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Estimation of a parameter of interest from image data represents a task that is commonly carried out in single
molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image,
for example, forms the basis of standard applications such as single molecule tracking and localization-based
super-resolution image reconstruction. Assuming that the estimator used recovers, on average, the true value
of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér–
Rao lower bound. The Cramér–Rao lower bound can therefore be used as a benchmark in the evaluation of
the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental
settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has
been specifically developed to calculate the Cramér–Rao lower bound for estimation problems in single molecule
microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon
detection process that underlies all image data, various image data models that describe images acquired with
different detector types, and Fisher information expressions that are necessary for the calculation of the lower
bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects
of various factors on the accuracy of parameter estimation and, more generally, to demonstrate the flexibility of
the mathematical framework. © 2016 Optical Society of America

OCIS codes: (180.2520) Fluorescence microscopy; (100.2960) Image analysis; (110.3055) Information theoretical analysis;

(030.5290) Photon statistics; (000.5490) Probability theory, stochastic processes, and statistics.

http://dx.doi.org/10.1364/JOSAA.33.000B36

1. INTRODUCTION

Single molecule microscopy [1,2] is a powerful technique that
has enabled the study of biological processes at the level of indi-
vidual molecules using the fluorescence microscope. The tech-
nique is achieved through the use of a suitable fluorophore to
label the molecule of interest, an appropriate light source to
excite the fluorophore, a properly designed microscope system
to capture the fluorescence emitted by the fluorophore while
minimizing the collection of extraneous light, and a quantum-
efficient detector to record the fluorescence. Using experimen-
tal setups built to this high-level specification, researchers have
gained significant insight into dynamic processes in living cells
by observing and analyzing the behavior of individual
molecules of interest [3–9].

An important aspect of quantitative data analysis in single
molecule microscopy is the estimation of parameters of interest
from the acquired images. Perhaps the most prominent of ex-
amples is the estimation of the positional coordinates of a mol-
ecule of interest [10,11]. By estimating the position of a

moving molecule in each image of a time sequence, the com-
plex motion revealed by the resulting trajectory has contributed
to the elucidation of biological processes at the molecular level
[3,4,7–9]. Estimating the position of a molecule also represents
a crucial step in the localization-based super-resolution
reconstruction of subcellular structures [12–15] because the
high-resolution image of a structure is generated from the po-
sitional coordinates of individual fluorophores that label the
structure.

Regardless of the particular application, it is desirable that
the estimator of a given parameter is unbiased, meaning that,
on average, it recovers the true value of the parameter.
Moreover, it is desirable that the estimator recovers the true
value with high accuracy, in the sense that estimates of the
parameter obtained from repeat images of the same scene
can be expected to have a distribution about the true value that
is characterized by a small standard deviation. Both unbiased-
ness and accuracy are important [16–18] because analysis based
on values returned by a biased and/or inaccurate estimator can
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lead to misrepresentations of the biological process or structure
being investigated [19,20].

This tutorial deals with the accuracy of parameter estimation
in single molecule microscopy, specifically addressing how one
can calculate, for a given parameter, a lower bound on the stan-
dard deviation with which it can be determined by any un-
biased estimator. This lower bound, which is also referred to
as the limit of the accuracy [21,22] with which the parameter
can be estimated, is a practically useful quantity in two ways.
First, it serves as a benchmark against which the standard
deviation of a particular estimator can be evaluated, indicating
how much room there might be for improvement. Second, by
calculating and assessing its value under different experimental
settings, the limit of accuracy can be used to design an experi-
ment that will generate image data from which a parameter of
interest can be estimated with the desired standard deviation.

The objective of the tutorial is to demonstrate how the in-
formation theory-based mathematical framework developed in
[21,22] can be used to calculate a limit of accuracy. This frame-
work is characterized by its generality, in the sense that, as it
makes no assumptions about problem-specific details such as
the parameters to be estimated, the mathematical description
of the image of an object of interest, and the type of detector
that is used to capture the image, it can be used with appro-
priate specifications of such details to calculate limits of accu-
racy for a wide variety of estimation problems. Originally
illustrated with limits of accuracy calculated for the estimation
of the positional coordinates of an in-focus molecule that is
imaged by a charge-coupled device (CCD) detector [21,22],
the framework has subsequently been utilized, for example,
to compute limits of accuracy for the localization of an out-
of-focus molecule [8,23,24], the determination of the distance
separating two molecules [25,26], and the estimation of param-
eters from image data produced by an electron-multiplying
CCD (EMCCD) detector [27].

The limit of the accuracy for estimating a parameter is given
by the square root of the Cramér–Rao lower bound [28,29] on
the variance with which the parameter can be determined by
any unbiased estimator. The Cramér–Rao lower bound is a
well-known result from estimation theory, and its calculation
requires a stochastic description of the data from which the
parameter of interest is to be estimated and the computation
of the Fisher information matrix [28,29] corresponding to
the data description. The Fisher information matrix is essen-
tially a quantity that provides a measure of the amount of in-
formation that the acquired data contains about the parameter
that one wishes to estimate from the data. The greater the
amount of information that the data carries about the param-
eter, the higher the accuracy (i.e., the smaller the standard
deviation) with which the parameter can be estimated. The
amount of information is determined by considering how
the likelihood of observing the acquired data, which is stochas-
tic in nature, changes with the value of the parameter of inter-
est. If the likelihood of the data does not vary significantly with
the value of the parameter, then the data contains relatively
little information about the parameter. On the other hand,
if the likelihood of the data is sensitive to changes in the value
of the parameter, then the data carries a relatively large amount

of information about the parameter and will allow it to be es-
timated with relatively high accuracy. Given the Fisher infor-
mation matrix, the Cramér–Rao lower bound corresponding to
the parameter of interest is obtained through the inverse of the
matrix, reflecting the expectation that a larger amount of infor-
mation about the parameter should result in a smaller bound on
the variance with which the parameter can be estimated.

The mathematical framework of [21,22] essentially provides
the foundation for calculating the Fisher information matrix
pertaining to image data generated by single molecule micros-
copy and, more generally, fluorescence microscopy experi-
ments. Since the introduction of the framework, the use of
Fisher information-based limits of accuracy has become preva-
lent in the field of single molecule microscopy. Different groups
have, for example, computed Fisher information-based limits of
accuracy for molecule localization involving different point
spread functions that describe the image of the molecule
[20,30–35], for the estimation of the orientation of a fluores-
cent dipole emitter [33,35–37], and for the determination of
the diffusion coefficient based on the recorded trajectory of a
molecule [38,39]. A method also has been demonstrated that
generates information-rich point spread functions via the
optimization of limits of the localization accuracy [40].

Note that, in the context of the localization of a molecule,
another commonly used benchmark for assessing the accuracy
of an estimator is described in [41]. This accuracy benchmark
does not make use of Fisher information and is derived based
on the least-squares minimization of errors. It has been adapted
in various ways [42,43], such as for the localization of a
molecule from image data produced by an EMCCD detector.
A similar accuracy benchmark [44] also has been derived that
takes into account the effect of the diffusional movement of the
molecule to be localized. For a comparison of the benchmark of
[41] and the Fisher information-based limit of the localization
accuracy, see [17].

A limit of accuracy is computed for a specific experimental
setting and a specific estimation problem. It is therefore a quan-
tity that depends on a multitude of factors, including the value
of the parameter of interest itself (e.g., the value of a molecule’s
positional coordinate, or the value of the distance separating
two molecules), the number of photons detected from the ob-
ject of interest, the number of photons detected from a back-
ground component, the wavelength of the detected photons,
the numerical aperture of the objective lens used to collect
the photons, the lateral magnification of the microscopy sys-
tem, the pixel size of the detector used to capture the image,
the type and amount of noise introduced by the detector, and
even the size of the pixel array from which the parameter of
interest is estimated. Importantly, a limit of accuracy also de-
pends, as alluded to above, on the mathematical description of
the image of the object of interest, which should in principle
mirror reality as closely as possible. In the case of a single mol-
ecule, for example, a point spread function should be used that
appropriately models the observed image of the molecule. Its
dependence on many details makes the limit of accuracy a valu-
able tool for experimental design because one can determine the
effect of a particular experimental parameter or a particular
attribute of the object of interest by computing the limit of
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accuracy for different values of the parameter or attribute. At
the same time, it makes it a difficult task to fully illustrate the
effect of any one experimental parameter or any one object
attribute, given that the effect of a parameter or attribute typ-
ically has to be considered in combination with the values of
the other parameters and attributes. This tutorial will never-
theless attempt to provide a relatively comprehensive view
and discussion of the general effects of various parameters
and attributes and, in doing so, demonstrate the flexibility
of the mathematical framework, which enables the investiga-
tion of these effects in the context of different estimation prob-
lems. With an aim toward accessibility, emphasis will be placed
on the usage rather than the more technical aspects of the math-
ematical framework. For a rigorous treatment of the frame-
work, the reader is referred to [22].

This tutorial is organized as follows. In Section 2, the mod-
eling of the photon detection process that underlies all fluores-
cence microscopy image data is described. In Section 3, different
image data models are presented that correspond to different
detector types, including ones that represent the commonly used
CCD [45], EMCCD [46,47], and complementary metal-
oxide-semiconductor (CMOS) [48,49] detectors. In Section 4,
Fisher information expressions corresponding to different image
data models are presented, and limits of accuracy computed using
these expressions are used to illustrate the effects of factors such as
the detected photon count, the effective pixel size of the acquired
image, and detector noise. In Section 5, the computation of limits
of accuracy is extended to the case where a parameter of interest is
estimated from data that comprises multiple images. Throughout
the tutorial, the commonly encountered estimation problem of
single molecule localization is used as the primary example for
illustrative purposes.

2. MODELING OF PHOTON DETECTION

Before the limit of the accuracy for estimating a parameter can
be calculated, a mathematical description of the acquired image
data is needed. Different image data models, both hypothetical
and practical, can be obtained based on assumptions made
about the nature of the image detector and the noise sources
that corrupt the photon signal detected from the object of
interest. All image data models, however, are built upon the
same description of the underlying process by which photons
are detected from the object of interest. Therefore, before
delving into the different data models for which limits of ac-
curacy can be calculated, it is necessary to consider this photon
detection process.

A. Photon Detection as a Spatiotemporal Random
Process

The detection of a photon is intrinsically random in terms of
both the time and the location on the detector at which the
photon is detected. As photon emission by a fluorescent object
is typically assumed to follow a Poisson process, the temporal
component of the detection of the emitted photons is accord-
ingly assumed to be a Poisson process. The intensity function
that characterizes this Poisson process is referred to as the
photon detection rate [22] and is given generally by the function
of time Λθ�τ�, τ ≥ t0, where t0 ∈ R is some arbitrary time

point, and θ ∈ Θ is the vector of parameters to be estimated
from the resulting image data, with Θ denoting the parameter
space. A specific definition of Λθ might, for example, be an
exponential decay function that models the photobleaching
of the object of interest, or a constant function when the object
has relatively high photostability. It is understood that, in its
definition, Λθ takes into account the loss of photons as deter-
mined by the optical efficiency of the imaging setup’s detection
system, which comprises the microscope’s detection optics and
the image detector. Alternatively, Λθ can be equivalently ex-
pressed in terms of the object’s photon emission rate and an
explicit optical efficiency parameter [21].

Note that, throughout this tutorial, the subscript θ is used to
denote the fact that the given function or random variable can,
in general, depend on the vector θ of parameters to be esti-
mated. In the case of a function, this simply means that the
function is potentially expressed in terms of parameters that
are to be estimated from the image data. For example, in
the case where the photon detection rate Λθ is modeled with
an exponential decay function, the decay constant might be a
parameter of interest that is included in θ. In the case where it is
modeled with a constant function, the constant detection rate
itself might be a parameter of interest and therefore a compo-
nent of θ. For the purposes and illustrations in this section and
Section 3, a precise definition for θ is not critical, so long as it is
understood that the given function or random variable depends
on θ. A precise definition becomes crucial in the illustrations of
Sections 4 and 5, however, as the calculation of limits of accu-
racy requires that a Fisher information matrix is derived for a
specifically defined θ. Note also that, in the specific examples of
Sections 4 and 5, the subscript θ will be dropped from the no-
tation for functions such as Λθ without further explanation
whenever the function does not depend on θ as defined for
the given estimation problem.

The spatial component of the photon detection process is
specified by a 2D probability density function that describes
the distribution of the location at which a photon emitted
by the object of interest is detected. Referred to as a photon
distribution profile [22], this density function is given generally
by f θ;τ�x; y�, �x; y� ∈ R2, θ ∈ Θ, τ ≥ t0, where the depend-
ence on τ denotes that, in general, the spatial density of photon
detection varies with time, as in the case of a moving object of
interest. To use more accurate language, f θ;τ as given here spec-
ifies the distribution at time τ of the location at which a photon
is detected only in the case of a detector with an infinitely large
detection area. When the detector has a finite detection area,
f θ;τ specifies the distribution at time τ of the location at which
a photon impacts the detector plane because, in this case, only a
photon that falls within the finite detection area is actually de-
tected.

The specific definition of f θ;τ is based on the image of the
object of interest as observed using the imaging setup. By the
typical approximation of the optical microscope as a laterally
shift-invariant system [50], f θ;τ has the form

f θ;τ�x; y� �
1

M 2 qz0;τ

�
x
M

− x0;τ;
y
M

− y0;τ

�
; (1)

�x; y� ∈ R2, θ ∈ Θ, τ ≥ t0, where M > 0 is the lateral magni-
fication of the imaging setup, �x0;τ; y0;τ; z0;τ� are the object
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space positional coordinates of the object at time τ, and
qz0�x; y�, �x; y� ∈ R2, z0 ∈ R, is a function that describes,
at unit lateral magnification, the image of the object in the de-
tector plane when the object is located at �0; 0; z0� in the object
space. The function qz0 is referred to as an image function [22]
and has the additional property that it integrates to one overR2.
By the assumption of lateral shift invariance, the photon
distribution profile is thus a scaled and laterally shifted version
of the object’s unmagnified image when the object is laterally
located at the origin of the object space coordinate system.

The image function qz0 can, in principle, be defined for any
type of object, typically as the convolution of the object with
the point spread function of the microscope. In [51], for exam-
ple, such a definition is given for the image function of a fluo-
rescent microsphere. For a point-like object such as a single
fluorescent protein or dye molecule, the image function is
usually given by just the point spread function itself. A typical
image function for an in-focus molecule is the Airy pattern
from optical diffraction theory [52]. Dropping the subscript
z0 from the notation as the in-focus condition confines the
molecule to the microscope’s focal plane, the Airy pattern image
function can be written as

q�x; y� �
J21
�
2πna
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p �
π�x2 � y2� ; �x; y� ∈ R2; (2)

where J1 is the first-order Bessel function of the first kind, na is
the numerical aperture of the objective lens, and λ is the wave-
length of the photons detected from the molecule. Another
commonly used point spread function model for the in-focus
scenario is the 2D Gaussian function [16,41,53,54], and the
corresponding image function is given by

q�x; y� � 1

2πσ2g
· e

− x2�y2

2σ2g ; �x; y� ∈ R2; (3)

where σg > 0 is the standard deviation of the component 1D
Gaussian functions in the x and y directions.

For the out-of-focus scenario, the image function is given
instead by a 3D point spread function. The image function
corresponding to the classical point spread function of Born
and Wolf [52], for example, can be written as

qz0�x;y��
4πn2a
λ2

����
Z

1

0

J0

�
2πna
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� y2

q
ρ

�
e
jπn2a z0

nλ ρ2ρdρ

����2; (4)

�x; y� ∈ R2, z0 ∈ R, where J0 is the zeroth-order Bessel func-
tion of the first kind, na and λ are as defined in Eq. (2), and n is
the refractive index of the objective lens immersion medium.

Note that the temporal and spatial components of the
photon detection process are assumed to be mutually indepen-
dent. Moreover, in the spatial component, the locations at
which photons impact the detector plane are assumed to be
mutually independent.

B. Superposition of Independent Photon Detection
Processes

The spatiotemporal random process described in Section 2.A
pertains to the detection of photons from a single object of in-
terest. The formalism, however, can be extended in a straight-
forward manner to include the simultaneous but independent

detection of photons from other sources, such as a second ob-
ject of interest or a background component like the autofluor-
escence of a cellular sample. Given two independent photon
detection processes characterized by the photon detection rates
Λ1
θ and Λ2

θ and photon distribution profiles f 1
θ;τ and f 2

θ;τ,
τ ≥ t0, their superposition [22] is simply the photon detection
process with photon detection rate

Λθ�τ� � Λ1
θ�τ� � Λ2

θ�τ�; θ ∈ Θ; τ ≥ t0; (5)

and photon distribution profile

f θ;τ�x; y� �
Λ1

θ�τ�
Λθ�τ�

f 1
θ;τ�x; y� �

Λ2
θ�τ�

Λθ�τ�
f 2
θ;τ�x; y�; (6)

�x; y� ∈ R2, θ ∈ Θ, τ ≥ t0. To give a more specific example for
f θ;τ, suppose photons are detected from two in-focus and sta-
tionary objects of interest located at �x01; y01� and �x02; y02�.
Using the expression of Eq. (1) without the dependence on
time and z location for both f 1

θ;τ and f 2
θ;τ in Eq. (6), the re-

sulting photon distribution profile for the superposition of the
two photon detection processes is given by

f θ;τ�x; y� �
1

M 2

�
Λ1
θ�τ�

Λθ�τ�
q1

�
x
M

− x01;
y
M

− y01

�

� Λ2
θ�τ�

Λθ�τ�
q2

�
x
M

− x02;
y
M

− y02

��
; (7)

�x; y� ∈ R2, θ ∈ Θ, τ ≥ t0, where q1 and q2 are the image
functions for the two objects.

3. IMAGE DATA MODELS

Building on the mathematical description of the photon
detection process in Section 2, image data models can be ob-
tained that differ in terms of the size of the detector, whether
the detector is pixelated, and the types of noise that the detector
introduces. The models also can differ in terms of whether a
background component exists that introduces additional noise
to the acquired data. Many different models are possible by
taking different combinations of detector attributes and noise
sources. However, they can be subsumed under four main
models, namely, the fundamental data model, the Poisson data
model, the CCD/CMOS data model, and the EMCCD data
model. The first two models are hypothetical in nature, as they
assume the use of detectors that do not exist. As will be seen in
Section 4, however, they are extremely useful in that they re-
present ideal imaging scenarios against which the practical im-
aging scenarios represented by the CCD/CMOS and EMCCD
data models can be compared.

A. Fundamental Data Model

The fundamental data model describes image data that is ac-
quired under the most ideal of imaging scenarios. It assumes the
use of an image detector that has an unpixelated and infinitely
large photon detection area. The absence of pixelation means
that the location at which a photon is detected is recorded with
an arbitrarily high precision, and the infinitely large area en-
sures that no photon is undetected by virtue of impacting
the detector plane at a location outside of the detector. The
fundamental data model further assumes that the detector
does not introduce noise of any kind and that there is no
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background component. Therefore, the photon signal detected
from the object(s) of interest is not in any way corrupted
by noise.

In the fundamental data model, the data acquired over the
time interval �t0; t � consists of the time points of detection
fτ1;…; τN 0

g and the locations of detection
f�x1; y1�;…; �xN 0

; yN 0
�g of the N 0 photons that are detected

during the interval. As presented in Section 2.A, the time points
are distributed according to the Poisson process with intensity
function Λθ�τ�, τ ≥ t0, θ ∈ Θ, and for k � 1; 2;…; N 0, the
positional coordinate pair �xk; yk� is a realization of the bivariate
random variable distributed according to the spatial density
function f θ;τk �x; y�, �x; y� ∈ R2, θ ∈ Θ, τ ≥ t0.

For a concrete example of a fundamental image, consider the
relatively simple case in which the positional coordinates of a
stationary molecule are to be estimated. In this specific sce-
nario, the time points of photon detection need not be simu-
lated, as they do not play a role in the estimation of the
molecule’s positional coordinates. Instead, only the number
of detected photons, N 0, needs to be determined as a realiza-
tion of the Poisson random variable with mean

R
t
t0
Λθ�τ�dτ.

The location of each of the N 0 photons is then generated as
a realization of the bivariate random variable with probability
density f θ given by f θ;τ of Eq. (1) without the dependence on
time τ. Assuming the molecule to be in-focus and to have an
image described by the Airy pattern of Eq. (2), an example of
f θ is shown in Fig. 1(a), and an image simulated as described is
shown in Fig. 1(b). For the simulation, the photon detection
rate is assumed to be a constant function Λθ�τ� � Λ0, τ ≥ t0,
where Λ0 is a positive constant.

The most important property that distinguishes the funda-
mental data model from the data models that follow is the
assumption of an unpixelated detection area that allows the lo-
cations of the detected photons to be recorded with arbitrarily
high precision. All variations of the fundamental data model
will therefore retain this property. A variation can be obtained,
for example, by introducing a background component using
the superposition property described in Section 2.B or by
imposing a finite photon detection area. Variations of the fun-
damental data model will be used in Section 4 to help illustrate
the different levels of accuracy benchmarking that are possible.

B. Poisson Data Model

The Poisson data model describes image data that is acquired
using an image detector with a pixelated and finite photon
detection area. It also allows for the existence of a background
component that corrupts the photon signal detected from the
object(s) of interest. In these regards, the Poisson data model
considers an imaging scenario that is significantly closer to what
is encountered in practice than the scenario considered by the
fundamental data model. Indeed, due to these realistic assump-
tions, it has generally been characterized as a practical data
model (e.g., [17,25,26]). Strictly speaking, however, the
Poisson data model is hypothetical, as it makes the impractical
assumption that the detector does not introduce noise when
reading out the electrons accumulated in its pixels.

Despite its hypothetical nature, the Poisson data model can
be a reasonable model in cases where the number of photons

detected in each pixel from the object(s) of interest and back-
ground component is generally expected to be large compared
with the readout noise in the pixel. (For examples of experi-
mental data analysis based on the Poisson data model, see
[20,30,34,55].)

According to the Poisson data model, a K -pixel image ac-
quired over the time interval �t0; t� consists of the numbers of
electrons z1;…; zK accumulated in the K pixels during the in-
terval. For k � 1;…; K , the electron count zk in the kth pixel
is a realization of the random variable H θ;k given by
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Fig. 1. Fundamental data model example. (a) Photon distribution
profile f θ for an in-focus and stationary molecule whose image is mod-
eled with the Airy pattern. This profile assumes that the molecule is
located at �x0; y0� � �0 nm; 0 nm� in the object space and that pho-
tons of wavelength λ � 520 nm are collected using an objective lens
with a numerical aperture of na � 1.4 and a magnification of
M � 100. While the profile is defined over the detector plane R2,
the plot shows its values over the 150 μm × 150 μm region over which
it is centered. (b) A fundamental image simulated according to the
profile in (a), with each dot representing the location at which a pho-
ton is detected. The simulation assumes a constant photon detection
rate of Λ0 � 10; 000 photons∕s and an acquisition time of
t − t0 � 0.05 s, such that the mean photon count in an image is
Λ0 · �t − t0� � 500. In this particular realization, N 0 � 516 photons
are detected, of which 492 fall within the 150 μm × 150 μm region
shown, over which the image is centered.
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H θ;k � Sθ;k � Bθ;k ; θ ∈ Θ; (8)

where Sθ;k and Bθ;k are independent Poisson random variables
representing quantities resulting from independent processes.
The variable Sθ;k represents the number of photoelectrons in
the kth pixel that result from the detection of photons from
the object(s) of interest and is distributed with mean

μθ;k �
Z

t

t0
Λθ�τ�

Z
Ck

f θ;τ�x; y�dxdydτ; θ ∈ Θ; (9)

where Ck is the region in the detector plane corresponding to
the kth pixel, and Λθ�τ� and f θ;τ are the rate of photon detec-
tion and the profile of photon distribution, as described in
Section 2.A. This expression for the mean photoelectron count
in the kth pixel due to the object(s) of interest is intuitively the
fraction of the photon distribution profile over the kth pixel
scaled by the mean number of photons that impact the detector
plane over the acquisition interval. The variable Bθ;k represents
the number of electrons in the kth pixel that arise from a back-
ground component, which, beside sources of spurious photons
such as the sample’s autofluorescence, can more generally in-
clude sources of spurious electrons such as the detector’s dark
current. It is distributed with mean

βθ;k �
Z

t

t0
Λb
θ�τ�

Z
Ck

f b
θ;τ�x; y�dxdydτ; θ ∈ Θ; (10)

which is analogous in form to Eq. (9), with Λb
θ�τ�, τ ≥ t0, and

f b
θ;τ�x; y�, �x; y� ∈ R2, τ ≥ t0, denoting the detection rate and

distribution profile of photons from the background compo-
nent. Taking some liberty with terminology for ease of presen-
tation, Λb

θ and f b
θ;τ are referred to as a photon detection rate

and a photon distribution profile despite the fact that Bθ;k can
include electrons that do not result from the detection of
photons. This is justified because Bθ;k is primarily made up
of photoelectrons resulting from the detection of spurious pho-
tons, given that spurious electrons that originate from the
detector, such as those arising from the dark current, typically
represent a negligible portion of the background component.
Henceforth, with the understanding that they can consist, in
small part, of spurious electrons, Bθ;k will accordingly be viewed
as representing the background photoelectron count in the kth
pixel, and βθ;k the mean of the background photoelectron
count in the kth pixel.

As H θ;k of Eq. (8) is the sum of two independent Poisson
random variables, it is itself a Poisson random variable, with
mean given by

νθ;k � μθ;k � βθ;k ; θ ∈ Θ; (11)

the sum of Eqs. (9) and (10). Note that, by applying the result
of Section 2.B, Eq. (11) also can be derived from a single de-
tection process consisting of the superposition of the indepen-
dent processes of object and background photon detection.

The function νθ;k of Eq. (11) is thus the mean of the photo-
electron count in the kth pixel. The terminology “photoelec-
trons” is used to distinguish electrons in a given pixel that
are generated by the detection of photons and accumulated
in the pixel during the image acquisition interval from electrons
in the pixel that arise from the detector’s noise processes. This
distinction will help with the clarity of presentation in the

remainder of this tutorial. Note also that, in this tutorial, each
detected photon is assumed, based on the physics of photon-
to-electron conversion, to result in the generation of one
photoelectron.

In Fig. 2(a), the mean image of the in-focus and stationary
molecule of Fig. 1, computed over an 11 × 11-pixel region using
Eq. (11), is shown. For this mean image, the spatial distribution
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Fig. 2. Poisson data model example. (a) The mean pixelated image of
the in-focus and stationary molecule of Fig. 1, computed over an
11 × 11-pixel region with a pixel size of 13 μm × 13 μm and a mean
background photoelectron count of βθ;0 � 10 per pixel (obtained as
the product of the constant background photon detection rate Λb

0 �
24; 200 photons∕s and the uniform spatial distribution f b

θ�x; y� �
1∕20; 449 μm−2, integrated over each pixel and the acquisition time
of t − t0 � 0.05 s ). The molecule is located at �x0; y0� �
�656.5 nm; 682.5 nm� in the object space, which corresponds to
(5.05 pixels, 5.25 pixels) in the image space, assuming (0, 0) in both
spaces coincides with the upper-left corner of the 11 × 11-pixel region.
In terms of the photoelectron count due to the molecule, the mean image
contains 476.15 out of the total ofΛ0 · �t − t0� � 500mean number of
photoelectrons distributed over the detector plane. All other relevant
parameters are as specified in Fig. 1. (b) A Poisson realization of the mean
image in (a). The photoelectron count in each pixel is drawn from the
Poisson distribution with mean given by the photoelectron count in the
corresponding pixel in (a).
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of the background photons is assumed to be uniform over the
11 × 11-pixel region and to not depend on time. Specifically, it is
defined as f b

θ�x; y� � 1∕A for �x; y� within the 11 × 11-pixel
region with area A, and f b

θ�x; y� � 0 otherwise. Moreover,
the detection rate of the background photons is, as in the case
of the molecule’s photon detection rate, assumed to be a constant
function. It is defined as Λb

θ�τ� � Λb
0, τ ≥ t0, where Λb

0 is a
positive constant. Every pixel in the mean image therefore has
the same mean background photoelectron count, and
Eq. (10) simplifies to βθ;k � Λb

0 · �t − t0� · Apixel∕A � βθ;0,
k � 1;…; K , where Apixel denotes the area of a pixel. In
Fig. 2(b), a Poisson realization of the mean image is shown,
providing an example of an image simulated according to the
Poisson data model. The Poisson noise is particularly evident
in the fluctuations of the photoelectron counts in the peripheral
pixels, whose mean photoelectron counts are, in contrast, nearly
identical, as seen in Fig. 2(a), by virtue of the signal from the
molecule being small compared with the uniform background
in the outer portions of the 11 × 11-pixel region.

C. CCD/CMOS Data Model

The CCD/CMOS data model describes image data that is ac-
quired using a CCD or CMOS detector. It builds on the
Poisson data model by adding a component that accounts
for the noise introduced by the detector when the photoelec-
trons accumulated in a pixel are read out. This additional com-
ponent to the acquired data represents the primary noise source
associated with a CCD or CMOS detector, and it is typically
assumed to be Gaussian distributed. A K -pixel CCD or CMOS
image acquired over the time interval �t0; t � therefore comprises
the electron counts z1;…; zK , where the count zk in the kth
pixel, k � 1;…; K , is a realization of the random variable H θ;k
given by

H θ;k � Sθ;k � Bθ;k �W k; θ ∈ Θ: (12)

In Eq. (12), Sθ;k and Bθ;k are the same Poisson random var-
iables from Eq. (8) andW k is a Gaussian random variable with
mean ηk and variance σ2k that represents the number of elec-
trons due to the readout process of the detector. The three ran-
dom variables are mutually independent, as they represent
quantities resulting from independent processes. Note that
the mean ηk of W k can be used to model the detector offset
for the kth pixel. Also, though in principle W k can depend on
the parameter vector θ, here the assumption is that ηk (the
detector offset) and σ2k are either known or can be separately
determined. (For more on the determination of the detector
offset and the readout noise variance, see Section 3.E.)

Based on Eq. (12), the electron count zk in the kth pixel of a
CCD or CMOS image is just the sum of a realization of a
Poisson random variable with mean νθ;k given by Eq. (11)
and a realization of a Gaussian random variable with mean
ηk and variance σ2k . In Fig. 3(a), a CCD realization of the mean
image of Fig. 2(a) is shown. This particular realization is gen-
erated by simply adding to each pixel of the Poisson realization
of Fig. 2(b) a random number drawn from the Gaussian dis-
tribution with mean η0 � 0 electrons and standard deviation
σ0 � 8 electrons. This image is a CCD realization because the
same Gaussian distribution with parameters η0 and σ0 is used
to simulate the readout noise in every pixel (i.e., ηk � η0 and

σk � σ0, k � 1;…; K ), reflecting the fact that all pixels in a
CCD detector share the same readout circuitry. To account
for the fact that each pixel in a CMOS detector has its own dedi-
cated readout circuitry, a CMOS realization can be obtained by
using Gaussian distributions with different mean and standard
deviation values to simulate the readout noise in different pixels.
(For a study that accounts for the pixel-dependent readout noise
of a CMOS detector, see [56].) Note that in Fig. 3(a), a view is
chosen to ensure that a few negative electron counts can be seen
in the image. A negative count is obtained in a pixel whenever
the Gaussian readout noise is negative and is greater in magni-
tude than the Poisson component of the data. In experimental
data analysis, this can occur after the typical preprocessing step of
detector offset subtraction (which is equivalent to setting η0 to 0
electrons) and subsequent multiplication by the digital count-
to-electron count conversion factor (see Section 3.E for more
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Fig. 3. CCD data model and EMCCD data model examples. (a) A
CCD realization of the mean image in Fig. 2(a). The electron count in
each pixel is the sum of a random number drawn from the Poisson
distribution with mean given by the photoelectron count in the cor-
responding pixel in Fig. 2(a), and a random number drawn from the
Gaussian distribution with mean η0 � 0 electrons and standard
deviation σ0 � 8 electrons. In this particular realization, the
Poisson random numbers are taken directly from the Poisson realiza-
tion of Fig. 2(b). (b) An EMCCD realization of the mean image in
Fig. 2(a). The electron count in each pixel is the sum of a random
number drawn from the probability distribution of Eq. (14) with elec-
tron multiplication gain g � 950 and νθ;k given by the photoelectron
count in the corresponding pixel in Fig. 2(a), and a random number
drawn from the Gaussian distribution with mean η0 � 0 electrons and
standard deviation σ0 � 24 electrons.
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on the modeling of experimental data). Note that a negative elec-
tron count is a reflection of the detector’s measurement error
when reading out a small number of electrons in a pixel and does
not indicate an actual occurrence of a negative number of
electrons.

D. EMCCD Data Model

The EMCCD data model describes image data that is acquired
using an EMCCD detector. It is similar to the CCD/CMOS
data model in that the data in a given pixel is modeled as the
sum of three components corresponding to the three indepen-
dent processes of object detection, background detection, and
detector readout. The difference, however, lies in the fact that
the electron counts corresponding to the object(s) of interest
and the background component are no longer the Poisson-
distributed numbers of photoelectrons resulting directly from
their respective detection processes. Instead, they are stochasti-
cally amplified versions of those Poisson-distributed photoelec-
tron counts and are, accordingly, modeled with random variables
having probability distributions that account for the stochastic
amplification. This multiplication of the photoelectrons accu-
mulated in a pixel is what distinguishes an EMCCD detector
from a CCD detector, and it importantly enables imaging under
low-light conditions by rendering the readout noise small in
comparison with the augmented electron count.

A K -pixel EMCCD image acquired over the time interval
�t0; t � thus consists of the electron counts z1;…; zK , where the
count zk in the kth pixel, k � 1;…; K , is a realization of the
random variable H θ;k given by

H θ;k � Saθ;k � Ba
θ;k �W k; θ ∈ Θ: (13)

As in the CCD/CMOS data model of Eq. (12),W k in Eq. (13)
is a Gaussian random variable with mean ηk and variance σ2k
that models the electron count contributed by the detector’s
readout process. The random variables Saθ;k and Ba

θ;k, on the
other hand, respectively represent the results of the stochastic
amplification of the photoelectron counts modeled by the
Poisson random variables Sθ;k and Bθ;k in Eq. (12).
Depending on the model of amplification, different probability
distributions can be used to describe Saθ;k and Ba

θ;k. Assuming,
however, that the photoelectrons accumulated in a pixel are
multiplied according to a branching process [57] that generates,
for each input electron in each multiplication stage, a geomet-
rically distributed number of electrons that includes the input
electron itself, the sum random variable Saθ;k � Ba

θ;k has the
probability mass function [27]

paθ;k�l��

8>><
>>:
e−νθ;k ; l�0;

e−νθ;k
Pl−1

j�0

�
l−1
j

	�
1−1g

	
l−1−j

�
νθ;k
g

�
j�1

�j�1�! ; l�1;2;…;

(14)

θ∈Θ, where
�
l−1
j

	
denotes “�l − 1� choose j,” the binomial co-

efficient indexed by l − 1 and j, νθ;k is as defined in Eq. (11) and
is the mean of the Poisson random variable Sθ;k � Bθ;k repre-
senting the photoelectron count in the kth pixel prior to am-
plification, and g > 1 is the electron multiplication gain or,
more technically, the mean gain of the branching process,

defined as the mean number of electrons that result from
the multiplication of a single initial electron. Note that
Eq. (14) is obtained by treating the sum Saθ;k � Ba

θ;k as a single
amplified electron count having originated from the single
Poisson-distributed photoelectron count Sθ;k � Bθ;k with mean
νθ;k . This is equivalent to considering the amplification sepa-
rately for the object and background photoelectrons.

According to Eq. (13), the electron count zk in the kth pixel
of an EMCCD image is the sum of a realization of a random
variable with probability mass function given by Eq. (14) and a
realization of a Gaussian random variable with mean ηk and
variance σ2k . An EMCCD realization of the mean image of
Fig. 2(a) generated using this approach is shown in Fig. 3(b).
Specifically, to obtain the electron count zk, a random number
is drawn from the probability distribution of Eq. (14) with the
electron multiplication gain set to a relatively high g � 950 and
νθ;k given by the kth pixel of the mean image of Fig. 2(a), and
added to a random number drawn from the Gaussian distribu-
tion with mean η0 � 0 electrons and standard deviation σ0 �
24 electrons. Here, the same Gaussian distribution with param-
eters η0 and σ0 is used to simulate the readout noise in every
pixel because, just as in the case of a CCD detector, all pixels
in an EMCCD detector share the same readout circuitry.
Note that, to reflect the typically larger standard deviation for
the readout noise of an EMCCD detector, a larger σ0 is used
here compared with σ0 used for the CCD realization of
Fig. 3(a). Note also that, due to the electron multiplication,
the electron counts in the EMCCD realization are much larger
than those in the CCD realization. In addition, note that, in gen-
eral, negative electron counts also can arise in an EMCCD image
due to negative Gaussian readout noise. Negative counts are not
present in the realization of Fig. 3(b), however, and in fact are
unlikely for the particular scenario considered here. This is be-
cause the effect of the combination of the high electron multi-
plication gain of g � 950 and the relatively high background
level of βθ;0 � 10 photoelectrons per pixel is such that even a
peripheral pixel in an image will likely have an amplified electron
count that is larger in magnitude than any potential negative
readout noise at the given level of σ0 � 24 electrons.

It is of interest to note that when, as is typically the case, an
EMCCD detector is used with a high electron multiplication
gain g , the probability distribution, given a single initial electron,
of a geometrically amplified electron count is well approximated
by an exponential distribution with parameter 1∕g. Based on this
result, for a large g the probability distribution of Eq. (14) can be
replaced by the probability density function [27]

paθ;k�u� �
8<
:

e−νθ;k ; u � 0;
e−�ug�νθ;k� ffiffiffiffiffiffiffiffiffiffi

νθ;ku∕g
p

I 1
�
2

ffiffiffiffiffiffiffiffiffiffi
νθ;ku∕g

p 	
u ; u > 0;

(15)

θ ∈ Θ, where I1 is the first-order modified Bessel function of the
first kind. This density function has frequently been used to
model electron multiplication in an EMCCD detector. It is
found in [58], for example, in an equivalent form that does
not include the jump at u � 0 and does not use the modified
Bessel function representation. It is also found in identical form
in [59] and [43].
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E. Modeling of Experimental Data

In the pixelated data models of Sections 3.B, 3.C, and 3.D, the
pixel values of an image are specified in units of electrons. In
practice, however, a typical CCD, CMOS, or EMCCD detec-
tor produces image data with pixel values given in units of dig-
ital counts. Moreover, the value of each pixel includes a detector
offset. Therefore, in order to perform data modeling based on
experimentally acquired data, a unit conversion is required, and
the detector offset needs to be accounted for. The unit conver-
sion is carried out by multiplying the value of each pixel by a
digital count-to-electron count conversion factor. This conver-
sion factor usually can be found in the specification sheet of the
detector; it also can be measured using a standard methodology
(e.g., [60]) that exploits the linear relationship between the
mean and variance of the data acquired in a pixel. Unlike
the unit conversion factor, which is not accounted for in the
data models, the detector offset for the kth pixel can be repre-
sented by the mean ηk of the readout noise Gaussian random
variable W k. Both the offset ηk and the readout noise variance
σ2k for the kth pixel can be determined from dark frames ac-
quired with a minimal exposure time (e.g., [45]). While the
same unit conversion factor, detector offset, and readout noise
variance are applicable to all the pixels of a CCD or EMCCD
image, the fact that each CMOS pixel has its own readout cir-
cuitry means that every pixel of a CMOS image has its own
values for these three quantities. The same methodologies
for determining these quantities, however, apply on a per-pixel
basis. (For an example of a study in which the per-pixel deter-
mination of these quantities is carried out for the analysis of
CMOS images, see [56].) Regardless of the detector type, given
that the unit conversion factor(s) and the detector offset(s)
have been determined for the pixels of an image, a typical
way of converting the image to units of electrons consists
of removing the appropriate offset from each pixel by subtrac-
tion (thereby setting ηk to 0 electrons for each pixel k) and
multiplying each resulting pixel value by the appropriate con-
version factor.

4. FISHER INFORMATION AND CRAMÉR–RAO
LOWER BOUND

The main purpose of the material in Sections 2 and 3 is to
provide a mathematical description of the image data from
which parameters of interest are to be estimated. The math-
ematical description of the data is critical, as it allows the de-
termination of how accurately the parameters can be estimated
from the data. The description, as seen in Sections 2 and 3,
includes models for the detection of photons from the ob-
ject(s) of interest and a potential background component, a
model for the detector used for the image acquisition, and mod-
els for the noise sources that corrupt the photon signal detected
from the object(s) of interest. The parameters to be estimated
can be anything from an object’s positional coordinates to the
level of the background noise in the image, so long as they are
appropriately incorporated into the description of the data.

According to estimation theory, the limit of the accuracy, in
other words the limit to the standard deviation, with which a
given parameter can be determined by an unbiased estimator is
given by the square root of the Cramér–Rao lower bound on

the variance for estimating the parameter. The Cramér–Rao
lower bound is, in turn, given by the main diagonal element,
corresponding to the parameter, of the inverse of a square ma-
trix quantity known as the Fisher information matrix. The
Fisher information matrix is a function of the parameter,
and, as it measures the amount of information that the data
carries about the parameter, it is calculated based on the math-
ematical description of the data from which the parameter is to
be estimated.

More formally, the Cramér–Rao inequality [28,29] states
that the covariance matrix of any unbiased estimator θ̂ of
the vector of parameters θ ∈ Θ, where Θ is the parameter
space, is no smaller than the inverse of the Fisher information
matrix I�θ�. Mathematically, this inequality is given by

Cov�θ̂� ≥ I−1�θ�; (16)

where for θ � �θ1; θ2;…; θN � ∈ Θ and θ̂ � �θ̂1; θ̂2;…; θ̂N �,
where N is a positive integer, both the covariance matrix
Cov�θ̂� and the inverse Fisher information matrix I−1�θ� are
N × N matrices. While the matrix inequality of Eq. (16) does
not imply that each element of Cov�θ̂� is greater than or equal
to its corresponding element in I−1�θ�, it does imply that each
main diagonal element of Cov�θ̂� is greater than or equal to its
corresponding element in I−1�θ�. This arises from the fact that
the matrix Cov�θ̂� − I−1�θ� is positive semidefinite and, impor-
tantly, means that the variance of the estimate θ̂i of the param-
eter θi, i � 1; :::::; N , is bounded from below by the ith main
diagonal element of the inverse Fisher information matrix.
Mathematically, this can be expressed as

Var�θ̂i� ≥ �I−1�θ��ii ≥ ��I�θ��ii�−1; i � 1;…; N ; (17)

where the subscript ii denotes the ith main diagonal element. It
is then straightforward to see that the limit to the standard
deviation with which parameter θi can be estimated is given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I−1�θ��ii

p
. Note that the second inequality in Eq. (17) im-

plies that the square root of the inverse of the ith main diagonal
element of the Fisher information matrix provides a potentially
looser lower bound on the standard deviation of θ̂i.

It is thus clear that the key to determining the limit of the
accuracy for the estimation of a parameter lies with the calcu-
lation of the Fisher information matrix I�θ�. In order to calcu-
late I�θ�, the likelihood function for θ, which is just the
probability distribution of the data viewed as a function of
θ, is needed. Given the data w with probability distribution
pθ�w�, the Fisher information matrix is given by (e.g., [29])

I�θ��E


�
∂
∂θ

ln pθ�w�
�

T
�
∂
∂θ

ln pθ�w�
��

; θ∈Θ; (18)

where T denotes the transpose. As mentioned in Section 1, the
calculation of the Fisher information matrix is based on
assessing how the likelihood of the observed data is affected
by changes in the values of the parameters of interest.
Mathematically, this assessment is realized by considering, as
seen in Eq. (18), the derivative of the logarithm of the likeli-
hood function with respect to the parameter vector θ. The ex-
pectation is taken over all possible values of the data, so that the
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Fisher information is an indicator of how, on average, the like-
lihood function changes with θ.

Due to the differences in their mathematical descriptions, the
image data models of Section 3 are associated with different
probability distributions and, therefore, have different expres-
sions for the Fisher information matrix. In the ensuing subsec-
tions, relatively high-level expressions for the Fisher information
matrix will be given for the image data models, and illustrations
will be presented by instantiating the high-level expressions with
specific parameter estimation problems.

A. Fundamental Data Model

For the fundamental data model of Section 3.A, the probability
distribution of the acquired data is represented by the sample
function density for the spatiotemporal random process char-
acterized by the photon detection rate Λθ�τ�, τ ≥ t0, θ ∈ Θ,
and the photon distribution profile f θ;τ�x; y�, �x; y� ∈ R2,
θ ∈ Θ, τ ≥ t0. If a fundamental image realization consisting
of N 0 photons detected over the acquisition interval �t0; t�,
where N 0 is Poisson-distributed with mean

R
t
t0
Λθ�τ�dτ, is de-

noted by fw1;…; wN 0
g, where wk � �τk; rk�, k � 1;…; N 0,

represents the time point of detection τk and the location of
detection rk � �xk; yk� ∈ R2 of the kth detected photon, then
the sample function density is given by

pθ�w1;…;wN 0
�� e

−
R

t

t0
Λθ�τ�dτ

�YN 0

k�1

f θ;τk �rk�
��YN 0

k�1

Λθ�τk�
�
;

(19)

θ ∈ Θ. Using Eq. (19) in place of pθ�w� in Eq. (18), the
resulting Fisher information matrix can be expressed as

I�θ� �
Z

t

t0

Z
R2

1

Λθ�τ�f θ;τ�x; y�

�
∂�Λθ�τ�f θ;τ�x; y��

∂θ

�
T

×
�
∂�Λθ�τ�f θ;τ�x; y��

∂θ

�
dxdydτ; θ ∈ Θ: (20)

For details on the derivation of Eqs. (19) and (20), see [61].
Continuing the example from Section 3.A of an in-focus and

stationary molecule whose photons are detected at a constant rate
of Λθ�τ� � Λ0, τ ≥ t0, and whose photon distribution profile
f θ is given by Eq. (1) without the time dependence and with the
image function q given by the Airy image function of Eq. (2),
suppose the molecule’s positional coordinates �x0; y0� and the
photon detection rateΛ0 are to be estimated from a fundamental
image acquired over the time interval �t0; t�. Then, for
θ � �x0; y0;Λ0� ∈ Θ, where Θ � R × R × R�, evaluation of
Eq. (20) followed by application of Eq. (17) for each parameter
yields the limits of accuracy [21,22]

δx0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I−1�θ��11

p
� λ

2πna
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ0 · �t − t0�

p ; (21)

δy0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I−1�θ��22

p
� λ

2πna
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ0 · �t − t0�

p ; (22)

δΛ0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I−1�θ��33

q
�

ffiffiffiffiffiffiffiffiffiffi
Λ0

t − t0

s
: (23)

Several points are of note, all of which are exceptions rather than
the general rule, owing to the specifics of this particular locali-
zation problem. First, all three limits of accuracy have simple
analytical expressions, which would not be the case if, for exam-
ple, the detector had a finite and rectangular photon detection
area. Second, the limits of accuracy δx0 and δy0 for the estimation
of x0 and y0, respectively, are identical because the Airy pattern’s
circular symmetry, combined with the detector’s infinite and un-
pixelated photon detection area, produces images that contain
exactly the same information about x0 and y0. Third, δx0 and
δy0 are not dependent on the magnificationM or the coordinates
x0 and y0 themselves, a fact that is attributable again to the in-
finite and unpixelated nature of the detection area. Fourth, δx0
and δy0 have a simple inverse square root dependence on the
mean detected photon countΛ0 · �t − t0�, a special property that
would not generally hold if, for example, a background compo-
nent had been present.

In Fig. 4(a), δx0 of Eq. (21) [which is identical to δy0 of
Eq. (22)] is shown, for three different values of the wavelength
λ of the photons detected from the molecule, as a function of the
expected number of detected photonsΛ0 · �t − t0�, which ranges
from 100 to 10,000. For each wavelength, the lower bound on
the standard deviation with which x0 or y0 can be estimated is
seen to decrease in value and, therefore improve, as the mean
detected photon count is increased. This result is expected from
the inverse square root dependence on the photon count but also
agrees with the intuition that the accuracy with which any
parameter can be estimated should improve as more data are col-
lected. The curves of Fig. 4(a) additionally show that, for a given
mean photon count, the limit of accuracy improves with decreas-
ing wavelength of the detected photons. This is expected as well
because a shorter wavelength produces a narrower Airy pattern
that allows the peak of the pattern, which gives the location of
the molecule, to be estimated with better accuracy. Note that,
based on Eqs. (21) and (22), the same effect also can be obtained
by using a larger numerical aperture na.

To give a specific example, the curve corresponding to λ �
520 nm shows that, from a fundamental image like the one
shown in Fig. 1(b), which has a mean detected photon count
of Λ0 · �t − t0� � 500, the x0 and y0 coordinates of the mol-
ecule can each be determined with a standard deviation of no
smaller than 2.64 nm. By doubling the expected photon count
to 1000, the curve shows that the limit of accuracy is improved
to 1.87 nm. If in addition the molecule is changed to one that
emits photons of wavelength λ � 440 nm, then the limit of
accuracy is further improved to 1.58 nm.

Note that a limit of the accuracy with which a positional
coordinate can be estimated, such as δx0 and δy0 in this example,
is also referred to as a localization accuracy measure [17,62].

In Fig. 4(b), δΛ0
of Eq. (23) is also seen, for the specific

localization problem considered here, to have an inverse square
root dependence on the mean detected photon count. For
example, the curve shows that, by doubling the acquisition time
t − t0 from 0.05 to 0.1 s, and hence doubling the mean de-
tected photon count Λ0 · �t − t0� from 500 to 1000, the lower
bound on the standard deviation with which the photon detec-
tion rate of Λ0 � 10; 000 photons∕s can be estimated is im-
proved from 447.2 photons∕s to 316.2 photons∕s.
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It is of interest to note that, if the image of the molecule were
described by the 2D Gaussian function of Eq. (3) instead of the
Airy pattern, simple analytical expressions similar to those of
Eqs. (21)–(23) would have been obtained for the limits of ac-
curacy. Specifically, δΛ0

would be identical in expression, and
δx0 and δy0 would each be given by σg∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ0 · �t − t0�

p
[21,22].

Therefore, in terms of the results obtained with the 2D
Gaussian image function, Fig. 4(b) would apply just as well
to δΛ0

, and the patterns of dependence on the photon count
and the width of the image function illustrated in Fig. 4(a)
would apply to δx0 and δy0 . In the case of the 2D Gaussian
image function, a shorter wavelength λ or a larger numerical
aperture na would equate to a smaller standard deviation σg ,
which leads to a narrower 2D Gaussian function.

For another illustration of limits of accuracy under the fun-
damental data model, consider the estimation of the distance
d > 0 separating two like molecules that are both in-focus
and stationary. Suppose the rates Λ1 and Λ2 at which the mol-
ecules’ photons are detected are constant and equal, such that

Λ1�τ� � Λ2�τ� � Λ0, Λ0 > 0, τ ≥ t0. Note that the subscript
θ is not used with the photon detection rates, as they are as-
sumed to be known in this example and will not be estimated.
Further suppose that the molecules lie on the x axis and are
equidistant from the origin (0, 0) of the object space coordinate
system. As the processes corresponding to the detection of pho-
tons from the two molecules are independent, their superpo-
sition is described by the photon detection rate of Eq. (5),
which reduces to Λ�τ� � 2Λ0, τ ≥ t0, and by the photon
distribution profile f θ of Eq. (7), which likewise becomes
time-independent given the photon detection rates as defined
and has the molecules’ positional coordinates specified by
�x01; y01� � �−d∕2; 0� and �x02; y02� � �d∕2; 0� based on
the given geometry. Further assuming the molecules’ image
functions q1 and q2 in Eq. (7) to each be given by the Airy
pattern of Eq. (2), evaluation of the Fisher information matrix
of Eq. (20), with θ � d ∈ R� and Λ and f θ as described,
yields the limit of accuracy [25]

δd �
ffiffiffiffiffiffiffiffiffiffiffiffi
I−1�θ�

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π · Λ0 · �t − t0� · Γ0�d �
p ·

λ

na
; (24)

where

Γ0�d � �
Z
R2

1
J21�γr01�

r201
� J21�γr02�

r202

��
x � d

2

�
J1�γr01�J2�γr01�

r301

−

�
x −

d
2

�
J1�γr02�J2�γr02�

r302

�
2

dxdy;

where r01 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x � d∕2�2 � y2

p
, r02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x − d∕2�2 � y2

p
,

γ � 2πna∕λ, and J2 is the second-order Bessel function of
the first kind.

For three different wavelengths λ of the detected photons,
δd of Eq. (24) is plotted in Fig. 5 as a function of the distance d
that separates the two molecules. For each wavelength, the limit
of the accuracy with which d can be estimated is seen to im-
prove as the value of d increases, corroborating the expectation
that a larger distance should be easier to determine because
there is less of an overlap between the images of the two mol-
ecules. The curves in Fig. 5 further show that for a given sep-
aration distance d , decreasing the wavelength of the detected
photons improves the lower bound on the standard deviation
with which d can be estimated. This result is again attributable
to the narrowing of the Airy pattern when the wavelength is
decreased, which reduces the overlap between the patterns cor-
responding to the two molecules.

The limit of accuracy δd importantly shows that, contrary to
the Rayleigh criterion [52,63], which specifies a minimum sep-
aration distance below which two point sources are deemed in-
distinguishable, arbitrarily small distances between two point
sources can in fact be determined. With the limit of accuracy,
the question becomes one of not whether but how well two
point sources can be resolved, in the sense of how accurately
the distance separating them can be determined. For example,
whereas the Rayleigh criterion, given by 0.61λ∕na, specifies a
minimum resolvable distance of 226.57 nm for λ � 520 nm
and na � 1.4, the curve corresponding to λ � 520 nm in
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Fig. 4. Limits of accuracy under the fundamental data model.
(a) Limit of accuracy δx0 for the estimation of the x0 coordinate of
an in-focus and stationary molecule from a fundamental image is plot-
ted as a function of the expected number of photons detected in the
image. Curves are shown that correspond to the detection of photons
of wavelengths λ � 620 nm (dotted), 520 nm (solid), and 440 nm
(dashed), which are collected by an objective lens with numerical aper-
ture na � 1.4. The expected photon counts range from 100 to 10,000
and are obtained as the product of the constant photon detection rate
Λ0 � 10; 000 photons∕s and acquisition times t − t0 ranging from 0.01
to 1 s. The image of the molecule is described by the Airy image func-
tion. (b) Limit of accuracy δΛ0

for the estimation of the photon detection
rate Λ0 � 10; 000 photons∕s from a fundamental image is shown as a
function of the expected number of photons detected in the image.
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Fig. 5 shows that a much smaller separation distance of 20 nm
can be estimated with a standard deviation of no better than
4.16 nm when Λ0 · �t − t0� � 3000 photons are on average
detected from each point source. Moreover, as can be seen from
Eq. (24), this limit of accuracy can be improved, as demon-
strated in Fig. 4 for the localization problem, by increasing
the expected number of detected photons Λ0 · �t − t0�.

A limit of accuracy δd for the estimation of a separation dis-
tance also is referred to as a resolution measure [25,26]. More
information and results for the scenario of two in-focus mol-
ecules considered here, including δd derived under the pixe-
lated data models, can be found in [25]. The resolution
measure also has been extended to the more general scenario
of two molecules in 3D space [26], where it has been compared
with the classical axial analogue [63] of the Rayleigh criterion.

Note that the simple inverse square root dependence of δd of
Eq. (24) on the mean number of photons Λ0 · �t − t0� detected
from each molecule is something that can be seen from a much
higher level. In the distance estimation problem as presented,
the photon detection process that underlies the fundamental
image is described by a photon detection rate Λ that does
not depend on the parameter vector θ and a photon distribu-
tion profile f θ that does not change with time. Given such a
photon detection process, the Fisher information matrix of
Eq. (20) decouples into the product of integrals

I�θ��
Z

t

t0
Λ�τ�dτ

×
Z
R2

1

f θ�x;y�

�
∂f θ�x;y�

∂θ

�
T
�
∂f θ�x;y�

∂θ

�
dxdy; (25)

θ ∈ Θ, where the integral over time is just the expected number
of detected photons. Therefore, upon inverting the matrix and

taking the square root of each main diagonal element, the limit
of the accuracy for estimating any given parameter in θ will

have 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
t
t0
Λ�τ�dτ

q
as part of its expression, as is seen in

Eq. (24) where Λ�τ�, τ ≥ t0, is defined as the constant function
2Λ0. It is important to point out that while Eq. (25) corre-
sponds to a common estimation problem formulation,
Fisher information matrices corresponding to other problem
descriptions also can lead to limits of accuracy with an inverse
square root dependence on the mean detected photon count.
The Fisher information matrix from which the limits of accu-
racy of Eqs. (21), (22), and (23) are obtained provides such an
example as its associated problem description involves a photon
detection rate Λθ that does depend on θ.

As the fundamental data model embodies the most ideal of
imaging conditions, each limit of accuracy in the above examples
represents, within the context of the particular estimation prob-
lem, the absolute best accuracy with which the given parameter
can be determined. Put another way, a limit of accuracy obtained
under the fundamental data model importantly marks the point
beyond which no further improvement in accuracy is possible for
estimating the parameter. It can therefore be used as the ultimate
target of comparison to determine how much room there is
for improving the accuracy of estimation. Given the practical lim-
itations of an experimental setup, however, a limit of accuracy
obtained under the fundamental data model often represents
an unrealistic target. Instead, a tighter limit of accuracy that is ob-
tained under a data model that assumes, for example, a pixelated
detector with a finite photon detection area will provide a more
realistic accuracy benchmark that can be approached in practice.
This will be demonstrated in the next subsections, but, as alluded
to in Section 3.A, variations of the fundamental data model can be
obtained that will already yield tighter limits of accuracy that pro-
vide more realistic targets. The Fisher information matrix corre-
sponding to variations entailing the addition of a background
component or a finite photon detection area for the detector is
obtained by a straightforward generalization of Eq. (20) that adds
a background component using the superposition property of
Section 2.B and restricts the region of integration of photon dis-
tribution profiles to the confines of the finite detection area.
For an image acquired over the time interval �t0; t �, this matrix
is given by

I�θ� �
Z

t

t0

Z
C

1

Λθ�τ�f θ;τ�x; y� � Λb
θ�τ�f b

θ;τ�x; y�

×
�
∂�Λθ�τ�f θ;τ�x; y� � Λb

θ�τ�f b
θ;τ�x; y��

∂θ

�T

×
�
∂�Λθ�τ�f θ;τ�x; y� � Λb

θ�τ�f b
θ;τ�x; y��

∂θ

�
dxdydτ; (26)

θ ∈ Θ, where Λb
θ�τ�, τ ≥ t0 and f b

θ;τ�x; y�, �x; y� ∈ R2, τ ≥ t0,
are the photon detection rate and distribution profile, respectively,
of the background component, and C is the finite region within
R2 corresponding to the photon detection area of the detector.
This expression will be used in the next subsection to calculate
limits of accuracy that represent more realistic benchmarks than
the limit obtained with Eq. (20).
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Fig. 5. Limit of the accuracy for separation distance estimation under
the fundamental data model. The limit of accuracy δd for the estima-
tion, from a fundamental image, of the distance d separating two in-
focus and stationary molecules is plotted as a function of the distance d .
Curves are shown that correspond to the detection of photons of wave-
lengths λ � 620 nm (⋄), 520 nm (*), and 440 nm (○), which are col-
lected by an objective lens with numerical aperture na � 1.4. Photons
are detected from each molecule at a rate of Λ0 � 10; 000 photons∕s
over an acquisition time of 0.3 s, such that Λ0 · �t − t0� � 3000
photons are, on average, detected from each molecule in a given image.
The image of each molecule is described by the Airy image function.
Inset shows the portion of the curves from d � 1 nm to d � 50 nm.
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B. Poisson Data Model

In a pixelated image, the data in each pixel is obtained inde-
pendently of the data in all other pixels. Given this typical
and well-justified assumption, the probability distribution
for the data comprising a K -pixel image is the product of
the probability distributions for the data in the K pixels.
Denoting the probability distribution for the random variable
H θ;k that models the electron count zk in the kth pixel by pθ;k,
k � 1;…; K , the probability distribution pθ for a K -pixel
image can be written as

pθ�z1;…; zK � �
YK
k�1

pθ;k�zk�; θ ∈ Θ: (27)

Using Eq. (27) in place of pθ�w� in the general expression of
Eq. (18), the Fisher information matrix corresponding to a
K -pixel image can be shown to be

I�θ� �
XK
k�1

E


�
∂
∂θ

ln pθ;k�z�
�

T
�
∂
∂θ

ln pθ;k�z�
��

; (28)

θ ∈ Θ, which is easily verified to be the sum of the Fisher in-
formation matrices corresponding to the data in the K pixels.

From the examples of Section 4.A, it can be seen that, in a
typical estimation problem, parameters of interest represented
by the vector θ, such as the positional coordinates of an object,
the rate at which photons are detected from an object, and the
distance separating two objects, are naturally all part of the
specification of the detection rate Λθ and distribution profile
f θ;τ of the photon detection process. It follows that, in the pixe-
lated case, information about θ in the kth pixel of an image is
contained in the object-based component Sθ;k of the data in the
pixel [see Eq. (8)], whose mean μθ;k is specified in terms of Λθ

and f θ;τ. In addition, information about θ is present in the
background component Bθ;k of the data in the pixel when one
chooses to estimate quantities that parameterize its mean βθ;k .
Taken together, information about θ in the kth pixel is con-
tained in the Poisson component Sθ;k � Bθ;k of the data in
the pixel, which has mean νθ;k given by Eq. (11). On the other
hand, information about θ is typically not contained in the de-
tector-based noise components of the data in the pixel. Even
though parameters such as the readout noise mean and variance
and the EMCCD detector’s electron multiplication gain can, in
principle, be included in θ, they are usually not included be-
cause they can be determined separately from the object-based
and background-based parameters. Given this typical form of
an estimation problem where, in the kth pixel, θ parameterizes
only the mean νθ;k of the Poisson component of the data, the
Fisher information matrix of Eq. (28) can be written as

I�θ� �
XK
k�1

�
∂νθ;k
∂θ

�
T
�
∂νθ;k
∂θ

�
· E


�
∂ ln pθ;k�z�

∂νθ;k

�
2
�
; (29)

θ ∈ Θ. For k � 1;…; K , this representation importantly ex-
presses the Fisher information matrix corresponding to the data
in the kth pixel as a product of two fundamentally different
parts. The first part is a matrix of partial derivatives of the mean
photoelectron count νθ;k with respect to the parameters in θ. It
is a function of the specific estimation problem, as the deriv-
atives depend on the vector θ of the parameters to be estimated,

and through νθ;k, on the specification of the photon detection
rates and distribution profiles corresponding to the object(s) of
interest and a potential background component. As νθ;k is
purely a function of photon detection rates and distribution
profiles, the matrix is not dependent in any way on the particu-
lar detector or type of detector that is used to capture the image
data. Therefore, for a given estimation problem, the matrix is
the same regardless of the detector used. This can be seen in the
fact that the Poisson image of Fig. 2(b) and the CCD and
EMCCD images of Fig. 3 are all realizations based on the same
mean image of Fig. 2(a), which is just a pixel array of νθ;k val-
ues. (Note that, as mentioned in Section 3.B, νθ;k can in fact
include, through the mean βθ;k of the background component,
spurious electrons that originate from the detector. However,
because these spurious electrons are common to, and are typ-
ically very small in number in all standard detector types, νθ;k
can justifiably be considered to be independent of the particular
detector and type of detector used.)

In direct contrast, the second part of the product is a scalar
expectation term that is not dependent on the specific estimation
problem but is dependent on the particular detector and type of
detector used. It depends on the detector through the probability
distribution pθ;k of the electron count in the kth pixel, which is a
function of parameters specific to a detector such as the mean
and variance of the readout noise in the case of a CCD or
CMOS detector, and both the mean and variance of the readout
noise and the electron multiplication gain in the case of an
EMCCD detector. The scalar expectation term does not depend
on the specific estimation problem, in the sense that, while it is a
function of νθ;k, it is dependent only on its value and not how
the value is obtained through the underlying photon detection
rates and distribution profiles. In other words, a given value of
νθ;k , regardless of how νθ;k or θ is defined, will always produce
the same value for the scalar expectation term, provided all other
parameters in the term’s expression remain the same.

As will be seen in Section 4.E, the fact that it is not depen-
dent on the specific estimation problem makes the scalar ex-
pectation term a useful tool for determining, based solely on
the mean photoelectron count in a pixel, the effect that a given
detector has on the information content of the pixel. Indeed,
the breaking of the overall data description into an estimation
problem-dependent portion and a detector noise-dependent
portion also has been exploited in a nested expectation maxi-
mization algorithm for the localization of closely spaced fluo-
rescence emitters [64].

As the scalar expectation term of Eq. (29) is the only part of
the Fisher information expression that is dependent on the type of
detector used, the Fisher information matrices corresponding to
images captured with different types of pixelated detectors will
differ by this term through the probability distributions that de-
scribe the electron counts comprising the images.

In a K -pixel image described by the Poisson data model,
which assumes a hypothetical detector that introduces no read-
out noise, the photoelectron count zk in the kth pixel,
k � 1;…; K , is according to Eq. (8) a realization of the
Poisson random variable H θ;k with mean νθ;k. The probability
distribution pθ;k for H θ;k, k � 1;…; K , is thus the Poisson
probability mass function
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pθ;k�z� �
νzθ;ke

−νθ;k

z!
; z � 0; 1;…; θ ∈ Θ: (30)

Evaluating the scalar expectation term of Eq. (29) with Eq. (30)
yields the Fisher information matrix

I�θ� �
XK
k�1

�
∂νθ;k
∂θ

�
T
�
∂νθ;k
∂θ

�
·
1

νθ;k
; θ ∈ Θ: (31)

By incorporating the realistic assumption of a detector with a
finite and pixelated photon detection area and by allowing for
the presence of a background component, a limit of accuracy
computed under the Poisson data model can be significantly
worse than the limit of accuracy computed under the funda-
mental data model. This is because the conditions assumed
by the Poisson data model represent a deterioration of the qual-
ity of the acquired image data. The finite detection area means a
loss of data in that photons falling outside the detection area are
not detected, and the pixelation of the detection area means a
loss of precision with which the location of a detected photon is
recorded because the extent to which the location is known is
reduced to the pixel within which the photon impacts the de-
tection area. Meanwhile, the presence of a background compo-
nent naturally results in the corruption of the photon signal
detected from the object(s) of interest.

A comparison of limits of accuracy computed under the
Poisson and fundamental data models is given in Fig. 6, which
again uses the example of the limit of accuracy δx0 for the es-
timation of an in-focus and stationary molecule’s x0 coordinate.
In the figure, δx0 corresponding to the Poisson data model (*),
computed using Eq. (31), is seen to improve as the precision of
the recording of photon location by the detector is increased by
a decrease in the effective pixel size, which is, in turn, realized
by increasing the magnification used for the imaging. The im-
provement is seen to level off, however, at more than 1.5 nm
away from the fundamental data model’s limit of accuracy of
δx0 � 3.41 nm (solid line). This substantial gap is largely attrib-
utable to the presence of background noise that is uniformly
distributed over the image. By assuming the absence of this back-
ground component [by ignoring βθ;k in Eq. (11) and using
νθ;k � μθ;k, k � 1;…; K , in Eq. (31)], δx0 for the Poisson data
model (+) can be seen to level off at a vastly improved value that
is within a quarter of a nanometer of the target of 3.41 nm. Note
that, for a given effective pixel size, δx0 for the Poisson data model
assuming the absence of background noise represents, as ex-
pected, a better accuracy than δx0 for the Poisson data model
assuming the presence of background noise.

Even with the absence of background noise and the use of a
small effective pixel size, it is clear from Fig. 6 that δx0 for the
Poisson data model still does not quite approach δx0 for the
fundamental data model. The remaining small gap is primarily
due to the detector’s finite photon detection area under the
Poisson data model; this is illustrated by the fact that δx0 com-
puted for the same finite but unpixelated photon detection area
and with the assumption of the absence of background noise
(dotted line) has a value of 3.54 nm that is greater than δx0 for
the fundamental data model. As can be seen, the value of
3.54 nm represents a more realistic target for δx0 corresponding
to the Poisson data model assuming the absence of background
noise. This value is calculated using the generalized Fisher

information matrix of Eq. (26), without the background pho-
ton detection rate Λb

θ and distribution profile f b
θ;τ, and with

the region of integration C defined to be the region in the
detector plane corresponding to the image. Equation (26) is
also used to compute δx0 under the same conditions but
with Λb

θ and f b
θ;τ defined to specify the uniformly distributed

background noise (dashed line) that is accounted for by the
Poisson data model that assumes the presence of background
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Fig. 6. Comparing limits of accuracy corresponding to different
data models and variations thereof. (a) Limit of accuracy δx0 for
the estimation of the x0 coordinate of an in-focus and stationary mol-
ecule from an image is plotted as a function of the effective pixel size
for the Poisson data model (*) and the Poisson data model assuming
the absence of background noise (+). Also shown are the limits of ac-
curacy corresponding to the finite detection area variation of the fun-
damental data model (dashed line), the finite detection area variation
of the fundamental data model assuming the absence of background
noise (dotted line), and the fundamental data model (solid line), which
are plotted as horizontal lines, as they do not depend on the effective
pixel size. For the two cases involving the Poisson data model, the
physical pixel size is 13 μm × 13 μm, and the different effective pixel
sizes are obtained by varying the lateral magnification fromM � 20 to
M � 966.67. The image consists of a 15 × 15-pixel region at M �
100 and a proportionately scaled pixel region at each of the other mag-
nifications. At each magnification, the molecule is positioned such that
the center of its image, given by the Airy image function, is located at
0.05 pixels in the x direction and 0.25 pixels in the y direction with
respect to the upper-left corner of the center pixel of the image. For the
two cases involving the finite detection area variation of the fundamen-
tal data model, δx0 is computed using the unpixelated equivalent of the
M � 100 scenario, though any other scenario can be used to obtain
the same result. For all cases, photons are detected from the molecule
at a rate of Λ0 � 6000 photons∕s over an acquisition time of
t − t0 � 0.05 s, such that Λ0 · �t − t0� � 300 photons are, on aver-
age, detected from the molecule over the detector plane (and 289.5
photons are, on average, detected from the molecule over a given fi-
nite-sized image). For the two cases involving a background compo-
nent, a background detection rate of Λb

0 � 22; 500 photons∕s is
assumed, along with a uniform background spatial distribution of
f b�x; y� � 1∕A μm−2, �x; y� ∈ C , where C is the region in the detec-
tor plane corresponding to the image and A is the area of C . For ex-
ample, for the M � 100 scenario, f b�x; y� � 1∕38; 025 μm−2, such
that there is a background level of β0 � 5 photoelectrons per pixel
over the 15 × 15-pixel region. For all cases, it is assumed that photons
of wavelength λ � 520 nm are collected by an objective lens with
numerical aperture na � 1.4.
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noise. The value of δx0 obtained in this case is 5.12 nm and
analogously represents a tighter bound for δx0 corresponding
to the Poisson data model assuming the presence of back-
ground noise.

Figure 6 thus demonstrates the various levels of accuracy
benchmarking that are possible for a given estimation problem
by considering the Fisher information for different data models
and variations thereof. Importantly, it illustrates that, by com-
paring the limits of accuracy corresponding to different data
models and their variations, one can obtain a clear picture
of the factors responsible for, and the degrees to which they
affect, the distance between a given limit of accuracy and
the ultimate target as provided by the fundamental data model.

Note that the limits of accuracy in Fig. 6 are computed for
θ � �x0; y0� ∈ R2, and that, while not shown, the results for
δy0 follow the same patterns as the results for δx0. The above
discussion therefore applies equally well to δy0 . Note also that,
in the cases involving a finite photon detection area, δy0 is not
identical in value to δx0 because of the asymmetric positioning
of the Airy pattern within the image. While they are nearly
identical in value when the image is unpixelated or has a fine
effective pixelation, they can have very different values when
the image has a coarse effective pixelation.

C. CCD/CMOS Data Model

According to Eq. (12), the electron count zk, k � 1;…; K , in
the kth pixel of a K -pixel CCD or CMOS image is a realization
of the random variable H θ;k obtained as the sum of a Poisson
random variable with mean νθ;k and a Gaussian random var-
iable with mean ηk and variance σ2k . By the independence of the
Poisson and Gaussian random variables, the probability distri-
bution pθ;k for H θ;k, k � 1;…; K , is the convolution of a
Poisson distribution and a Gaussian distribution with the given
parameters. The result of the convolution is the probability
density function [21,65]
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Using Eq. (32) in Eq. (29) gives the Fisher information matrix
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θ ∈ Θ, where pθ;k is the density function of Eq. (32).
For the same localization problem considered in Fig. 6,

limits of accuracy computed for three different levels of readout
noise using the Fisher information matrix of Eq. (33) are shown
in Fig. 7(a) as a function of the effective pixel size. These limits
of accuracy correspond to the CCD data model, as the same
mean and variance are assumed for the readout noise in every
pixel of the detector. However, while the relatively high readout
noise standard deviation of 6 electrons is typical of older but
still commonly used CCD detectors, the readout noise standard

deviations of 0.5 electrons and 1 electron can be regarded as
being representative of idealized versions of very-low-noise
CMOS detectors that have readout circuitries with identical
noise characteristics for all their pixels. The CCD limits of ac-
curacy are computed for the same conditions used for δx0 for
the Poisson data model (with background noise) from Fig. 6
but with added readout noise. Consequently, Fig. 7(a) shows
that, for a given effective pixel size, they represent accuracies
that are strictly worse than the Poisson limit of accuracy repro-
duced from Fig. 6. For the larger effective pixel sizes, this is seen
more clearly in the figure’s inset. More generally, this provides
an example of using limits of accuracy computed under the
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Fig. 7. Comparing limits of accuracy corresponding to the CCD
and EMCCD data models. (a) For the CCD data model, the limit
of accuracy δx0 for the estimation of the x0 coordinate of an in-focus
and stationary molecule from an image is plotted as a function of
the effective pixel size. Limits of accuracy are shown for three dif-
ferent levels of readout noise in each pixel, characterized by standard
deviations of σ0 � 6 electrons (•), 1 electron (⋄), and 0.5 electrons
(○). In each case, the mean of the readout noise in each pixel is
η0 � 0 electrons. The limit of accuracy for the Poisson data model
(with background noise) from Fig. 6 (*) is shown as a reference for
comparison because the CCD limits of accuracy are computed by
adding readout noise to the same assumed conditions. All details not
mentioned are therefore exactly as given in Fig. 6 for the Poisson data
model. The inset provides a clearer view of some data points for five
relatively large effective pixel sizes. (b) Zoomed-in version of (a) with
the addition of δx0 corresponding to the EMCCD data model with
readout noise of mean η0 � 0 electrons and standard deviation
σ0 � 48 electrons in each pixel and an electron multiplication gain
of g � 1000.
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Poisson data model as tight benchmarks for the evaluation of
limits of accuracy computed under a practical data model.

Figure 7(a) further demonstrates the deteriorative effect of
readout noise by showing δx0 corresponding to the CCD data
model to worsen, at a given effective pixel size, with increasing
values of the readout noise standard deviation. At the larger ef-
fective pixel sizes, the pattern can be seen for the small readout
noise standard deviations of 1 and 0.5 electrons in the figure’s
inset. Also of note is the fact that neither very large nor very small
effective pixel sizes are optimal in terms of parameter estimation
accuracy when a CCD detector is used. [For a clearer view of the
shapes of the curves, see the zoomed-in versions in Fig. 7(b).]
When the effective pixel size is large, the number of photoelec-
trons in each pixel will be relatively large, so that the effect of the
readout noise will be minimal. This explains the fact that, at the
largest effective pixel sizes, the δx0 values for the CCD data models
with already low readout noise standard deviations of 1 and 0.5
electrons are nearly equal to the corresponding values of δx0 for
the Poisson data model. However, such a scenario will not nec-
essarily yield the best limit of accuracy because large pixels also
mean that the locations of the detected photons are recorded with
poor precision and that the resulting pixelated image represents a
poorly sampled version of the continuous image described by the
underlying photon distribution profiles. On the other hand, a
small effective pixel size also will not necessarily yield the best limit
of accuracy despite the pixelated image being a finely sampled
version of the continuous image. In this scenario, the relatively
few photoelectrons in each pixel will mean that the effect of read-
out noise becomes significant.

For a specific example, consider the CCD data model with the
readout noise standard deviation of 6 electrons in Fig. 7. In this
case, δx0 attains its lowest value of around 7.94 nm at an effective
pixel size of approximately 216.67 nm (60×magnification). At
the large effective pixel size of 650 nm (20×magnification), it
has a poorer value of 9.86 nm, and, at the small effective pixel
size of 43.33 nm (300×magnification), it predicts an even worse
estimation accuracy of no better than 16.81 nm.

D. EMCCD Data Model

In a K -pixel EMCCD image, the electron count zk in the kth
pixel, k � 1;…; K , is according to Eq. (13) a realization of the
random variable H θ;k obtained as the sum of a random variable
with probability mass function given by Eq. (14) and a
Gaussian random variable with mean ηk and variance σ2k . By
the independence of the two summand random variables, the
probability distribution pθ;k for H θ;k, k � 1;…; K , is the con-
volution of Eq. (14) and a Gaussian distribution with mean ηk
and variance σ2k . The resulting probability density function is
given by [27]
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θ ∈ Θ. Evaluation of Eq. (29) using Eq. (34) yields the Fisher
information matrix
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θ ∈ Θ, where pθ;k is the density function of Eq. (34). This ex-
pression applies specifically to the modeling of electron multi-
plication by a geometrically multiplied branching process
because its derivation makes use of Eq. (14) for the distribution
of the amplified electron count in the kth pixel. If Eq. (14) is
replaced by the exponential distribution-based density function
of Eq. (15) in the convolution with the Gaussian distribution
with mean ηk and variance σ2k , then the probability distribution
pθ;k for H θ;k, k � 1;…; K , is given by [27]
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θ ∈ Θ. Using Eq. (36) in Eq. (29) yields the Fisher information
matrix
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θ ∈ Θ, where I 0 is the zeroth-order modified Bessel function of
the first kind, and pθ;k is the density function of Eq. (36). As the
probability distribution of Eq. (15) is a good approximation of
the probability distribution of Eq. (14) when the electron
multiplication gain g is large, Eq. (37) can be expected to yield
limits of accuracy that are similar in value to those obtained
with Eq. (35) for large values of g.

Returning to the example of the localization of an in-focus
and stationary molecule, Fig. 7(b) adds to Fig. 7(a) by showing
δx0 for the EMCCD data model, computed using the Fisher
information matrix of Eq. (35) with an electron multiplication
gain of g � 1000 and a readout noise standard deviation of
σ0 � 48 electrons per pixel. As the EMCCD limit of accuracy
also is calculated for the same conditions used for δx0 for the
Poisson data model, but accounts for the effects of electron
multiplication and added readout noise, it is, as in the case
of the CCD limits of accuracy, strictly worse than the
Poisson limit of accuracy for a given effective pixel size.
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Compared with the three curves corresponding to the CCD
data model, one can see that the EMCCD limit of accuracy is
worse at the largest effective pixel sizes. This is expected because
the relatively high numbers of photoelectrons in the large pixels
render the stochastic electron multiplication unnecessary, caus-
ing it to have the net effect of introducing additional noise to
the data. As the effective pixel size is decreased, the EMCCD
limit of accuracy can be seen to improve, much like δx0 for the
CCD detectors with the low readout noise standard deviations
of 1 and 0.5 electrons. Unlike the CCD limits of accuracy, how-
ever, it continues to improve at the smallest effective pixel sizes
shown and surpasses even the CCD limit of accuracy computed
for the 0.5-electron readout noise standard deviation at a pixel
size of around 17 nm. At this small pixel size, only about 2
photons are, on average, detected in the brightest pixel of
the image (largest νθ;k value is 2.03 photoelectrons), and less
than 1 photon is on average detected in over 99% of the pixels.
This shows that the EMCCD detector is particularly suited for
imaging under conditions in which a very small amount of light
is expected to impinge on each of its pixels. This unique prop-
erty of the EMCCD detector forms the basis of the ultrahigh
accuracy imaging modality proposed in [66] and will be treated
in more detail in Section 4.E.

It is important to emphasize that the results of Fig. 7(b) are
specific to the conditions assumed. In particular, given that an
average of 289.5 photons are detected from the molecule in a
given image and an average of β0 � 5 background photons per
pixel are detected at the 100×magnification, Fig. 7(b) shows
that the smallest δx0 values are attained by the CCD detectors
with the 1- and 0.5-electron readout noise standard deviations
at an effective pixel size in the neighborhood of 60 nm. Given
sufficiently smaller mean photon counts from the molecule and
the background component, however, the EMCCD detector
can be expected to attain the overall lowest value of δx0 within
the range of effective pixel sizes considered and to start outper-
forming the very-low-noise CCD detectors at a larger effective
pixel size [66].

E. Noise Coefficient

As seen in Sections 4.C and 4.D, limits of accuracy correspond-
ing to the CCD/CMOS and EMCCD data models depend in
different ways on the amount of light that is detected in their
pixels. Whereas the CCD and CMOS detectors tend to provide
superior parameter estimation performance when relatively
many photons are detected in each of their pixels, the
EMCCD detector tends to yield the best limits of accuracy
when the expected photoelectron count in each of its pixels
is very small. This difference in dependence on the pixel photo-
electron count can be explored using a quantity based on the
scalar expectation term in the Fisher information matrix expres-
sion of Eq. (29).

For k � 1;…; K , the scalar expectation term corresponding
to the kth pixel of a K -pixel image is easily verified to be the
Fisher information with respect to the mean νθ;k of the Poisson-
distributed photoelectron count due to the photons detected in
the kth pixel. Therefore, the larger the value of this scalar term,
the greater the amount of information that the data in the kth
pixel contains about the mean νθ;k of the photoelectron count

in the pixel and the lower the bound on the standard deviation
with which νθ;k can be estimated. As noted in Section 4.B, this
term also is the part of the Fisher information expression for the
kth pixel that, through its dependence on the probability dis-
tribution pθ;k of the data in the kth pixel, accounts for the
deteriorative effects of the noise introduced by the particular
detector that is used to capture the image. The value of this
term therefore importantly provides a detector-dependent mea-
sure of the amount of information that the data in the kth pixel
contains about νθ;k. More generally, it can be seen from
Eq. (29) that this scalar term is a detector-dependent scaling
factor for the estimation problem-dependent matrix portion
of the Fisher information expression for the kth pixel.
Therefore, it also is the case that the larger its value, the greater
the amount of information that the data in the kth pixel carries
about the vector θ of parameters to be estimated and the lower
the bound on the standard deviation with which each of those
parameters can be determined based on the data in the kth
pixel. It follows that, for a given level of light νθ;k that impinges
on the kth pixel, the scalar expectation term can be calculated
for different detector noise settings and detector types to deter-
mine, by comparison, the detector and noise settings that yield
data in the pixel with the highest information content with re-
spect to θ. Comparisons using the expectation term are based
solely on the expected amount of light νθ;k that is detected in
the kth pixel and do not depend on the particular estimation
problem because, as noted in Section 4.B, the expectation term
depends only on the value of νθ;k and not on the definition of
νθ;k or θ.

To facilitate the use of the scalar expectation term in assess-
ing the information content of the data in the kth pixel, a
meaningful point of reference for comparison is taken to be
the expectation term 1∕νθ;k [see Eq. (31)] corresponding to
the Poisson data model. For a given νθ;k , this expectation term
has the largest value compared with the expectation terms for
the other pixelated data models because the Poisson data model
represents the most ideal of the pixelated data models by assum-
ing the absence of detector readout noise and, therefore, an un-
corrupted photoelectron count in the kth pixel. This point of
reference is incorporated through the definition of a quantity
called the noise coefficient [27]. Denoted by αk, the noise coef-
ficient for the kth pixel of a given detector is quite simply the
ratio of the expectation term for the kth pixel of the detector to
the expectation term 1∕νθ;k for the corresponding pixel of the
hypothetical detector assumed by the Poisson data model. It is
given by

αk �
E


�
∂ ln pθ;k�z�

∂νθ;k

�
2
�

1
νθ;k

� νθ;k · E

�

∂ ln pθ;k�z�
∂νθ;k

�
2
�
; (38)

and note that the Fisher information matrix of Eq. (29) can
easily be expressed in terms of this coefficient by substituting
the expectation term with αk∕νθ;k. The noise coefficient as de-
fined conveniently takes on a minimum value of 0 and a maxi-
mum value of 1. It takes on a minimum value of 0 because
νθ;k > 0 and because the expectation term, being the expected
value of a squared expression, must be greater than or equal to
0. The minimum value of 0 is, therefore, attained when the
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expectation term is 0, which occurs in the extreme case in
which the data in the kth pixel consists of only the detector’s
readout noise and, hence, carries no information about θ. The
noise coefficient takes on a maximum value of 1 because the
expectation term, as noted above, can at most be equal to
1∕νθ;k. In other words, a maximum value of 1 is attained
for the coefficient when the given detector is the Poisson data
model-based reference detector itself, a scenario that represents
the opposite extreme wherein the data in the kth pixel consists
of only the photoelectron count, uncorrupted by readout noise.

For a practical detector described by the CCD/CMOS data
model or the EMCCD data model, the noise coefficient thus
takes on a value between 0 and 1. For a given light level νθ;k, a
value close to 0, which results from a small expectation term,
indicates that the data in the kth pixel is to a large extent cor-
rupted by detector noise and, therefore, contains little informa-
tion about θ. On the other hand, a value close to 1, which
results from a large expectation term, indicates that the data
in the kth pixel is minimally corrupted by detector noise
and, therefore, contains close to the same amount of informa-
tion about θ as the uncorrupted photoelectron count. Using the
noise coefficient, comparison of the information content of the
data in a pixel is thus reduced to a comparison of values be-
tween 0 and 1.

Noise coefficients αk calculated using Eq. (38) with the
probability density functions of Eqs. (32) and (34) for the
CCD/CMOS and EMCCD data models, respectively, are
shown in Fig. 8 as a function of the light level νθ;k. The noise
coefficient curves corresponding to CCD detectors with 0.5-
and 1-electron readout noise standard deviations can be seen
to approach the maximum value of 1 at large values of νθ;k,
demonstrating that, when enough photons can be detected
in a pixel to render the readout noise insignificant, the data
in the pixel is minimally corrupted and contains nearly the
same amount of information about θ as the uncorrupted
photoelectron count assumed by the Poisson data model.
On the other hand, these two curves can be seen to approach

the minimum value of 0 at values of νθ;k that are significantly
less than 1, illustrating that, when not enough photons can be
detected in a pixel, the CCD detector’s readout noise dominates
the data in the pixel to such an extent that the data contains
almost no information about θ. A comparison of the two CCD
noise coefficient curves also shows that a smaller readout noise
standard deviation will, as expected, result in data containing
larger amounts of information about θ, particularly over the
range of νθ;k values between the convergence of the curves
to 0 and the convergence of the curves to 1.

In terms of the EMCCD detector, Fig. 8 shows the noise
coefficient curves corresponding to EMCCD detectors with
24- and 48-electron readout noise standard deviations and
an electron multiplication gain of 1000 to both converge to
the value 0.5 at large values of νθ;k. A noise coefficient value
of 0.5 represents a halving of the maximum amount of infor-
mation that the data in the pixel can carry about θ. As shown in
[27], this halving of the maximum information content is con-
sistent with the well-known excess noise factor [47,67,68] as-
sociated with stochastic electron multiplication, based on
which it is commonly believed that the standard deviation with
which a parameter can be estimated from an EMCCD image is,
at best, the corresponding Poisson limit of accuracy multiplied
by

ffiffiffi
2

p
. While this is indeed approximately the case when a

relatively large number of photons are detected in each pixel
of an EMCCD image, there has been a misconception that
the

ffiffiffi
2

p
penalty applies generally for all EMCCD images.

The two EMCCD noise coefficient curves in Fig. 8 thus im-
portantly show that, at values of νθ;k less than 1, substantially
more than half of the maximum information content is in fact
available in the pixel. This means that, given an EMCCD im-
age characterized by very low expected photoelectron counts in
its pixels, the associated limits of accuracy are penalized, with
respect to the corresponding Poisson limits of accuracy, by a
factor that is potentially significantly less than

ffiffiffi
2

p
and substan-

tially closer to 1. The two EMCCD noise coefficient curves
further demonstrate that, for a given light level νθ;k, the infor-
mation content of the data in the pixel can be pushed closer to
the maximum possible by lowering the EMCCD detector’s
readout noise standard deviation. In [66], it is also shown that
the same result can be realized by increasing the electron multi-
plication gain.

The noise coefficient curves of Fig. 8 thus corroborate the
patterns exhibited by the CCD and EMCCD limits of accuracy
in the example of Fig. 7(b). More generally, noise coefficient
curves are useful because they allow an assessment over a range
of light levels of the extent to which the information content
of the data in a pixel is affected by a change in the detector type
or a detector noise setting.

F. Effect of Additional Unknown Parameters

An important factor that can have an impact on the limit of the
accuracy with which a parameter of interest (e.g., a positional
coordinate of a molecule) can be estimated is the inclusion of
other unknown parameters (e.g., the width of the point spread
function that describes the molecule’s image, the rates at which
photons are detected from the molecule and the background
component) in the vector θ of parameters to be estimated.
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Fig. 8. Comparing noise coefficients corresponding to the CCD
and EMCCD data models. The noise coefficient αk for the kth pixel
of an image is plotted as a function of the mean photoelectron count
νθ;k in the pixel. Noise coefficients are shown for two EMCCD de-
tectors operated at an electron multiplication gain of g � 1000, with
readout noise of standard deviations σ0 � 24 electrons (□) and 48
electrons (+) in each pixel, and for two CCD detectors, with readout
noise of standard deviations σ0 � 0.5 electrons (○) and 1 electron (⋄)
in each pixel. The readout noise mean is η0 � 0 electrons in all cases.
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At best, the limit of the accuracy with which a parameter of
interest can be estimated will not be affected by the inclusion
of additional unknown parameters. In general, however, it can
be expected to worsen, potentially significantly, as a result of the
inclusion. Intuitively, this can be explained by the fact that hav-
ing more unknowns will not contribute additional information
about the parameters of interest and, if anything, can only make
the overall estimation task more difficult.

Mathematically, the extent to which the limit of the accu-
racy for the determination of a parameter is deteriorated by the
inclusion of other parameters in the estimation is related to the
magnitudes of the off-diagonal elements of the Fisher informa-
tion matrix. If element �i; j� of the matrix is small in magni-
tude, then the limit of the accuracy for estimating parameter θi
can be expected to worsen by a relatively small amount as a
result of the inclusion of parameter θj, and vice versa. In the
special situation where the Fisher information matrix is diago-
nal (i.e., all off-diagonal elements are zero), the limit of the ac-
curacy for estimating each parameter in θ is unaffected by the
inclusion of the other parameters. This is, in fact, the case for
the example of Section 4.A that considers the simultaneous es-
timation of a molecule’s positional coordinates and the rate of
photon detection from an image described by the fundamental
data model. Note that, when the Fisher information matrix is
diagonal, the second inequality in Eq. (17) becomes an equality,
and the limit of the accuracy for estimating parameter θi is
easily obtained as the square root of the inverse of the ith main
diagonal element of the Fisher information matrix.

For a given problem, it is therefore useful to calculate and
compare limits of accuracy corresponding to definitions of θ
that include and exclude additional unknown parameters. If
the limits of accuracy for estimating the parameters of interest
deteriorate significantly with the inclusion of the additional un-
known parameters, then one might consider independently es-
timating the additional unknown parameters and treating them
as known parameters in the estimation of the parameters of
interest. A critical assumption with this approach, however,
is that the independent estimation of the additional unknown
parameters is unbiased and accurate, so that these parameters
effectively can be considered as known parameters. (For a study
on how limits of accuracy are influenced by the inclusion of
additional unknown parameters, see [69].)

G. Attainment of Limit of Accuracy

A limit of accuracy is a lower bound on the standard deviation
with which a parameter of interest can be determined by any
unbiased estimator. Given an unbiased estimator, the question
then naturally arises as to whether it can determine a parameter
of interest with a standard deviation that equals the limit of
accuracy [i.e., whether equality is achieved in Eq. (17) between
the variance of the estimate of the parameter and the corre-
sponding element in the inverse Fisher information matrix].
This is often a difficult question to answer analytically; in some
cases, it is possible that no unbiased estimator exists whose stan-
dard deviation attains the limit. In the context of single mol-
ecule microscopy, however, it has been analytically proven [21]
that, in the special case of a stationary and in-focus molecule
whose image is described by the 2D Gaussian function of

Eq. (3) and is acquired under the conditions of the fundamen-
tal data model, with the exception that the same number of
photons is guaranteed to be detected in each repeat image,
the maximum likelihood estimator of the molecule’s x0 and
y0 positional coordinates does, in fact, determine those param-
eters with standard deviations that equal their respective limits
of accuracy (which happen to be identical). In terms of
pixelated image data, studies using simulated data
(e.g., [17,21,26,27,55]) have shown that, in many practical sce-
narios, the maximum likelihood estimator can determine a
parameter of interest with a standard deviation that comes close
to the limit of accuracy.

5. EXTENSION TO MULTIPLE IMAGES

A basic assumption that is made throughout the presentation of
Sections 4.A through 4.D is that parameters of interest are es-
timated from data consisting of a single image. The examples
given therefore involve limits of accuracy that are calculated for
estimation based on a single image. In many situations, how-
ever, the data from which parameters are to be determined
comprises multiple images. The data can, for example, consist
of a time sequence of images that capture the trajectory of a
moving object, or comprise a set of images of an object that
have been simultaneously acquired from distinct focal planes
within a sample. In the former case, Cramér–Rao lower bounds
have been derived [70] that predict the accuracies with which
parameters such as the starting positional coordinates and the
speed of an object moving in a trajectory of known shape can be
estimated from an image sequence. In the latter case, limits of
accuracy have been calculated [8,24] to determine how well the
axial coordinate z0 of a molecule can be estimated from a set of
images acquired using multifocal plane microscopy (MUM)
[71,72] or a modality that implements the same principle of
simultaneously imaging different focal planes within a sample
[73–75]. Another example relates to the determination of dis-
tances of separation, where limits of accuracy have been com-
puted [25,76] for cases where images in which only one of the
two molecules is detected are used, potentially in conjunction
with an image in which both molecules are detected, to esti-
mate the distance separating the two molecules.

Provided that the N im images comprising a set are generated
by stochastically independent photon detection processes and
detector noise processes, the Fisher information matrix Iset�θ�
corresponding to the set of N im images is given simply by the
sum of the Fisher information matrices corresponding to the
individual images. Denoting the matrix for the kth image by
Ik�θ�, k � 1;…; N im, the matrix Iset�θ� can be written as

Iset�θ� �
XN im

k�1

Ik�θ�; θ ∈ Θ: (39)

Note that this result follows from the same principle that
underlies the fact that, by the mutual independence of the data
in its component pixels, the Fisher information matrix for a
pixelated image is the sum of the Fisher information matrices
corresponding to the individual pixels [see Eq. (28)]. Indeed, a
set of mutually independent pixelated images may be viewed as
a single image comprising all the pixels, as the corresponding
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Fisher information matrix Iset�θ� is effectively a summation of
the matrices corresponding to all the pixels in the set.

The use of MUM to overcome the poor depth discrimina-
tion of conventional microscopy provides a practical illustration
of the calculation of limits of accuracy with which parameters
can be estimated from a set of images. The poor depth discrimi-
nation capability of a conventional microscopy setup, in which
images of an object of interest are captured from a single focal
plane, refers to the fact that the closer an object is axially located
with respect to the focal plane, the significantly more difficult it
becomes to accurately determine its axial coordinate z0. This
phenomenon can be appreciated by looking at the limit of ac-
curacy δz0 for the estimation of z0 as a function of z0 itself. An
example is shown in Fig. 9, where δz0 is calculated for the case
where a CCD detector is used to image an out-of-focus and
stationary molecule of interest. In the figure, δz0 corresponding
to a conventional microscopy setup is seen to worsen, in severe
fashion, as the axial location of the molecule approaches the
focal plane at z0 � 0 nm from either above or below. In this
example, δz0 is computed for an image acquired over the time
interval �t0; t �, using the Fisher information matrix of Eq. (33)
by assuming a constant rate of detection Λ�τ� � Λ0, τ ≥ t0, of
photons from the molecule, and a distribution profile for those
photons given by f θ of Eq. (1), without the time dependence
and with the image function qz0 given by the Born and Wolf
image function of Eq. (4). The parameter vector is given by
θ � �x0; y0; z0� ∈ R3, and a time-independent and uniformly
distributed background component is assumed.

Different solutions to the depth discrimination problem have
been proposed and demonstrated [71,77–80], and MUM is one
such solution. For a two-plane MUM solution in which a pair of
images acquired from two different focal planes are used for the
estimation of θ, the Fisher information matrix according to
Eq. (39) is given by Iset�θ� � I1�θ� � I2�θ�, where I1�θ�
and I2�θ� are the Fisher information matrices corresponding
to the images captured from focal planes 1 and 2. Assuming
an equal splitting of the photons collected by the objective lens
between the two images, and taking focal plane 1 to be the focal
plane of the conventional setup, I1�θ� is given as described for
the Fisher information matrix for the conventional setup, with
the rates of photon and background detection reduced by 50%.
The expression for I2�θ� is of the same form as I1�θ� but in-
cludes two modifications. First, assuming that focal plane 2 is
positioned at a distance of Δzf above focal plane 1, the axial
coordinate of the molecule with respect to focal plane 2 is given
by z0 − Δzf . Second, the lateral magnification associated with
focal plane 2 is different from the lateral magnification associated
with focal plane 1 and is, in this example, determined using a
geometrical optics-based formula from [76].

Figure 9 shows that δz0 computed using Iset�θ� for a two-
plane MUM setup with a plane spacing of Δzf � 450 nm
does not exhibit any severe deterioration at either focal plane.
In fact, though it is not better than δz0 for the conventional
setup at all values of z0, δz0 for the two-plane MUM setup
remains relatively constant and small throughout the 1.5-μm
axial range shown.

The improvement that a MUM setup offers over a conven-
tional setup is dependent on the number of focal planes used,

the spacings between the focal planes, and other experimental
parameters. (For a Fisher information-based analysis of the ef-
fects of these factors on the limit of accuracy δz0 for a MUM
setup, see [62].)

6. CONCLUSION

By taking into account the multitude of factors that influence
the accuracy with which a parameter of interest can be esti-
mated from an image, the information theory-based limit of
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Fig. 9. Limits of the axial coordinate estimation accuracy for a con-
ventional microscopy setup and a two-plane MUM setup. The limit of
accuracy δz0 for the estimation of the z0 coordinate of an out-of-focus
and stationary molecule from a conventional image (*) or a pair of two-
plane MUM images (○) is plotted as a function of the coordinate z0.
Focal planes 1 and 2 of the MUM setup are denoted by vertical dashed
lines and are located at z0 � 0 nm and z0 � 450 nm, respectively.
The value of z0 is specified with respect to focal plane 1, which co-
incides with the focal plane of the conventional setup. In both setups,
an image consists of an 11 × 11-pixel region, acquired using a CCD
detector with a pixel size of 13 μm × 13 μm and readout noise with
mean η0 � 0 electrons and standard deviation σ0 � 6 electrons at
each pixel. The image of the molecule is described by the Born
and Wolf image function. For the conventional setup, the molecule
is laterally positioned such that the center of its image is located at
5.05 pixels in the x direction and 5.25 pixels in the y direction.
Photons are detected from the molecule at a rate of Λ0 �
10; 000 photons∕s over an acquisition time of t − t0 � 0.1 s, such
that Λ0 · �t − t0� � 1000 photons are on average detected from the
molecule over the detector plane (and 952.3 photons are on average
detected from the molecule over a given image when the molecule is in
focus). A background detection rate of Λb

0 � 24; 200 photons∕s is as-
sumed, along with a uniform background spatial distribution of
f b�x; y� � 1∕20; 449 μm−2, such that there is a background level
of β0 � 20 photoelectrons per pixel over the 11 × 11-pixel image.
Photons of wavelength λ � 520 nm are collected by an objective lens
with magnification M � 100 and numerical aperture na � 1.4. The
refractive index of the immersion medium is n � 1.518. For the
MUM setup, the collected molecule and background photons are split
equally between the images corresponding to the two focal planes.
Therefore, the photon detection rate is Λ0 � 5000 photons∕s per im-
age, and the background detection rate isΛb

0 � 12; 100 photons∕s per
image. For the image corresponding to focal plane 1, all other details
are as given for the conventional setup. For the image corresponding to
focal plane 2, the magnification is M � 98.18, calculated using a for-
mula from [76] for a plane spacing of Δzf � 450 nm and a tube
length of 160 mm. The lateral position of the image of the molecule
and the background spatial distribution are accordingly adjusted based
on this slightly smaller magnification.
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accuracy represents a particularly useful tool for estimator
evaluation and experimental design in single molecule micros-
copy. This tutorial has demonstrated the use of the mathemati-
cal framework introduced in [21,22] over a decade ago to
calculate limits of accuracy for an estimation problem.
Specifically, it has described the photon detection process, vari-
ous image data models, and various Fisher information expres-
sions that constitute the ingredients for the computation of
limits of accuracy. Importantly, the tutorial has used specific
examples of estimation problems to illustrate the effects that
different experimental parameters and object attributes have
on the accuracy for estimating a parameter of interest. These
examples demonstrate that, by calculating and comparing lim-
its of accuracy corresponding to different detector types and
different values for parameters such as the expected number
of detected photons, the wavelength of the detected photons,
the effective pixel size, and the detector readout noise level, one
can arrive at appropriate choices of detector, fluorophore, mag-
nification, readout setting, and other aspects of an experimental
setup that will yield the desired level of accuracy for the esti-
mation of a parameter of interest from the acquired image data.
The material presented in the tutorial represents a bringing
together of some major results produced over the last decade
or so that have made use of the mathematical framework.
These results exemplify the ability of the framework to accom-
modate the analysis of different estimation problems. As the use
of the Fisher information-based limit of accuracy becomes in-
creasingly more common in the field of single molecule micros-
copy, it is expected that this framework will continue to serve as
a useful blueprint for its calculation.

Funding. National Institutes of Health (NIH) (R01
GM085575).

REFERENCES

1. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluores-
cence spectroscopy and microscopy,” Rev. Sci. Instrum. 74, 3597–
3619 (2003).

2. N. G. Walter, C.-Y. Huang, A. J. Manzo, and M. A. Sobhy, “Do-it-your-
self guide: how to use the modern single-molecule toolkit,” Nat.
Methods 5, 475–489 (2008).

3. P. R. Smith, I. E. G. Morrison, K. M. Wilson, N. Fernández, and R. J.
Cherry, “Anomalous diffusion of major histocompatibility complex
class I molecules on HeLa cells determined by single particle
tracking,” Biophys. J. 76, 3331–3344 (1999).

4. R. Iino, I. Koyama, and A. Kusumi, “Single molecule imaging of green
fluorescent proteins in living cells: E-cadherin forms oligomers on the
free cell surface,” Biophys. J. 80, 2667–2677 (2001).

5. R. J. Ober, C. Martinez, X. Lai, J. Zhou, and E. S. Ward, “Exocytosis of
IgG as mediated by the receptor, FcRn: an analysis at the single-mol-
ecule level,” Proc. Natl. Acad. Sci. USA 101, 11076–11081 (2004).

6. J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, “Probing gene expression
in live cells, one protein molecule at a time,” Science 311, 1600–1603
(2006).

7. T. Dange, D. Grünwald, A. Grünwald, R. Peters, and U. Kubitscheck,
“Autonomy and robustness of translocation through the nuclear pore
complex: a single-molecule study,” J. Cell Biol. 183, 77–86 (2008).

8. S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High ac-
curacy 3D quantum dot tracking with multifocal plane microscopy for
the study of fast intracellular dynamics in live cells,” Biophys. J. 95,
6025–6043 (2008).

9. M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown, and
W. E. Moerner, “Three-dimensional tracking of single mRNA particles

in Saccharomyces cerevisiae using a double-helix point spread func-
tion,” Proc. Natl. Acad. Sci. USA 107, 17864–17871 (2010).

10. H. Deschout, F. Cella Zanacchi, M. Mlodzianoski, A. Diaspro, J.
Bewersdorf, S. T. Hess, and K. Braeckmans, “Precisely and accu-
rately localizing single emitters in fluorescence microscopy,” Nat.
Methods 11, 253–266 (2014).

11. A. Small and S. Stahlheber, “Fluorophore localization algorithms for
super-resolution microscopy,” Nat. Methods 11, 267–279 (2014).

12. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych,
J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F.
Hess, “Imaging intracellular fluorescent proteins at nanometer resolu-
tion,” Science 313, 1642–1645 (2006).

13. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution
imaging by fluorescence photoactivation localization microscopy,”
Biophys. J. 91, 4258–4272 (2006).

14. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM),” Nat.
Methods 3, 793–795 (2006).

15. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt,
A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution
fluorescence imaging with conventional fluorescent probes,” Angew.
Chem. Int. Ed. 47, 6172–6176 (2008).

16. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative com-
parison of algorithms for tracking single fluorescent particles,”
Biophys. J. 81, 2378–2388 (2001).

17. A. V. Abraham, S. Ram, J. Chao, E. S. Ward, and R. J. Ober,
“Quantitative study of single molecule location estimation techniques,”
Opt. Express 17, 23352–23373 (2009).

18. Z. Shen and S. B. Andersson, “Bias and precision of the
fluoroBancroft algorithm for single particle localization in fluorescence
microscopy,” IEEE Trans. Signal Process. 59, 4041–4046 (2011).

19. X. Michalet, “Mean square displacement analysis of single-particle
trajectories with localization error: Brownian motion in an isotropic
medium,” Phys. Rev. E 82, 041914 (2010).

20. S. Liu, E. B. Kromann, W. D. Krueger, J. Bewersdorf, and K. A. Lidke,
“Three dimensional single molecule localization using a phase re-
trieved pupil function,” Opt. Express 21, 29462–29487 (2013).

21. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-
molecule microscopy,” Biophys. J. 86, 1185–1200 (2004).

22. S. Ram, E. S. Ward, and R. J. Ober, “A stochastic analysis of perfor-
mance limits for optical microscopes,” Multidimens. Syst. Signal
Process. 17, 27–57 (2006).

23. S. Ram, E. S. Ward, and R. J. Ober, “How accurately can a single
molecule be localized in three dimensions using a fluorescence micro-
scope?” Proc. SPIE 5699, 426–435 (2005).

24. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, “A novel
approach to determining the three-dimensional location of micro-
scopic objects with applications to 3D particle tracking,” Proc. SPIE
6443, 64430D (2007).

25. S. Ram, E. S. Ward, and R. J. Ober, “Beyond Rayleigh’s criterion: a
resolution measure with application to single-molecule microscopy,”
Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

26. J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, “A res-
olution measure for three-dimensional microscopy,” Opt. Commun.
282, 1751–1761 (2009).

27. J. Chao, E. S. Ward, and R. J. Ober, “Fisher information matrix for
branching processes with application to electron-multiplying charge-
coupled devices,” Multidimens. Syst. Signal Process. 23, 349–379
(2012).

28. C. R. Rao, Linear Statistical Inference and Its Applications (Wiley, 1965).
29. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory (Prentice Hall, 1993), Vol. 1.
30. F. Aguet, D. Van De Ville, and M. Unser, “A maximum-likelihood for-

malism for sub-resolution axial localization of fluorescent nanopar-
ticles,” Opt. Express 13, 10503–10522 (2005).

31. L. Holtzer, T. Meckel, and T. Schmidt, “Nanometric three-dimensional
tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90,
053902 (2007).

32. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluo-
rescent microparticles using a photon-limited double-helix response
system,” Opt. Express 16, 22048–22057 (2008).

B56 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America A Tutorial



33. F. Aguet, S. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-
resolution orientation estimation and localization of fluorescent di-
poles using 3-D steerable filters,”Opt. Express 17, 6829–6848 (2009).

34. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner,
“Localizing and tracking single nanoscale emitters in three dimen-
sions with high spatiotemporal resolution using a double-helix point
spread function,” Nano Lett. 10, 211–218 (2010).

35. S. Stallinga and B. Rieger, “Position and orientation estimation of fixed
dipole emitters using an effective Hermite point spread function
model,” Opt. Express 20, 5896–5921 (2012).

36. M. R. Foreman and P. Török, “Fundamental limits in single-molecule
orientation measurements,” New J. Phys. 13, 093013 (2011).

37. A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D dipole
localization and orientation estimation for single-molecule imaging: to-
wards Green’s tensor engineering,” Opt. Express 20, 26667–26680
(2012).

38. A. J. Berglund, “Statistics of camera-based single-particle tracking,”
Phys. Rev. E 82, 011917 (2010).

39. X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estima-
tion in single-particle tracking,” Phys. Rev. E 85, 061916 (2012).

40. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal
point spread function design for 3D imaging,” Phys. Rev. Lett. 113,
133902 (2014).

41. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer
localization analysis for individual fluorescent probes,” Biophys. J. 82,
2775–2783 (2002).

42. T. Quan, S. Zeng, and Z.-L. Huang, “Localization capability and limi-
tation of electron-multiplying charge-coupled, scientific complemen-
tary metal-oxide semiconductor, and charge-coupled devices for
superresolution imaging,” J. Biomed. Opt. 15, 066005 (2010).

43. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg,
“Optimized localization analysis for single-molecule tracking and
super-resolution microscopy,” Nat. Methods 7, 377–381 (2010).

44. H. Deschout, K. Neyts, and K. Braeckmans, “The influence of move-
ment on the localization precision of sub-resolution particles in fluo-
rescence microscopy,” J. Biophoton. 5, 97–109 (2012).

45. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, 2001).
46. J. Hynecek, “Impactron–a new solid state image intensifier,” IEEE

Trans. Electron Devices 48, 2238–2241 (2001).
47. J. Hynecek and T. Nishiwaki, “Excess noise and other important char-

acteristics of low light level imaging using charge multiplying CCDs,”
IEEE Trans. Electron Devices 50, 239–245 (2003).

48. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,”
IEEE Trans. Electron Devices 44, 1689–1698 (1997).

49. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image
sensors,” Microelectron. J. 37, 433–451 (2006).

50. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill,
1996).

51. J. Chao, T. Lee, E. S. Ward, and R. J. Ober, “Fluorescent micro-
spheres as point sources: a localization study,” PLoS ONE 10,
e0134112 (2015).

52. M. Born and E.Wolf, Principles of Optics (Cambridge University, 1999).
53. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approxima-

tions of fluorescence microscope point-spread function models,”
Appl. Opt. 46, 1819–1829 (2007).

54. S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread
function model in 2D localization microscopy,” Opt. Express 18,
24461–24476 (2010).

55. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-
molecule localization that achieves theoretically minimum uncer-
tainty,” Nat. Methods 7, 373–375 (2010).

56. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim,
J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W.
Davidson, D. Toomre, and J. Bewersdorf, “Video-rate nanoscopy us-
ing sCMOS camera-specific single-molecule localization algorithms,”
Nat. Methods 10, 653–658 (2013).

57. T. E. Harris, The Theory of Branching Processes (Prentice-Hall,
1963).

58. A. G. Basden, C. A. Haniff, and C. D. Mackay, “Photon counting strat-
egies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345,
985–991 (2003).

59. M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound
proteins,” Nat. Methods 4, 319–321 (2007).

60. M. Newberry, “Pixel response effects on CCD camera gain calibra-
tion,” Technical Note (Mirametrics, 1998), http://www.mirametrics.
com/tech_note_ccdgain.htm.

61. S. Ram, “Resolution and localization in single molecule microscopy,”
Ph.D. thesis (University of Texas at Arlington, 2007).

62. A. Tahmasbi, S. Ram, J. Chao, A. V. Abraham, F. W. Tang, E. S.
Ward, and R. J. Ober, “Designing the focal plane spacing for multifocal
plane microscopy,” Opt. Express 22, 16706–16721 (2014).

63. S. Inoué, “Foundations of confocal scanned imaging in light micros-
copy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley,
ed., 3rd ed., (Springer, 2006), pp. 1–19.

64. A. Krull, A. Steinborn, V. Ananthanarayanan, D. Ramunno-Johnson,
U. Petersohn, and I. M. Tolić-Nørrelykke, “A divide and conquer strat-
egy for the maximum likelihood localization of low intensity objects,”
Opt. Express 22, 210–228 (2014).

65. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L.
White, “Compensation for readout noise in CCD images,” J. Opt. Soc.
Am. A 12, 272–283 (1995).

66. J. Chao, S. Ram, E. S. Ward, and R. J. Ober, “Ultrahigh accuracy im-
aging modality for super-localization microscopy,” Nat. Methods 10,
335–338 (2013).

67. K. Matsuo, M. C. Teich, and B. E. A. Saleh, “Noise properties and time
response of the staircase avalanche photodiode,” IEEE Trans.
Electron Devices 32, 2615–2623 (1985).

68. J. N. Hollenhorst, “A theory of multiplication noise,” IEEE Trans.
Electron Devices 37, 781–788 (1990).

69. Z. Lin, Y. Wong, and R. J. Ober, “Influence of prior knowledge on the
accuracy limit of parameter estimation in single-molecule fluores-
cence microscopy,” in Proceedings of IEEE International
Symposium on Circuits and Systems (IEEE, 2013), pp. 1304–1307.

70. Y. Wong, J. Chao, Z. Lin, and R. J. Ober, “Effect of time discretization
of the imaging process on the accuracy of trajectory estimation in fluo-
rescence microscopy,” Opt. Express 22, 20396–20420 (2014).

71. P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous im-
aging of different focal planes in fluorescence microscopy for the
study of cellular dynamics in three dimensions,” IEEE Trans.
Nanobiosci. 3, 237–242 (2004).

72. P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J.
Ober, and E. S. Ward, “Elucidation of intracellular recycling pathways
leading to exocytosis of the Fc receptor, FcRn, by using multifocal
plane microscopy,” Proc. Natl. Acad. Sci. USA 104, 5889–5894
(2007).

73. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane im-
aging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699
(1999).

74. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov,
J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq,
X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and
M. G. L. Gustafsson, “Fast multicolor 3D imaging using aberration-
corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).

75. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S.
Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-
dimensional sub-100 nm resolution fluorescence microscopy of thick
samples,” Nat. Methods 5, 527–529 (2008).

76. J. Chao, S. Ram, E. S. Ward, and R. J. Ober, “A comparative study of
high resolution microscopy imaging modalities using a three-
dimensional resolution measure,” Opt. Express 17, 24377–24402
(2009).

77. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles
in three dimensions: use of cylindrical optics to encode particle posi-
tion,” Biophys. J. 67, 1291–1300 (1994).

78. M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of
fluorescent nanoparticles with subnanometer precision by use of off-
focus imaging,” Opt. Lett. 28, 69–71 (2003).

79. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted
rotation,” Opt. Lett. 31, 181–183 (2006).

80. Y. Sun, J. D. McKenna, J. M. Murray, E. M. Ostap, and Y. E. Goldman,
“Parallax: high accuracy three-dimensional single molecule tracking
using split images,” Nano Lett. 9, 2676–2682 (2009).

Tutorial Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America A B57

http://www.mirametrics.com/tech_note_ccdgain.htm
http://www.mirametrics.com/tech_note_ccdgain.htm
http://www.mirametrics.com/tech_note_ccdgain.htm
http://www.mirametrics.com/tech_note_ccdgain.htm
http://www.mirametrics.com/tech_note_ccdgain.htm

