dédeetiiout noise
begins to overwhelm the low number of photons detected i éaane.
In contrast, we show that when an electron-multiplying gkeacoupled
device (EMCCD) detector is used, the estimation accuragrones with
increasing frame rate. In fact, at high frame rates whereldivenumber
of photons detected in each frame renders the fluoresceettathifficult
to detect visually, imaging with an EMCCD detector représennatural
implementation of the Ultrahigh Accuracy Imaging Modaliagnd enables
estimation with an accuracy approaching that which isrzdtale only when
a hypothetical noiseless detector is used.
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1. Introduction

In the study of subcellular dynamics with fluorescence nsicopy, an event of interest is tem-
porally sampled and recorded as a sequence of time-dizetdethages. Fast sampling is needed
to achieve a high temporal resolution, and in the case offfasamics, it is often necessary in
order that the acquired data can be properly visualized aatyzed. Relatively high frame
rates, for example, have been used to observe and quaeliedinalyze the fast movement of
single molecules through nuclear pore complexes [1, 2Jfastetransport of vesicles along mi-
crotubules [3], and the rapid transition of chromatin betwdifferent localized motion regimes
[4]. Fastimaging has also been employed for the visuatinatind tracking of endosome move-
ment in an investigation of intracellular cargo traffickiidd, and for the observation and quan-
titative analysis of virus transport [6].

Though the given examples differ widely in terms of the bgit@l questions they address,
a unifying theme, besides the necessity of fast imagindnasthe quantitative analysis of the
data relies on the accurate extraction of information alizeiimoving objects of interest from
the acquired images. To explore the relationship betwesrirfeaging and the accuracy of the
subsequent information extraction, we consider in thisepémpe recording of the movement of
a non-stationary fluorescent object by a detector, andftigets the effect of time discretization
of the imaging process on the accuracy with which a quansgtyamning to the object can be
estimated from the resulting image sequence. A fluoresdgetiocan be any subcellular entity,
such as an organelle, a vesicle, a quantum dot, a single ulejex a cluster of quantum dots
or molecules. An estimated quantity can in principle be samameter that is of interest. It can,
for example, be the starting position of the object, thealiom in which the object traveled, or
the speed at which the object traveled.

Intuitively, one would expect that by increasing the acijois frame rate to produce an im-
age sequence of higher temporal resolution, the accuraogstomating a parameter can be
improved. We demonstrate this to be the case provided thatrthge acquisition is carried out
with a hypothetical detector that does not contribute ntiséhe images that it produces. In
practice, however, a camera such as a charge-coupled d&@i2) detector, which is com-
monly used in fluorescence microscopy, adds noise to thedrdata. With such a detector,



the accuracy improvement conferred by increasing the temhpesolution can only be ex-
pected up to a certain frame rate before detector noise &giwvorsen the accuracy. Indeed,
we show that given a constant level of readout noise thatde@tyy a CCD detector to each
acquired image, the accuracy for estimating a parametenfiegt some point, to deteriorate
with increasing frame rate. The deterioration in accuracgitie to a lowering of the ratio of
signal to readout noise for each image in the acquired seguevhich results from the fact
that whereas the amount of signal allocated to each imagetfie number of photons detected
from the object in each image) decreases with increasimgefrate, the readout noise level per
image remains unchanged. (Note that a scientific compleanentetal-oxide-semiconductor
(sCMOS) detector also has additive readout noise as itsrmajse source, and that a deterio-
ration in parameter estimation accuracy can thereforetssexpected when the frame rate is
increased to a point where the readout noise significantlyipts the photon signal.)

The applicability of a CCD detector to high-speed imaginthiss limited to relatively low
acquisition frame rates that yield images where the readoise is not significant in com-
parison to the photon signal. This is not unexpected, sihtégaer frame rates the acquired
data becomes essentially a sequence of low-light imageB. @ectors are well known to
be unsuitable for imaging under effectively low-light aimastances, where their readout noise
corrupts the data in a substantial way. We show, however bhaising instead an electron-
multiplying charge-coupled device (EMCCD) detector at ghhélectron multiplication gain,
a parameter can be estimated with very high accuracy fronffectigely low-light image se-
guence acquired at a high frame rate.

The EMCCD detector, an image sensor that is also commonoyenbin fluorescence mi-
croscopy, is the standard low-light alternative to the C@edtor. In [7], the EMCCD detector
has been demonstrated to enable high-accuracy paramgteatésn when it is used in an un-
conventional setting where very few photons are, on avedgfected in each of its pixels. In
fact, the principle of the low-light imaging method deseidbin [7], called the Ultrahigh Ac-
curacy Imaging Modality (UAIM), is such that one can imprdahe accuracy for estimating
a parameter by purposely reducing the photon count in eacBEMpixel to well below an
average of less than one. This might seem counterintugtidee an image with such low pixel
photon counts often makes it very difficult to detect the fszent object visually, and suppos-
ably even more difficult to estimate a parameter pertairnpé object. Contrary to intuition,
however, a UAIM image actually allows parameter estimatwith a high accuracy approaching
that which is only attainable when imaging is performed aitiypothetical noiseless detector.
Since increased time discretization represents a stfafgerd way to significantly reduce the
photon count in each pixel, EMCCD imaging at a high enougmé&aate is in and of itself an
implementation of UAIM, and we show in this paper that it indeenables the high-accuracy
estimation of parameters pertaining to a moving object.

While the main focus of this paper is to investigate how theperal resolution of an ac-
quired image sequence affects the accuracy of parameieagish, we also consider how the
spatial resolution of the image sequence affects how amtyra parameter can be estimated.
In particular, we explain and demonstrate how acquiringcusece of more finely pixelated
images can further improve the already high accuracy thathgeved with UAIM.

To demonstrate the points made above on the detector-depeeffiect of time discretiza-
tion on the accuracy for estimating a parameter from an ins&ggience, we make use of a
performance bound, which we refer to atimit of accuracy that specifies the best possible
estimation accuracy that can be expected for a given setrafittons. More precisely, a limit
of accuracy is defined as the square root of the @raRao lower bound [8], obtained by com-
puting the Fisher information matrix corresponding to tltigular detector type used, the
particular image acquisition setting, and the specific matitical descriptions of the object



of interest and its movement. As such, a limit of accuracycigs the best possible standard
deviation that can be expected for the estimation of a paemuader the given conditions.

To investigate the effect of time discretization, we coneplirnits of accuracy corresponding

to different detector models and different values of theu&ition frame rate, and examine the
results as functions of the acquisition frame rate.

In addition to imaging with a hypothetical noiseless deiech CCD detector, and an EM-
CCD detector, we derive and compute the performance boumdspmnding to imaging with
an ideal detector. Unlike the other detector types whickrimiate the image data with pixela-
tion and/or extraneous noise, an ideal detector is one tiest ot introduce noise to the images
that it captures, and has an infinite non-pixelated deteetiea that allows the position of each
detected photon to be recorded with arbitrarily high piecisWe refer to the performance
bound corresponding to imaging with such a detector famdamentalimit of accuracy. It is
important because it puts the accuracy limits for the pratfi.e., CCD and EMCCD) detector
models and the hypothetical noiseless detector model argpgctive by serving as the ultimate
accuracy benchmark for comparison.

Note that in the theory on which the limit of accuracy is basiad assumed that the shape of
the trajectory of the moving object is known, and that therethe trajectory can be described
deterministically, in terms of some or all of the parametd#risiterest. In this paper, we present
theoretical results for a general deterministic trajectand use for our illustrations the specific
realizations of a linear trajectory and a circular arc tjey, which are given by mathematical
expressions parameterized by quantities of interest ssitheastarting position and the speed
of the moving object.

We also note that while the current work was motivated by iappbns in cellular mi-
croscopy, the underlying approach and results are alsacapp# to time-discretized imaging
in other disciplines such as astronomy and computer vision.

The organization of the remainder of this paper is as folldwsSection 2, we present the
theoretical background for the limits of accuracy that aredufor our analyses, and provide the
Fisher information matrix expressions from which limitsa@turacy corresponding to different
detector models can be obtained. In Section 3, we investityat detector-dependent effect of
time discretization of the imaging process on the accur&dparmameter estimation by examin-
ing limits of accuracy as functions of the acquisition frarate. In addition, we demonstrate
the effect that the spatial resolution of the acquired imsaugs on the accuracy of parameter
estimation. To further illustrate the use of limits of acy as an analytical tool, we also in-
clude in this section an investigation of how the levels afo@s noise sources might impact
the selection of a detector for image acquisition. Conolusiare presented in Section 4.

2. Fisher information and limits of accuracy

We describe in this section the calculation of the limitsafacy which are used subsequently
in Section 3 to investigate the detector-dependent effetitine discretization on the accuracy
of parameter estimation. Since much of the underlying nmagties has been previously de-
scribed in detail [9, 10], we restrict the treatment here¢orcise description of the theoretical
background in Section 2.1, an explanation of how time diszaton is accounted for in Sec-
tion 2.2, and a brief presentation in Sections 2.3 and 2.Aehtain mathematical expressions
that are utilized for the analyses in this paper.

2.1. Theoretical background

The limit of the accuracy for estimating a parameter of iesefrom image data is defined to
be the best possible standard deviation with which the pat@ntan be estimated using any
unbiased estimator. To calculate a limit of accuracy, wé @ionpute and take the inverse of



the Fisher information matrix corresponding to the paticimage data. For a vectér of n
parameters which we wish to estimate, the Fisher informatiatrix1(6) is ann x n matrix
where the rows and columns correspond toritparameters in the order they are arranged in
6. The inverse matrix~1(8) is thus alsan x n, and itsjth main diagonal element is a lower
bound on the variance with which thjgh parameter irf can be estimated using any unbiased
estimator. This lower bound is known as the CearRRao lower bound, and by taking its square
root, we obtain the limit of accuracy for estimating tjte parameter. Note that throughout this
paper, we leB € ©, where® denotes the parameter space that is an open subRét of

The key to arriving at a limit of accuracy is therefore thecoddtion of the Fisher information
matrix, which depends on the modeling of the image data amglcific estimation problem
at hand. For an image generated by a microscope and captueeddiector, a general mathe-
matical framework for calculating the Fisher informatioatnix has been rigorously described
in [9]. Based on this framework, expressions for Fisherrmfation matrices and limits of ac-
curacy pertaining to parameter estimation in the conteti®@imaging of a moving object have
been derived in [10]. As we explain in the next section, thats of accuracy which we com-
pute and analyze in this paper are based on time-discreteasins of the Fisher information
expressions from [10].

2.2. Time discretization

In [10], Fisher information expressions, both general gretHic, are presented which corre-
spond to a single image that is acquired of a moving objedhdwan arbitrary time interval.
The limits of accuracy computed based on these Fisher irdtiorm matrices therefore apply to
the estimation of parameters from a single image that captam object’s trajectory. In this pa-
per, we consider the scenario where an object’s trajecsocgptured instead by a sequence of
multiple images, and where parameters are subsequerithya¢stl from the image sequence.

The terminology and notation which we use to describe the tiiscretization of the imaging
process are illustrated in Fig. 1(a). A total acquisitiomdiinterval[to,ty, |, over which an
object’s trajectory is observed, is divided iftlp frame intervalgti_1,t], i = 1,2,...,N;. One
image is acquired in each frame interval, though in the mesetpl case the actual exposure
time need not span the entire frame interval. More precisegNs images in a sequence are
acquired over the exposure intervitls1,g], & <tj, i =1,2,...,N;. Note that theN; frame
intervals need not be of the same duration. Similarly,Nhexposure intervals can in general
have different durations.

To arrive at limits of accuracy for the estimation of paraengtfrom a given sequence of
N¢ images, a Fisher information matrix0) that corresponds to the entire sequence needs to
be calculated. Given that the trajectory of the moving abigcdescribed deterministically as
noted in Section 1, it does not in any way contribute to thetsdsticity of the imaging process.
The stochastic differences between the images in a seqaeatieerefore solely accounted for
by the intrinsic stochasticity of the photon detection msxand the detector’s noise processes.
By the standard assumption that such processes in one egposerval are independent of
those in all the other exposure intervals, the Fisher infdiom matrix! (6) for an entire image
sequence is just the sum of the Fisher information matriceth€ individual images [11], i.e.,
1(8) = ziN:flli(Q), wherel;(0) is the Fisher information matrix for the image acquired dgri
the exposure intervat;_1,]. For each image 1;(0) is then given, unless otherwise noted, by
an appropriate expression from [10], which again readilyvjgtes Fisher information matrix
expressions that correspond to a single image acquiredglan arbitrary time interval, in this
caselti_1,g]. Givenl(8), limits of accuracy are then easily computed as describ&eation
2.1.In Sections 2.3 and 2.4, we present specific expresi&ioh®) that correspond to imaging
using the various detector types considered in this pap&ettion 2.4 where the scenario of
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Fig. 1. (a) Time discretization notation and terminology. An acquisitiod;oframes, span-
ning atotal acquisition time g over the time intervalto, ty, |, consists of thérame inter-
vals[ti_1,t],i=1,2,...,N;. During each frame interval, the camera exposure begins at the
start of the frame interval and stops at or before the end of the frarmevéh More pre-
cisely, theexposure intervalare given byfti_1,6], & <tj,i =1,2,...,N;. (b) Schematic
sketch of a linear trajectory. The trajectory is depicted as a line segmengméirowhead
indicating the direction of movement. It is described by four parametieescoordinates
(x0,Yo0) of the starting position, the angle specifying the direction of movement with
respect to the-axis, and the speeadat which the object travels.

imaging with an ideal detector is presented, we also prosigicit expressions for the limits
of accuracy, under certain assumptions, for a specific atim problem involving an object
moving in a linear trajectory.

2.3. Imaging with a pixelated detector

In this section, we provide the Fisher information exprassifor the case where images of
a moving object are acquired by a pixelated detector in aesgmpiof exposure intervals. This
general category includes imaging with a practical CCD orEND detector, but we begin with
the benchmark scenario of imaging with a hypothetical detdbat introduces no noise to the
acquired images. The noiseless detector scenario is iergart that any practical detector
scenario can be compared against it to determine the extertith detector noise deteriorates
the obtainable parameter estimation accuracy.

2.3.1. Hypothetical noiseless detector

Photon emission by an object, and accordingly the detecfitimose photons by a detector, are
typically assumed to follow a Poisson process. Therefarea hypothetical noiseless detector,
each image in an acquired sequence is assumed to contagnjogtson-distributed number of
photons in each of its pixels, uncorrupted by detector n@sen such a data model, the Fisher
information matrix for a sequence bl images, comprisindj, pixels each and acquired over
the exposure interval§_1,&8], & <tj,i=1,2,...,Ng, is given by

Nt Np

1(0) = gili(e) :i;kzl u917k’i <(3gee_k,i)T (dgeék,i) _ eco, (1)

where fork =1,2,...,Ny andi = 1,2,...,Ns, the functionug xj = Uk + Bk, is the photon
signal level in thekth pixel of theith image. The summand functiqm i ; gives the mean of the
Poisson-distributed number of photons in kile pixel of theith image that are detected from




the object of interest, and it can be expressed generally as

1 /& X y
Mo ki = W/ti,l/ck/\(r)qzem’o"(r) (ﬁ —Xg(T), vl *ye(T)) dxdydr,

where (xg(T),Ys(T),Zo(17)) andog(1), T > to, represent respectively the 3-dimensional (3D)
trajectory and the orientation of the object of interéstr), T > to, denotes the rate at which
photons are detected from the object of interbt> O denotes the lateral magnification of
the microscopeCy is the region occupied by the pixel, ang ;) o,(r) is theimage function
[9, 10], which describes the image of the object of interesth® detector plane, at unit lateral
magnification, when the object is located along the optizgdis. The summand functiqBy
gives the mean of the Poisson-distributed number of phdtons the background component
(i.e., photons that do not originate from the object of iest) in thekth pixel of theith image.

Itis given by
_1m Xy
Bk,l BVE /tiil /Ck/\b(r)br (M,M) dXdyd’,

where/Ay (1) andbg, T > tp, denote, respectively, the rate at which photons are detdmm
the background component, and the image function that ibescthe spatial distribution of
those photons at unit lateral magnification.

Note that when the background component is assumed to betalwsehaveBy ; = 0 photons
fork=1,2,...,Nyandi =1,2,...,N;. Also, in our notation, subscripts to a function, besides
indices referring to the image number or pixel number, asglue specify the parameters on
which the function depends. The image functmy)) o, (1), for example, depends on tize
position and orientation of the object, and both object prbes in turn depend on the vectr
of parameters to be estimated.

2.3.2. CCD detector

For a CCD detector (or an sCMOS detector), each image in anradgsequence is assumed
to contain, in each of its pixels, a Poisson-distributedtphaignal that is corrupted by the
detector’s additive readout noise. The readout noise isajlp modeled as a Gaussian random
variable, and in the most general case, its mean and varizarcaliffer from one pixel to
another in a given detector. Hence, fo= 1,2,... Ny, we let the readout noise in theh
pixel be Gaussian-distributed with megp and variancejkz. For this data model, the Fisher
information matrix for a sequence bl images, comprisindj, pixels each and acquired over
the exposure interval§_1,&e], & <tj,i=1,2,...,Ns, is given by

Nt Np

|(9) _ igh(e) _ i;kzl (zﬂ;eék.i )T (d%@ék,i)
I—

e 2oki 1 ® Uy kli _1 (z—lfﬂk>2 2d L 5
. bl Ok —
2107 /]R P (2) ,;(l T z-1], @

where fork=1,2,...,Npandi =1,2,...,N¢, pg ki is the Poisson-Gaussian mixture probability
density function given by

B e Voki @ [Ue,k,i]l 7%(2441;()2
= Voo d, ¢ ek

and the function®g i ; andpig i are as defined in Section 2.3.1.

Po.ki(2)



2.3.3. EMCCD detector

For an EMCCD detector, each image in an acquired sequenssusnad to contain, in each
of its pixels, a Poisson-distributed photon signal thattéglsastically amplified before being
corrupted by the detector’s additive, Gaussian-distetbueadout noise. The stochastic signal
amplification is modeled here as a geometrically multiplednching process [12]. For this
data model, the Fisher information matrix for a sequendsaimages, comprisingl, pixels
each and acquired over the exposure interfialg, 6], & <tj,i =1,2,...,Ns, is given by

Nt Np

1(8)= i%li(e) = i;kzl (‘ngék‘i )T (W;eg_k,i)

-1 I-j-1
o erg()60
2nodg? Jr pexi(2) | &4 J;) i (L)J

Vg ki

2

dz—11], (3)

whereg is the electron multiplication gain (i.e., the average namif electrons that the EM-
CCD signal amplification produces for each detected photmt:)ndcrk2 are the mean and vari-
ance of the Gaussian readout noise atkthepixel, and fok =1,2,...,Npandi =1,2,...,Ns,
Po «i is the probability density function given by

Po.ki(2) , Z€R,

AN
e Voki 7%<Z*rlk)2 i 7%(2*'*%)2"1 ( i ) (1_5)
= e %) +Se o :

v2no =t jZO (1+1) (U(gk‘,i)ﬁrl

and the function®g i ; andpg i ; are as defined in Section 2.3.1. Note that the expres$gién
for each image is found in [12], as opposed to [10] for the other detectoes/ponsidered in
this paper.

2.4. Imaging with an ideal detector

In this section, we provide the Fisher information exprasdior the case where images of
a moving object are acquired by an ideal detector. Imagin am ideal detector represents
an important benchmark scenario, as is the case with imagithga hypothetical noiseless
detector (see Section 2.3.1). The assumptions made witteahdetector, however, go beyond
those made with a noiseless detector to eliminate all plesdéterioration of the image data.
Hence, the resulting limit of accuracy provides an ultimateuracy benchmark against which
the limit of accuracy computed for any of the imaging scevsmoif Section 2.3 can be compared.

Not only does the ideal detector scenario assume the abséxetector noise, it assumes
the detector to be non-pixelated, meaning that the precisith which the detector records
the locations at which photons are detected is not limitethkydimensions of a pixel, but is
instead arbitrarily high. Additionally, an ideal detect@s an infinite detection area, such that
no photon escapes detection by falling outside of the detearea.

Under the assumptions of the ideal detector scenario,rtiiedf the accuracy for estimating
a parameter is, as mentioned in Section 1, referred to asdafieental limit of accuracy. To
calculate fundamental limits of accuracy for the estimatib parameters from a sequence of
N¢ images acquired over the exposure intervals, g], & <t i =1,2,...,Ns, the Fisher



information matrix that is needed is given by
Nf

Ng¢ &
8)= 3 10) =3 [* AoV

= /ti-1

9y (1),09 (1) (%Y) T 004 (1).09(r) (XY)
// ap(1) ap(1) dxdy| Vo (1)d

X X 1)drT,
RJ/R /\(T)qu(r),OQ(r) (X,y) +Ap(T)br (X,y) Y| ve

4

where Vg(T) 1= [—0x(T)/00 —0Ye(T)/00 025(T)/00 009(r)/09]T and p(1) =
[x 'y 2(1) 0g(1)], T >1to, and all functions are as defined in Section 2.3.1. As can be
seen from the photon detection ratg and the photon spatial distribution functibp in Eq.
(4), the ideal detector scenario presented here accountedaletection of photons from a
background component. In doing so, it represents a genedaliersion of the ideal detector
scenario presented in our previous work (e.g., [9, 10])cilassumes the absence of a back-
ground component. The generalized version is easily retitaccthe more specific scenario by
setting the background photon detection rate to zero GydettingAp(7) = 0,10 < T < ;).
Equation (4) is specific in that it applies only to the idealed#or scenario, but is very gen-
eral in the sense that it applies to the imaging of an objett amy arbitrary 3D trajectory
(Xo(T7),Ys(T),29(1)), T > to, any arbitrary orientatiowg (1), T > tg, and any arbitrary image
function a,, (7),04(r)- The generality of Eq. (4) makes it a very complex expressitowever,
the introduction of specific assumptions can lead to verypkrand explicit expressions for the
limits of accuracy. In this paper, for example, we considemall fluorescent object moving in
a linear trajectory that is confined to the focal plane of therascope. The trajectory is thus
2-dimensional (2D), and has recomponentz (7). As depicted in Fig. 1(b), we express the
linear trajectory parametrically &g (7) = Xo+ V(T —tg) cosg andyp (T) = Yo+ V(T —to) Sing,
to < T <tn,, Where(Xo,Yo) are the coordinates of the starting position of the objgds the
object’s direction of movement specified as an angle witpeesto thex-axis, andv is the
speed at which the object travels. We assume the object tmak snough to be modeled as
a point source, and approximate the diffraction patterméat by the detected photons with a
2D Gaussian profile [13, 14]. The image function is thus irahelent of the object’s orientation
0p(T), and is given by

1 _x2y? )
axy) = e s (xy) € R?, (5)
27_[09261uss

where ggauss> 0 is the standard deviation of the Gaussian function. Wehéurassume the
common scenario where the rate at which photons are detiotadhe object is modeled as
a constant, i.e/A(T) = Ag € R, to < T <ty,, and where the durations of all frame intervals
are configured to be equal, i.g.+-ti_1 =t.1—t,i=1,2,...,Nf — 1, and the durations of all
exposure intervals are configured to be equal,ge-fi 1 =61—ti:=Te, i=1,2,... ,Nf— 1.
Additionally, we assume the absence of a background conmpo@é/en these conditions, and
given that we wish to estimate the starting position, thealion, and the speed of the object’s
trajectory, i.e.f = (X0, Yo, ®,V) € ©, the fundamental limits of accurady,, d,, &y, andd for



the estimation oko, Yo, @, andyv, respectively, are given by

T2+ 3Te (T — 2) + (Ta— i + 5% )

NoF TiaTe (T2 + T — % )

)

Oy, = Oy, = 20gauss

20, 3 3
Op = %/auss' T\’ O = 20gauss T\’
AoFTiaTe (T2 + T2~ ) NoFTrarTe (T2 + T2~ )

(6)

whereT, :=tn; —to denotes the duration of the total acquisition time intgramtF := Nf /Tiat
denotes the acquisition frame rate. This result is stateddlly as Theorem 1 in the Appendix,
where a proof is also provided. The theorem includes a marergéresult that does not require
equal frame durations and equal exposure durations, anslitirecludes the case where the
image of the object is modeled with the classical Airy profil&]. The simple expressions
in Eq. (6) have the important advantage that they can beyeagilluated without having to
explicitly calculate a Fisher information matrix.

If we additionally assume the common scenario of a continamgjuisition where there is no
time gap between the end of exposure of one frame and theo§@posure of the next frame
(i.e., if we set the exposure duration to be equal to the frdomation by lettingle = 1/F), then
the fundamental limits of accuracy in Eq. (6) reduce to

&y =0, = 204auss 5 — 2\/§Ugauss _ 2\/§Jgauss @
° VAT 7 VEavAoTa Tratv/AoTeat

which no longer depend on parameters related to frame aigeor exposure intervals, and
instead depend only on the total acquisition tifpg. With the time gaps between successive
exposure intervals removed, the continuous acquisitienato in the case of an ideal detector
is equivalent to the recording of the entire trajectory inregke image. Accordingly, the ex-
pressions in Eq. (7) are identical to the fundamental limftaccuracy derived in [10] for the
capture of an entire 2D linear trajectory in a single imageéaurthe same assumptions of a 2D
Gaussian image function and a constant photon detectien rat

3. Results and discussion

Using the theoretical results of Section 2, we first illutstia Section 3.1, using the example of
a small fluorescent object moving in a linear trajectory, hiome discretization of the imaging
process affects the limits of accuracy corresponding tadifferent detector-dependent data
models presented in Sections 2.3 and 2.4. We compare thécpfdimits of accuracy for
CCD and EMCCD imaging with each other, and against the beadksprovided by the limits
of accuracy for imaging with a hypothetical noiseless deteand an ideal detector. To further
illustrate the usefulness of computing and comparing §mftaccuracy, we also present a study
on how the levels of various noise sources might affect thecten of a detector for image
acquisition. Subsequently, in Section 3.2, we presenttesthiat demonstrate the same detector-
dependent effects of time discretization for an object mgwn a circular arc trajectory. Lastly,
in Section 3.3, we look at how increasing the spatial regmiutf the detector might be used to
improve the accuracy of parameter estimation.

For our illustrations, we assume the trajectory of the alifigbe confined to the focal plane
of a microscope. We further assume a constant rate for tieetitat of photons from the object.
We model the object as a point source, and assume its imagedivén by the 2D Gaussian



image function of Eqg. (5). Images of the moving object areams to be acquired in sequence,
without any time gaps between successive exposure ingdivale =tj,i=1,2,...,Ns, in Fig.
1(a)). Images in a sequence are also assumed to have eqaalisxgurations (i.et,—ti_1 =
te1—t,i=212,....N; —1, in Fig. 1(a)). With the exception of an exploration of tHkeet of
background noise on detector choice in Section 3.1.5, witiadally assume the absence of a
background component, and all detected photons thus at&from the object.

3.1. Effect of acquisition frame rate

In Fig. 2, we show, as functions of the acquisition frame,rttie limits of accuracy for the
estimation of the starting coordinatesandyp, the direction-specifying angle, and the speed

v for a point source moving in a linear trajectory (see Fig.)létso see Section 2.4 for the
definition of a linear trajectoryxg(7),ye(7))). Each of these four parameters of interest is
given its own plot, in which limits of accuracy corresporglito different detector types are
shown as the frame rate is varied from a low 5 frames per se@pgjto a high 200 fps.

3.1.1. Ideal detector provides the ultimate accuracy benchmark

In each plot of Fig. 2, the fundamental limit of accuracy isnputed using the appropriate ex-

pression in Eq. (7), and is plotted as a straight line beciidees not depend on the acquisition
frame rate. The fact that the fundamental limit of accuratgimas the lowest numerical value

of all the curves in the plot is expected, as it is meant to keeuttimate benchmark (i.e., the

lowest possible standard deviation for estimating therpatar) based on the assumptions of
an infinite detection area and the absence of detector nodserege pixelation.

3.1.2. Hypothetical noiseless detector yields accuracy that improtiesnereasing frame rate

For all four parameters of interest, it can be seen from Fitha? the limit of accuracy for
a hypothetical noiseless detector, computed using Eqiniproves (i.e., decreases in value)
monotonically with increasing acquisition frame rateulitively, this behavior can be attributed
to the fact that a higher frame rate produces an image segukatrepresents a finer tempo-
ral sampling of the trajectory, thereby capturing more iinfation about the trajectory, and
enabling the determination of the trajectory’s parameigtis higher accuracy.

The plots of Fig. 2 suggest that beyond a certain frame rd&dp@ or so in this particular
example), the improvement of the limit of accuracy for th@dipetical noiseless detector be-
comes substantially less appreciable. Moreover, one cathse the limit of accuracy levels
off at a value that is higher than the fundamental limit ofumecy, and that it will therefore
never attain the ultimate benchmark. Consequently, theguossible estimation accuracy that
can be expected when a noiseless detector is used will abeagsorer than the best possible
accuracy that can be expected when an ideal detector isTisegrimary reason for this is that
whereas an ideal detector produces non-pixelated imagabidfarily high spatial resolution,
(i.e., images where the position at which each photon isctideis recorded with arbitrarily
high precision), a noiseless detector produces pixelatedés of lower spatial resolution (i.e.,
images where the position at which each photon is detecteg@ded with a precision that is
limited by the dimensions of a pixel). In other words, white thoiseless detector data model
accounts for the data-deteriorating effect of image pti@tathe ideal detector data model as-
sumes its absence. Though both of these data models are dras@dealistic assumptions, a
comparison between their limits of accuracy provides a méanstudying the effect of pixe-
lation on the accuracy of parameter estimation.
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Fig. 2. Limits of accuracy, shown as functions of the acquisition frarte far the estima-
tion of (a) the coordinatgy and (b) the coordinatg, of the starting position, (c) the angle
@ specifying the direction of movement with respect to xkexis, and (d) the speed of

a point source moving in a linear trajectory (see Fig. 1(b)). In each thletlimits of ac-
curacy correspond to imaging with an ideal detectr & hypothetical noiseless detector
(0), a CCD detector<), and an EMCCD detectop). For each pixelated detector type,
the pixel size is 1m x 16um, and an image consists of a8 pixel array. The CCD
detector adds readout noise with megn= 0 e~ and standard deviatiany = 2 € to each
pixel k. The EMCCD detector amplifies photon signals at an electron multiplicatiorofain
g= 950, and adds readout noise with megn= 0 e and standard deviatiasy =24 € to
each pixek. The absence of a background component is assumed. The 2Bi@apofile
that models the image of the point source has a standard deviatmja f= 84 nm, and
the rate at which photons are detected from the point sourkg s 2000 photons/s. The
magpnification of the microscope i = 100. The values of the estimated parameters are
Xo = Yo = —250 nm with respect to the opticatjaxis which passes through the center of
animageg = 30°, andv = 1500 nm/s. At any given frame rate, the total acquisition time is
Tiat = 0.4 s, and is divided equally among all frames. The acquisition has no tipehga
tween successive exposures. The CCD limit of accuracy attains it§.leedbwest) value,

in (a) and (d), at 15 fps, where the average photon signal level@mefand per pixel are
133 and 2.08 photons, and, in (b) and (c), at 10 fps, where thage@hoton signal level
per frame and per pixel are 200 and 3.125 photons. In (a), (p)akd (d), the EMCCD
limit of accuracy first attains a lower value than the CCD limit of accuracgratind 25
fps, where the average photon signal level per frame and per p&x8Deand 1.25 photons.



3.1.3. CCD detector yields poor accuracy at high frame rates

For image acquisition with a CCD detector, the plots of Figh2w that the limit of accuracy,
computed using Eq. (2), improves as the frame rate is ineceap to a certain point. Be-
yond this certain frame rate, however, the limit of accursteadily worsens as the frame rate
continues to be increased. For example, the limit of acgui@cestimating thexy coordinate
improves from 10.1 nm at 5 fps to 8.8 nm at 15 fps, but exhibdstariorating trend thereafter.
This interesting behavior can be explained by a tradeoff’#éen two opposing effects. On the
one hand, more information about the trajectory is gainedmthe frame rate is increased to
produce an image sequence that represents a finer tempaonalirsg of the trajectory. This is
the same effect that is seen with the hypothetical noiseletsctor (see Section 3.1.2). On the
other hand, some information about the trajectory is lostmite frame rate is increased, since
fewer photons are detected in each frame due to the shorexpedure interval, resulting in
the readout noise in each image pixel becoming increassighjficant compared to the photon
signal detected in the pixel.

When the shortened exposure interval is still long enough shat a sufficient number of
photons are still detected in each frame, the deterioraffest of a lowered signal to detector
noise ratio does not entirely negate the advantage gairtadiveiincreased temporal resolution.
This tradeoff in favor of the increased temporal resolutbwhat accounts for the improving
trend that is seen for the limit of accuracy at relatively liwame rates (up to 15 fps for the
coordinate in our example). On the contrary, when the fraatesincrease shortens the exposure
interval to such an extent that the advantage gained witthitjieer temporal resolution is
eclipsed by the deteriorative effect of a lowered signalétedtor noise ratio, the tradeoff in
favor of the latter results in a worsening trend for the lioficcuracy. This is seen for frame
rates beyond 15 fps for thg coordinate in our example. At these higher frame rates, arage
of less than 133 photons are detected per image in a giveesegu

The plots of Fig. 2 thus demonstrate that while a CCD detéstappropriate for imaging at
relatively low frame rates, its readout noise renders iuitable for imaging at higher frame
rates. This is especially the case for imaging under canditiwhere only a relatively low
number of photons can be expected to be detected from thenmobject of interest over the
course of its trajectory.

Note that at any given frame rate, the limit of accuracy forGDQletector is worse than the
limit of accuracy for a hypothetical noiseless detectoisThexpected, since the difference be-
tween the two imaging scenarios is the data-deteriorafiiegteof the CCD detector’s readout
noise. The best possible estimation accuracy that can ee®gwhen a CCD detector is used
will therefore always be worse than the best possible acyutzat can be expected when a
noiseless detector is used. Despite the fact that imagitiganioiseless detector is a hypothet-
ical scenario, a comparison of its limit of accuracy with @D limit of accuracy represents a
useful way of investigating the effect of readout noise anabcuracy of parameter estimation.

3.1.4. EMCCD detector implements UAIM and yields high accuracy at fiaghe rates

An EMCCD detector has readout noise just like a CCD detebtdris capable of substantially
reducing the corruptive effect of the noise on the photonaligt achieves this by amplifying
the signal in a given pixel before the signal is read out,@hgproducing an augmented signal
that is large in comparison to the noise introduced whenrié#sl out. The signal amplifica-
tion is a stochastic process, however, meaning that it éf isssource of detector noise that
deteriorates the photon signal. Nevertheless, by virtudesignal amplification, the plots of
Fig. 2 show that, unlike what is observed for the CCD scendhi® limit of accuracy for an
EMCCD detector (computed using Eg. (3)) improves with iasieg frame rate throughout the
entire range of frame rates shown, even in the range of higliere rates where relatively few



photons are detected per image. At frame rates of 100 fpsighéfor example, an average
of no more than 20 photons are detected per image in a giveresee.

The fact that the EMCCD limit of accuracy improves rathentdateriorates at higher frame
rates is explained by the noise characteristics of an EMCé&Batior. Provided that a high level
of signal amplification (i.e., a high electron multiplicati gain) is used, a small photon signal
detected in an EMCCD pixel will be less corrupted by detentwse (i.e., by both the readout
noise and the stochasticity of the signal amplificationhtadarge photon signal [12]. In other
words, the overall effect of the stochastic signal ampliftcaand the subsequent readout of the
amplified signal is such that the original signal in a givexepivill experience less corruption
when it is small to begin with. Therefore, at high frame raté®re the shortened exposures
result in few photons being detected per frame (and, aaeghdivery small amounts of signal
being detected per pixel), the limit of accuracy continueniprove because the advantage
gained with the increased temporal resolution is not offiged significant loss of information
due to corruption of the signals in the pixels by detectoseoiThis is in direct contrast to
imaging with a CCD detector, where at higher frame rates émefit of the increased temporal
resolution is negated by corruption of the signal by readoige.

Importantly, when a sufficiently high frame rate is used jstha@t images are produced where
the photon count in each pixel generally averages less thantbe imaging method UAIM
[7] is effectively implemented. A UAIM image is unusual, ihat its unconventionally low
pixel photon counts often make visual detection of the indamgect a difficult task. From the
perspective of parameter estimation, however, such amueational image enables estimation
with very high accuracy, owing to the fact that the very lognsils in its pixels are minimally
corrupted by detector noise. (Indeed, the minimal corauptirhen the signal level in a pixel
is less than one photon, which has been demonstrated usinfpamation-theoretic approach
in [7], correlates with the fact that under such an extremelight regime, one can discern
signal from the EMCCD detector’s readout noise with rekdtinhigh certainty (e.g., [16])). In
fact, a parameter estimation accuracy can be attainedsticiise to the accuracy that one can
only achieve when a detector that introduces no noise is. 0des is demonstrated in Fig. 2,
where in each plot the EMCCD limit of accuracy can be seen pocgeh the limit of accuracy
for the hypothetical noiseless detector at high frame rae200 fps (the highest frame rate
shown), for example, the EMCCD limit of accuracy for estimgtthexy coordinate is 8.0 nm,
and is within 18% of the limit of accuracy of 6.8 nm for the reless detector. At this high
frame rate, the brightest of all pixels in the entire seqeenit80 images (acquired over the
total acquisition time of 0.4 s) detects an average of oryphotons, and nearly 95% of the
pixels in the sequence detect an average of less than 1 paatbn

Note that while the EMCCD limit of accuracy can get close t® limit of accuracy for the
hypothetical noiseless detector, it will never actualligiat it. As is the case with the CCD
scenario, this is due to the data-deteriorating effect téater noise, which can never be com-
pletely eliminated. Also, as can be seen in the example afFi@ is often the case that the
EMCCD limit of accuracy is worse than the CCD limit of accurat low frame rates. This can
be expected whenever the relatively long exposures at lmvdrrates allow enough photons to
be captured in each frame to sufficiently overcome the reaumge of the CCD detector, and
to render the EMCCD detector’s signal amplification unnesags In general, it is not always
easy to determine when to use one type of detector over tieg aththe answer depends on the
precise experimental setting (e.g., frame rate, photogé&tdletector noise parameters, mag-
nification). However, our approach of computing and compgalimits of accuracy provides a
useful means of arriving at the answer. We give examplesaeméxt section, where we make
use of limits of accuracy to examine how the levels of difféneoise sources might affect the
choice of detector.



3.1.5. Effect of noise on detector choice

By comparing the limits of accuracy corresponding to déferlevels of various noise sources,
we explore in this section how the readout noise level of a @€@ctor, the readout noise level
and signal amplification level of an EMCCD detector, and thisa level of the background
component might impact the selection of a detector for imemguisition. With the exception
of the noise levels which are varied, the examples congidessume the experimental setting
of Fig. 2, and use the estimation of tlg coordinate for illustration. Note that the general
results presented below (e.g., the shifting of the frame &twhich the CCD and EMCCD
limits of accuracy intersect as a result of changing the C€f@ator’s readout noise level) are
also applicable to the estimation of parameters in othdslpros. However, the specific results
(e.g., the specific frame rate at which the CCD and EMCCD $imitaccuracy intersect) pertain
strictly to the problem of Fig. 2.

The lower the level of readout noise, the lesser the extewhioh the acquired image data
is corrupted. Therefore, the lower the readout noise lef/el GCD detector, the better the
accuracy with which one can expect to estimate a parameteteoést from an image sequence
acquired at a given frame rate. Further, it follows that wa€CD detector with a lower readout
noise level is used, one can acquire images at higher fraeeaad yet still expect to carry out
parameter estimation with an accuracy that is superior mpeawable to that which is attainable
if an EMCCD detector is used instead. Figure 3(a) demorsttadth of these points with CCD
limits of accuracy that correspond to readout noise stahdeviations of 1, 2, and 6 electrons.
At each frame rate shown, it can be seen that the detectorthétiow 1-electron noise level
has the best (i.e., smallest) limit of accuracy, and thati#iector with the high 6-electron noise
level has the worst (i.e., largest) limit of accuracy. Marer whereas the limit of accuracy for
the detector with the 2-electron noise level starts to becwomorse than the EMCCD limit of
accuracy at around 25 fps, the limit of accuracy for the detewsith the 1-electron noise level
only starts to become worse than the EMCCD limit of accurdcy significantly higher 70
fps or so. Lowering the readout noise level for the CCD detettius shifts the intersection of
the CCD and EMCCD limits of accuracy to a higher frame rate, afows the use of a CCD
instead of an EMCCD detector at higher acquisition speettsowi losing any accuracy in the
parameter estimation. (Note that for the detector with tHede@tron noise level, the image data
is corrupted to such an extent that the limit of accuracy issedhan the EMCCD limit of
accuracy across all frame rates shown.)

As in the case of a CCD detector, increasing the readout fmiskof an EMCCD detector
can be expected to produce image data that is more corrijpd@cever, given that an EMCCD
detector is operated at a high level of signal amplificatamis typically the case, its readout
noise level makes a relatively small impact on the extenthikvthe photon signal in a given
pixel is corrupted. This has been reported in [7], where & aldown that when the photon sig-
nal level in a pixel is low, increasing the readout noise llegsults in greater signal corruption,
though the effect is not substantial, in the sense that ttemegf signal corruption is increased
only by a relatively small amount over a large range of readaise levels. Further, it was
shown that as the photon signal level in a pixel increaseseftect of the readout noise level
becomes even more insignificant. Extending this result¢h pécel of an image sequence, one
can expect that increasing the readout noise level of an EM@&ector will only deteriorate
the accuracy of parameter estimation by a relatively snmathunt. This is illustrated in Fig.
3(b), where EMCCD limits of accuracy are shown which coroegpto a high electron multi-
plication gain of 950 and readout noise standard deviatidi®, 24, 36, and 64 electrons. At
each frame rate shown, the EMCCD limit of accuracy worsertk imcreasing readout noise
level. As expected, however, the values of the limits at @giframe rate are very close, es-
pecially at the lowest frame rates where the readout noig fes an almost negligible effect
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Fig. 3. Comparing the limits of accuracy, corresponding to imaging with G8® EM-
CCD detectors at different levels of various noise sources and sheviumctions of the
acquisition frame rate, for the estimation of the coordin@tef the starting position of a
point source moving in a linear trajectory. In (a), the limits of accuracyespond to CCD
imaging with a readout noise standard deviation (SDgiof= 1 € (redo), 2 e (blacko),
and 6 € (blueo) in each pixek, and to EMCCD imagingd) with an electron multiplica-
tion (EM) gain ofg = 950 and a readout noise SD @f = 24 e in each pixelk. In (b),
the limits of accuracy correspond to EMCCD imaging with an EM gaig ef 950 and a
readout noise SD afi, = 12 e (greeno), 24 e (blacko), 36 € (redo), and 64 € (blue

o) in each pixek, and to CCD imaging«) with a readout noise SD afy = 2 € in each
pixel k. In (c), the limits of accuracy correspond to EMCCD imaging with an EM géin

g = 2000 (greemn), 950 (blacko), 300 (redo), and 50 (blue>), and a readout noise SD of
ok = 24 e in each pixek, and to CCD imaging«) with a readout noise SD afy =2 e~

in each pixek. In (a), (b), and (c), the absence of a background componessisreed. In
(d), the limits of accuracy correspond to CCD imaginygnd EMCCD imagingd) with
background noise levels @ ; = 0 (black), 5 (red), and 10 (blue) photons in each pixel
k of each framé at 5 fps. (At each noise level, the background photons are assumed to
be detected at a constant rate, and to be distributed uniformly over ttetatgtEor CCD
imaging, readout noise with an SD af = 2 € in each pixek is assumed. For EMCCD
imaging, an EM gain off = 950 and readout noise with an SDaf= 24 e~ in each pixek

are assumed. In (a), (b), (c), and (d), the readout noise in a@bdzss a mean ajfiy =0 e

in each pixek. Other details of the acquisition setting and problem description, including
the values of parameters not mentioned here, are as specified in Fig. 2.



due to the relatively large photon signal levels in the @ixalt the higher frame rates, the dif-
ferences in the values of the limits are a little bigger, asréradout noise level has more of an
effect when the photon signal levels are smaller. Figurgf8ither shows that due to the minor
impact of the readout noise level, the performance of the ERletector, relative to that of

the CCD detector, is essentially unchanged. For all foudaaanoise levels considered, the
EMCCD limit of accuracy intersects the CCD limit of accuratyaround 25 fps.

It has been shown in [12] that the effect of the EMCCD signaplfination level on the
extent to which the photon signal in a given pixel is corrdptepends on the pixel's photon
signal level. When the photon signal level is low, increadimg amplification level can be
expected to lessen the signal corruption. When the photarakigvel is high, increasing the
amplification level can potentially lead to greater signairgption. Since an image sequence
is a collection of pixels with different photon signal lesethe overall level of corruption, and
hence the accuracy for estimating a parameter from the sequwill be determined by the
combined effect of the varied levels of signal corruptiothi@ individual pixels. For a relatively
low-light image sequence, one can generally expect thae¢@sing the amplification level will
lessen the overall level of corruption and yield an impropathmeter estimation accuracy. This
is the case for our example, where the average photon sigvelldfanges from 6.25 photons
per pixel at 5 fps to 0.156 photons per pixel at 200 fps. In B{g), where EMCCD limits of
accuracy that correspond to electron multiplication gafrs0, 300, 950, and 2000 are plotted,
it can be seen, at each frame rate shown, that increasinggtied amplification level improves
the limit of accuracy. The improvement can be seen to becoore substantial as the photon
signal per frame decreases with increasing frame rate.gdmm a relatively high gain of 300
to the highest gain of 2000, for example, the improvementaueacy is 0.5% (from 11.88 nm
to 11.82 nm) at 5 fps, compared to 4.7% (from 8.26 nm to 7.87 an200 fps. Going from
a low gain of 50 to the highest gain of 2000, the improvememdse drastic, ranging from
2.6% (from 12.13 nm to 11.82 nm) at 5 fps to 21.7% (from 10.05tom.87 nm) at 200 fps.
Figure 3(c) further suggests that changing the signal dicediion level in the high range of
300 to 2000 does not alter very much the frame rate at whiclC@© and EMCCD limits of
accuracy intersect. At all three gains of 300, 950, and 262 EMCCD detector begins to
yield better accuracies than the CCD detector at around 25T#pe figure also shows that at
the low gain of 50, the intersection occurs at around 35 fpdicating that under a relatively
low-light setting, a CCD detector can outperform an EMCCRedt®r up to a higher frame
rate if the latter is operated at a low signal amplificatiorele (Note that at the low electron
multiplication gain of 50, the limit of accuracy actuallyasis to exhibit a deteriorating trend at
around 50 fps. This scenario therefore serves to demoash@inecessity of using a high level
of signal amplification when implementing UAIM.)

The background component introduces photons that orgiftam anything other than the
object of interest, and are indistinguishably detected@bith the photons originating from
the object of interest. It is therefore a source of noise,amsluch, it can only worsen the accu-
racy for estimating a parameter, regardless of the sped@fictbr type that is used to acquire
the image data. From the perspective of its interplay wittecter noise, however, the effect
of the background component depends on the particular tdetgpe. For a CCD detector,
the detection of background photons increases the phagoaldievel in each pixel, resulting
in an improved signal to readout noise ratio. For an EMCCLedet, the increased photon
signal level in each pixel has the undesirable effect of eeind the signal amplification less
beneficial (see Section 3.1.4). Therefore, with increakugls of background noise, the gen-
eral expectation is that the CCD detector will be able to erfitggm the EMCCD detector up
to increasingly higher frame rates. Figure 3(d) provideglastration of the points made with
CCD and EMCCD limits of accuracy corresponding to threeedéht levels of background



noise. The background photons are assumed to be distriboteatmly over the detector, and
the three noise levels correspond to constant backgrouotplietection rates that translate
to the detection of an average of 0, 5, and 10 background phaer pixel at 5 fps. (Note that
an average of 0 photons per pixel is equivalent to the abseihaebackground component.)
Demonstrating that the parameter estimation accuracyemsrith increasing noise level re-
gardless of the detector type, Fig. 3(d) shows that at argndirame rate, the CCD and EMCCD
limits of accuracy worsen as the background noise level faspis increased from 0 to 5 to
10 photons per pixel. Demonstrating that the nature of tterphay between the background
component and detector noise is such that an increasedroackbnoise level allows the CCD
detector to outperform the EMCCD detector up to a higher &aate, the figure shows that the
frame rate at which the CCD and EMCCD limits of accuracy is¢et changes from around
25 fps to 44 fps to 54 fps as the noise level (at 5 fps) increfises 0 to 5 to 10 photons per
pixel. Another way to appreciate that the nature of the pigsr favors the CCD detector is to
note that even though both the CCD and EMCCD limits of acguvearsen with increasing
levels of background noise, the deterioration of the EMC@iitlof accuracy, at each frame
rate shown, is more substantial than the deteriorationeofX@D limit of accuracy. (Note that
though not shown in Fig. 3(d), the limits of accuracy for tlypdthetical noiseless detector and
the ideal detector will also worsen with increasing levélbackground noise.)

3.2. A second example: circular arc trajectory

In Fig. 4, the case of a point source moving in a trajectorycdieed by a circular arc is con-
sidered. There are five parameters of interest (see FigaB)ely the coordinates. andy. of

the center of the circular arc, the radiR®f the circular arc, the angular speedat which the
point source moves along the arc, and the angular offgehat specifies the point source’s
starting position with respect to theaxis. Expressed in terms of these parameters, the trajec-
tory is given byxg(T) = X + Rcogw(T —to) + Yo) andye(T) = yc + Rsin(w(T —to) + Yo),

0 = (X, Yo, R @, o), to < T <t

For the scenarios involving a pixelated detector, the 8mitaccuracy shown in Fig. 4 are
obtained using the Fisher information matrix expressidnSextion 2.3 as in the case of the
linear trajectory, but with the trajectoiig(17),Ye (7)) as defined here for the circular arc. For
the ideal detector scenario, the fundamental limits of emucan be computed using the Fisher
information matrix of Eq. (4). However, by the assumptioraaontinuous acquisition with no
time gaps between successive exposure intervals, theylsarbe computed using a more
specific Fisher information matrix expression that is pnése in Corollary 5 in [10] .

We again consider the effect of the acquisition frame ratehenlimits of accuracy cor-
responding to the various detector-dependent data mdeiseach parameter, the limits of
accuracy in Fig. 4 exhibit trends similar to those shown ig. Ri for a linearly moving point
source. This example helps to demonstrate that similattsesan be expected for the limits of
accuracy regardless of the specific trajectory and the fippeirameters of interest.

3.3. Effect of spatial resolution

As discussed in Section 3.1.4 and shown in Figs. 2 and 4,rttiedf accuracy for an EMCCD
detector can get close to the limit of accuracy for a hypathenoiseless detector at high
frame rates, but never actually attain it because the EMCé&Bator produces images that are
corrupted by detector noise. The limit of accuracy for a@leiss detector is thus a bound for the
EMCCD limit of accuracy. We demonstrate in this section, beevr, that the bound itself can
be improved, and that by improving the bound, the EMCCD lwhéccuracy is also improved.
As explained in Section 3.1.2 and shown in Figs. 2 and 4, a gapsebetween the limit of
accuracy for a hypothetical noiseless detector and theafmedtal limit of accuracy primarily
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Fig. 4. Limits of accuracy, shown as functions of the acquisition frartes far the esti-
mation of (a) the coordinate. and (b) the coordinatg: of the center of the circular arc
traversed by a point source, (c) the radRisf the circular arc, (d) the angular spe@dat
which the point source travels, and (e) the angular offgetpecifying the starting position
of the point source with respect to theaxis (see Fig. 5). In each plot, the limits of ac-
curacy correspond to imaging with an ideal detectr & hypothetical noiseless detector
(0O), a CCD detector«), and an EMCCD detectop). For each pixelated detector type,
the pixel size is 1Am x 16um, and an image consists of a8 pixel array. The CCD
detector adds readout noise with megn=0 € and standard deviatiany = 2 € to each
pixel k. The EMCCD detector amplifies photon signals at an electron multiplicatioro§ain
g =950, and adds readout noise with megnr= 0 e~ and standard deviatiany =24 € to
each pixek. The absence of a background component is assumed. The 2Bi@apofile
that models the image of the point source has a standard deviatmjaeE= 84 nm, and
the rate at which photons are detected from the point sourg is 2000 photons/s. The
magnification of the microscope M = 100. The values of the estimated parameters are
Xc = Ye = 0 nm with respect to the opticat-jaxis which passes through the center of an
image,R = 250 nm,w = 6 rad/s, andlp = 20°. At any given frame rate, the total acqui-
sition time isTigt = 0.4 s, and is divided equally among all frames. The acquisition has no
time gaps between successive exposures. The CCD limit of accutagysdts best (i.e.,
lowest) value, in (a), at 5 fps, where the average photon signal levélgme and per pixel
are 400 and 6.25 photons, and, in (b), (c), (d), and (e), at 15vipsre the average photon
signal level per frame and per pixel are 133 and 2.08 photons),lfb(a (c), (d), and (e),
the EMCCD limit of accuracy first attains a lower value than the CCD limit ofieacy at
around 25 fps, where the average photon signal level per framgempixel are 80 and
1.25 photons.



Fig. 5. Schematic sketch of a circular arc trajectory. The trajectory ig@epas a circular
arc, with an arrowhead indicating the direction of movement. It is desthidive param-
eters: the coordinatec, yc) of the center of the circular arc, the radiBof the circular
arc, the angular spe&d at which the object travels along the arc, and the angular affset
specifying the object’s starting position with respect toxkeis.

because the noiseless detector produces pixelated infaateare of lower spatial resolution
than the non-pixelated images produced by an ideal det8dterefore, to improve the limit of
accuracy for the noiseless detector, the idea is to inctbasspatial resolution of the resulting
image so that it better approximates an ideal non-pixeliatede of arbitrarily high resolution.
The general strategy is to somehow reduce the effective gize of the detector so that more
finely pixelated images are produced. The finer the pixaiatiat one can achieve, the higher
the spatial resolution of the resulting image, and the clds=image will be to an ideal non-
pixelated image. While the effective pixel size of a detectam be reduced, for example, by
increasing the magnification of the microscope system [rdtleer approach is to simply use
a detector that has a smaller physical pixel size. For oustilhtion here, we assume that the
latter approach is taken.

We revisit the estimation problem in Section 3.1, but forhepixelated detector type, we
consider two detectors with different spatial resolutioftse detector with the lower resolution
has 1um x 16um pixels, and the corresponding limits of accuracy are ttes hotted in Fig.
2, which have been duplicated in Fig. 6. The detector withhiigler resolution hasién x
8um pixels, and the corresponding limits of accuracy are gtbit Fig. 6 for comparison.

3.3.1. Hypothetical noiseless detector with higher spatial resolution ymaja®ved accuracy

From the plots of Fig. 6, it can be seen that by virtue of itsfoleb resolution improvement
in both thex and they dimensions over its lower resolution counterpart, the @iglesolution
noiseless detector has a limit of accuracy curve that isdoared hence closer to the funda-
mental limit of accuracy, than the curve for the lower reolunoiseless detector. At the high
acquisition frame rate of 200 fps, for example, the limit ofaracy for estimating the&) coor-
dinate improves from 6.8 nm (within 15% of the fundamentaiifiof accuracy of 5.9 nm) for
the low resolution detector, to 6.2 nm (within 5% of the fumantal limit of accuracy) for the
high resolution detector.

3.3.2. EMCCD detector with higher spatial resolution yields improvedracgu

Analogous to what we see for the noiseless detector scetlagiplots of Fig. 6 show that the
limit of accuracy curve for the higher resolution EMCCD ate is lower, and hence closer
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Fig. 6. Comparing the limits of accuracy, corresponding to imaging witrcttateof differ-
ent spatial resolutions, for the estimation of (a) the coordirgend (b) the coordinatg,

of the starting position, (c) the angespecifying the direction of movement with respect
to thex-axis, and (d) the speed of a point source moving in a linear trajectory (see Fig.
1(b)). In each plot, limits of accuracy as functions of the acquisition é&aate are shown
which correspond to imaging with an ideal detectoy, & hypothetical noiseless detector
(0), a CCD detector<), and an EMCCD detectop). For each pixelated detector type,
the limits of accuracy correspond to imaging with a low resolution detectorhaving a
16um x 16um pixel size, and imaging with a high resolution detecter-) having an
8um x 8um pixel size. In either case, the size of an image istii8< 128um, such that
an image for the low resolution detector consists of a8 ®ixel array, and an image for
the high resolution detector consists of a<lis pixel array. Other details of the acquisition
setting and problem description, including the values of parameters moiomed here, are
as specified in Fig. 2. Note that due to identical assumptions, the curiresponding to
the low resolution detector are the same as those shown in Fig. 2. For theekattion
detector, the CCD limit of accuracy attains its best (i.e., lowest) value),rik(a and (d),
at 10 fps, where the average photon signal level per frame andxarape 200 and 3.125
photons, and, in (c), at 5 fps, where the average photon signaldexr&élame and per pixel
are 400 and 6.25 photons. Also for the high resolution detector, anji ifibfa(c), and (d),
the EMCCD limit of accuracy has a lower value than the CCD limit of accuedayach
frame rate shown. For analogous information on the CCD and EMCCD lirhéscuracy
for the low resolution detector, see Fig. 2.



to the fundamental limit of accuracy, than the curve for thedr resolution EMCCD detector.
At 200 fps, for example, the limit of accuracy for estimatihg Xp coordinate improves from
8.0 nm (within 36% of the fundamental limit of accuracy of 5u®) for the low resolution
detector, to 6.8 nm (within 15% of the fundamental limit otaracy) for the high resolution
detector. Therefore, by improving the bound set by the hessedetector scenario, we have ac-
cordingly improved the EMCCD limit of accuracy. Interegfiy in this particular example, the
improvement is such that at the highest frame rates shownintfit of accuracy for the higher
resolution EMCCD detector attains the limit of accuracytfoe lower resolution noiseless de-
tector. This is something that the limit of accuracy for tbevér resolution EMCCD detector
cannot achieve.

The improvement observed for the EMCCD limit of accuracydsgible because time dis-
cretization and pixel size reduction go hand in hand in @ittgi the desirable condition that a
small photon signal is detected in each EMCCD pixel, withalded benefit of producing a
higher spatial resolution that cannot be achieved by tirserdtization alone. In other words,
a detector with a smaller pixel size distributes the detepteotons over more pixels, thereby
increasing the spatial resolution while, at the same tiegcing the amount of signal detected
in each pixel to lessen the corruption of the signal by detemise (see Section 3.1.4).

3.3.3. CCD detector with higher spatial resolution yields poorer acgurac

For the CCD imaging scenario, a deterioration rather thaimgmovement in the limit of ac-
curacy is observed when the spatial resolution is incredaddct, in each plot of Fig. 6 and
throughout the entire range of frame rates shown, the lifrtouracy curve for the higher res-
olution CCD detector can be seen to be higher, and hence wbesethe curve for the lower
resolution CCD detector. This can be attributed to the faat due to its smaller pixel size, the
higher resolution CCD detector captures fewer photonsiget,@nd consequently has a lower
ratio of signal to readout noise in its pixels compared toltiveer resolution CCD detector.
The beneficial effect of the higher spatial resolution (itee beneficial effect, owing to the
smaller pixel size, of the increased precision with whioh plositions of the detected photons
are recorded) is thus offset by the deteriorative effectlof\eered signal to detector noise ratio
in each pixel, just as the advantage of a higher temporaluso is negated by a lowered
signal to detector noise ratio at higher frame rates (setddeg. 1.3).

It is important to note that the relationships observed atltiver frame rates between the
various curves in the plots of Fig. 6 are specific to the exairgohd should not be expected in
general. In particular, the fact that the lower resolutiddBCdetector outperforms the higher
resolution CCD detector at the lower frame rates, and theHatthe higher resolution EMCCD
detector outperforms or has comparable performance toother|resolution CCD detector
at the lower frame rates, can both be largely attributed ¢éoréhatively low photon budget
(average of 800 photons for the entire acquired sequencearfés) assumed in our example.
These relationships could easily be reversed if, for exantpe photon budget was higher by a
sufficient amount.

4. Conclusions

In the context of fluorescence microscopy, we have invegtitidne effect of time discretization
of the imaging process on the accuracy for estimating paesipertaining to a non-stationary
fluorescent object. For different image data models basatiffanent detector types, we have
provided Fisher information matrix expressions from wHiatits of accuracy for estimating a
parameter can be obtained. For the case of a point sourcengiiova linear trajectory that is
confined to the focal plane of a microscope, we have also geovéxplicit expressions for the
fundamental limit of accuracy, which assumes the use ofeal idetector. By comparing limits



of accuracy for different data models, we have demonstititeduitability of an EMCCD de-
tector for imaging at high frame rates, and the appropresemf a CCD detector for imaging
at relatively low frame rates. Importantly, we have showat thy reducing the photon signal in
each image pixel to very low levels, imaging with an EMCCDetdr at high frame rates is a
natural way of implementing UAIM, and hence allows paramegtimation with very high ac-
curacy. In addition, we have demonstrated that the obtereaizuracy can be further improved
by increasing the spatial resolution of the EMCCD detecforprovide further illustration of
the use of limits of accuracy as a tool for experimental dgsige have also examined how the
levels of detector and background noise sources might itrthacselection of a detector for
image acquisition. While the current study has been carngdnathe context of fluorescence
microscopy, the approach taken and the results preseredsarapplicable to time-discretized
imaging processes found in other areas such as astronongoarglter vision.

Appendix

Theorem 1. Let a sequence of Nimages of a moving photon-emitting object be captured
by an ideal detector (i.e., a non-pixelated, noiselessaletevith infinite detection are®?)
during the total acquisition time intervdto, tn, ], which is split up into the frame intervals
[ti-1,%], i=1,2,...,Ns. The N images are captured over the exposure intenjals;,e],

g <t,i=1 2,..., . Let the trajectory of the object be described by a line withn
xy-plane (which is orthogonal to the optical (z-)axis of theaging system), and let it be
parameterized by = (xo,Yo, @,V) € ©, where ¥ and y, are the coordinates of the starting
position of the objectp is the angle that specifies the object’s direction of movemtn
respect to the x-axis, v is the speed at which the object meves© denotes the param-
eter space that is an open subsetRff. Specifically, the linear trajectoryxg(1),ys(T)),

to < T <tn,, is given by ¥(T) = Xo + V(T —tg) cosp and y(T) = yo + V(T —tg) sing. Let
the detection of the object’s photons by the ideal detectwrabspatio-temporal random
process. The temporal part describes the time points atiwihie photons are detected, and
is represented by a Poisson process with intensity giverhéyphoton detection rat&(T),

T > tg. The spatial part describes the positional coordinateshaf tetected photons, and
is represented by a family of mutually independent randorabkes that is independent of
the temporal Poisson process. For a photon that is detectetiiiree 7, T > tp, the random
variable representing its location of detection is distriéd according to the probability density
for(%Y) = 720 (3 —Xa(1), & —Ya(1)), (xy) € R?, where q is the image function which
describes the image of the object at unit lateral magnifaratvhen the object is located at the
origin of the xy-plane, and M- 0 is the lateral magnification of the imaging system Let g be
radially symmetric, i.e., there exists a functnan — R such that @x,y) = G(x* +y?) =

(xy) € B2, Lety? = 4mt 5 r3/d(r?) (04(r) /or?)*d

1) The fundamental limits of accuradd,, d,, oy, and &, for estimating, respectively,
the trajectory parametersoxyo, @, and v, are given by

1/ b 1 1
= = — —_— _ — 8
% 6)/0 y\| bibz — b%7 W b1b3 — b27 V b1b3 — b27 ®)

Nt

beei/\def’a/\ t0)dT. b A t0)2d
=3 [ A k=3 [ A T-tar b= 3 [T A@ - tor

When the image of the object is described by a 2D Gaussiantidancsuch that
a(x,y) = 1/(21m0%,s9d €XP(— (X% +Y?)/(208ausd)» Ogauss> 0, (X,y) € R?, the termy is

where



given byy := 1/0gauss When the image of the object is described by an Airy funcsioch that
a(x,y) = J2(2rma /X2 +y2/A) /((x? +y?)), (x,y) € R?, the termy is given byy := 27ma/A.
The parametersgyiandA are the numerlcal aperture of the imaging system and the leagéh
of the detected photons, respectively, angsdhe first order Bessel function of the first kind.

2) When the photon detection rate is a constant, AéT) = Ag € R, to < T <ty,, and when
the durations of all Nl frame intervals are equal, i.ej,t+ti_1 =t 1—t,1=212...,Nf —1,
and the durations of all N exposure intervals are equal, i.e;-eti_1 =e.1 —t := T,
i=12,...,N; — 1, the fundamental limits of accuracy reduce to

50— 5 2 T2+ %Te (Ttat - %) + (Tt%t STIat + 2,:2)
g5, -2
y AoF TaTe (T2+ T2 — 2 )

)

©)

5 2 3 5 = 2 3
0 = ) -, )
WA AFTaTe (TE+TE— ) Y\ AoFTrarTe (T2 + T2~ )

where T := tn; —to denotes the duration of the total acquisition time interjtglty, ], and
F := Nt /Tiar denotes the acquisition frame rate.

Proof of Theorem 1
1) It has been shown in [10] that given the conditions spetibig the theorem, the gen-

eral Fisher information matrix expression of Eq. (4) (witte tbackground photon detection
rate set to\p(7) = 0,to < T < tn,) simplifies to

o r3 T Ixg(T)
CRUFEIC SES I AU E A
which can be rewritten as
Nt g Ixg(T) T Ixg(T)
e)zfi;/tiil/\ 0| 5% ] l 2% ]dr, (10)

since y? = 4 [y r3/G(r?) (dq(rz)/drz)zdr. For the linear trajectoryg (1) = Xo + V(T —
to) COS, Yo(T) = Yo+ V(T —to)Sing, to < T < tn,, the partial derivatives in Eq. (10) evalu-
ate, for@ = (xo,Yo, @,V) € ©, to

0xaeér) =[1 0 —v(t—to)sing (T—to)cosy],
a{;’ér) =[0 1 v(tr—tg)cosp (T—to)sing],
and Eq. (10) becomes
b1 0 —byvsing bycosp
1(6) = y2 0 by bovcosp  bpsing
— 7 | —byvsing bpvcose bav2 0 '

bocosp  bysing 0 bz



where by = E:ﬁlftill\(r)dr, b, = zi'\':flftill\(r)(r —1o)dT and by = zi'\':flftill\(r)(r -
to)zdr. Since this Fisher information matrix is similar in form teetFisher information matrix
found in the proof of Corollary 4 in [10], it can be invertednthe approach taken there. The
fundamental limits of accuracy in Eq. (8) are then obtaingdalking the square root of each
of the four main diagonal elements of the inverted matrix.

2) When the photon detection raf§(t) = Ag € R*, tg < 1 < ty;, and the durations of
all Nf exposure intervals are equal, i@+ ti_1 =641 —t =T, 1 =1,2,... ,Nf — 1, the terms
b1, bp, andbs from result 1 of this theorem can be expressed in terms of ltloéop detection
rate/\o, the number of frameN;, and the duratiofie of the exposure interval:

NE et NiTe
by = / NodT = / NodT = NfAgTe, (112)
iZ\' 0 i;* 0
Nt gt 4 T2 Nt
by = / Ao(T+1i-1—1t0)dT = AoNf - + AoTe S (ti_1 — to), 12
> iZ\-O o(T+ti_1—1o) oNf = Oei;(|1 0) (12)
Nt 4 3 Nt Nt
bs = zi/q 1/\O(T+ti71*t0)zdr = /\ONf% +NoTE Zi(tiflftO) +NoTe Zi(tiflfto)z'
i=1~/0 i= i=

(13)
Since the durations of al; frame intervals are equal, we hatie; —to = (i — 1) Trat/Ns,
where Tyat 1= tn; — to IS the duration of the total acquisition time interval. Acdimgly, the

sumszi'\ﬁl(ti,l —to) andz:\gl(ti,l —tg)?in Egs. (12) and (13) can be expressed in ternikf
andNs:

Nf (N o 1) Nf N . 1 .
) — f o 4N\2 2 (Ns )(2Nf —1)
i;(h—l to) = Ttat 5 i;(tl_l to)” = Tiat N . (14)
Substituting the identities in Eq. (14) into Egs. (12) an8)(1ve obtain
T2 N¢ —1
bz = AoNf = +/\0Te-rtatu7

2 2 (15)
TS (Nf — 1) (Nf — 1)(2Nf — 1)

+AoTeT,

bg = AoNf & + Ao TZT;
3 0f3+oetat 6N

Substituting the expressions in Egs. (11) and (15) into ¥peassions in Eq. (8), we obtain the
fundamental limits of accuracy in Eq. (9). O
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