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Abstract: Single molecule super-resolution microscopy enables imaging at sub-diffraction-limit
resolution by producing images of subsets of stochastically photoactivated fluorophores over a
sequence of frames. In each frame of the sequence, the fluorophores are accurately localized, and
the estimated locations are used to construct a high-resolution image of the cellular structures
labeled by the fluorophores. Many methods have been developed for localizing fluorophores
from the images. The majority of these methods comprise two separate steps: detection and
estimation. In the detection step, fluorophores are identified. In the estimation step, the locations
of the identified fluorophores are estimated through an iterative approach. Here, we propose a
non-iterative state space-based localization method which combines the detection and estimation
steps. We demonstrate that the estimated locations obtained from the proposed method can be used
as initial conditions in an estimation routine to potentially obtain improved location estimates.
The proposed method models the given image as the frequency response of a multi-order
system obtained with a balanced state space realization algorithm based on the singular value
decomposition of a Hankel matrix. The locations of the poles of the resulting system determine
the peak locations in the frequency domain, and the locations of the most significant peaks
correspond to the single molecule locations in the original image. The performance of the method
is validated using both simulated and experimental data.
© 2017 Optical Society of America

OCIS codes: (170.2520) Fluorescence microscopy; (100.2960) Image analysis; (110.3010) Image reconstruction
techniques; (000.5490) Probability theory, stochastic processes, and statistics; (100.6640 ) Superresolution.
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1. Introduction

Single molecule super-resolution methods have been successful at achieving sub-diffraction-limit
resolution based on two key innovations: photoactivable fluorophores and powerful fluorophore
localization algorithms [1]. In these methods, a fluorescently labeled cellular structure is imaged
over a sequence of frames. In each frame, only a small number of stochastically photoactivated
fluorophores are detected. In order to construct a high-resolution image of the cellular structure,
the locations of individual emitting fluorophores are estimated with sub-pixel precision from each
frame and used to re-render the structure. Many fluorophore localization methods are available,
and they typically comprise the following separate steps: a detection step that identifies the
regions in the image that contain emitting fluorophores, and an estimation step that determines the
locations of these fluorophores accurately. In recent years, several methods have been developed
that use fitting-based algorithms to solve the estimation problem. The basis of most of these
methods is to fit a point spread function (PSF) model to the acquired data and estimate the
parameters of the model by minimizing the difference between the data and the model through an
iterative approach. For example, in [2], a method was proposed that uses the maximum likelihood
estimator to localize multiple emitters simultaneously within a two-dimensional (2D) fitting
subregion. Similarly, the DAOSTORM algorithm [3] fits multiple PSFs in a recursive approach
by analyzing pixel clusters in the residual image. In this algorithm, the fluorophore locations are
determined by minimizing a least-squares criterion.

Fitting-based algorithms are not the only approaches used to solve the estimation problem for
multi-emitter images. Many other localization methods have been developed that use non-fitting
algorithms for the estimation problem. These methods are preferable when accurate PSF and
noise models are not available. As an example, the QuickPALM software uses the simple centroid
method [4,5]. In this method, the fluorophore location is estimated as the average photon location,
or centroid. However, the image background causes a systematic deviation in centroid-based
methods. To solve the background bias problem in centroid-based methods, the virtual window
center of mass (VWCM) method has been demonstrated to be a good background-corrected
centroid estimator [6]. Although centroid methods are fast and computationally simple, their
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accuracy is not comparable to that of good fitting-based methods. Another important class
of non-fitting algorithms have been developed based on sparse support recovery methods [7].
The compressive-sensing-based method CSSTORM [8], structured sparse model and Bayesian
information criterion (SSC-BIC) [9], and fast localization algorithm based on a continuous-
space formulation (FALCON) [10] are well-known examples of such algorithms. Among them,
CSSTORM has been shown to achieve accurate localization for emitter densities as high as 10
emitters/µm2 [11]. In this method, a large-scale convex optimization problem needs to be solved in
an iterative approach [12]. Huang et al. [11] have proposed a non-fitting algorithm by transferring
the molecule localization problem to the frequency domain. Their proposed algorithm is based
on a 2D spectrum-estimation method called matrix enhancement and matrix pencil (MEMP) [13].
MEMP can provide a significant speed advantage over CSSTORM while retaining the same level
of accuracy (it is 100 times faster than CSSTORM with l1-homotopy [11]). Huang et al., however,
assume that the PSF can be approximated by a Gaussian function, which can be problematic in
practice due to the fact that the Gaussian model is often not an accurate analytical PSF.
Here, we propose a non-fitting state space algorithm for single molecule localization which

combines the detection and estimation steps in a non-iterative approach. Generally, a single
molecule fluorescence image contains multiple peaks of intensity that correspond to emitting
fluorophores. Our solution is to model such an image by the frequency response of a multi-order
system, as the locations of the poles of such a system determine the peak locations in the frequency
domain. To realize this localization algorithm, we take advantage of the balanced state space
realization algorithm used in [14–16] for the reduction of noise in fluorescence microscopy
images. This realization algorithm is based on the singular value decomposition (SVD) of a
Hankel matrix. To associate the peak locations in the image with the poles of the underlying
system, we apply this realization algorithm to the inverse Fourier transform of the image rather
than to the image itself. In our algorithm, the number of emitting fluorophores, which correspond
to the most significant peaks in the image, is ultimately determined using a procedure that utilizes
a least-squares criterion. Our algorithm also allows us to derive a theoretical reconstruction of
the image. A reconstructed image is an image that looks similar to the original image, but is
specified analytically in terms of the state space parameters of the system calculated using our
proposed localization algorithm.
Note that the realization algorithm from [16] was developed for the reduction of noise in a

three-dimensional (3D) data set comprising a z-stack of microscopy images. Here, we apply a 2D
version of that realization algorithm because the super-resolution microscopy data sets for which
we develop our localization algorithm consist of 2D images that are analyzed independently
of one another. Our localization algorithm, however, can be extended to the 3D localization of
fluorescent emitters from a z-stack by simply applying the 3D version of the realization algorithm
as presented in [16].
To assess the performance of the proposed localization algorithm, we apply the algorithm to

both simulated and experimental data comprising images of closely spaced molecules. In the case
of simulated data, we evaluate the detection rate of the algorithm for molecules with different
mean photon counts and for different distances between the molecules. We also analyze the bias
of the algorithm. The bias is evaluated as the average of the deviations of the estimated molecule
locations from the ground truth. In the case where there is only one molecule per image, our
results suggest that there is no systematic bias associated with the algorithm. In the case of data
sets consisting of repeat images of multiple molecules, however, the results show that bias exists
which we have found to be dependent on the distances between the molecules relative to the
image size. Also, the accuracy of the algorithm, determined by how far the estimates are spread
out from the ground truth, is assessed by looking at the square root of the average of the squared
deviations from the ground truth. In the case that we have repeat images of the same molecules,
we look at the squared deviations of the estimates from their average, i.e., the accuracy is given by
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the standard deviation of the estimates. Importantly, for data sets comprising repeat images of one
molecule, the standard deviation of the estimates is compared with the limit of the localization
accuracy, a theoretical accuracy benchmark given by the square root of the Cramér-Rao lower
bound (CRLB) [17]. The results show that the accuracy of the algorithm is reasonable, but the
difference between the accuracy and the limit of accuracy is nevertheless around twice the limit of
accuracy. We show, however, that by using the obtained location estimates as the initial conditions
for a maximum likelihood estimator, we can decrease the standard deviation of the estimates and
approach the limit of accuracy, as is usually possible with the maximum likelihood estimator for
standard single molecule estimation problems. We further demonstrate with experimental data
that the algorithm can recover the locations of the significant peaks in the original image that
correspond to the locations of individual Alexa Fluor 647 dye molecules.
This paper is organized as follows. In Section 2, we show the existence of minimal and

asymptotically stable systems that realize a 2D image in the frequency domain. Section 3 is
devoted to summarizing our overall localization approach, developed based on the systems
introduced in Section 2. In Section 4, we explain the overall approach proposed in Section 3
in more detail, and develop a state space-based localization algorithm based on the SVD of
a Hankel matrix. In Section 5, we specify the parameters used to generate simulated image
data, and describe the sample preparation procedure and the microscopy setup used to produce
experimental image data. Lastly, the results of applying our proposed algorithm to simulated and
experimental single molecule images are reported and discussed in Section 6.

2. System identification using frequency measurements

In this section, we show the existence of minimal and asymptotically stable systems that realize a
finite 2D sequence in the frequency domain. We begin by demonstrating the existence of minimal
and asymptotically stable systems for finite one-dimensional (1D) sequences in Lemma 1, using
a subspace-based method similar to that described in [18], and then extend the result to two
dimensions in Theorem 1. The basis of Lemma 1 is given by Proposition 1, which states that a
finite 1D data set can be expressed as the impulse response of a minimal and asymptotically stable
system [16]. Note that the stability of subspace methods was analyzed previously by Maciejowski
in [19], where similar results were reported.

Proposition 1. For positive integer N , let X(n) ∈ Cp×m, p,m ∈ N, n = 1, 2, ..., N , be a 1D
matrix-valued sequence. Then, there exists a minimal and asymptotically stable system (A, B,C),
such that

X(n) = CAn−1B, n = 1, 2, ..., N . (1)

Proposition 1 enables us to write the following lemma, which shows the existence of a minimal
and asymptotically stable system that realizes a finite 1D sequence in the frequency domain.

Lemma 1. Let X̃(k) ∈ R, k = 1, 2, ..., N , be a finite 1D sequence. For n = 1, 2, ..., N , let
X(n) := (IDFT(X̃))(n) = 1

N

∑N
k=1 X̃(k)ei2πkn/N be the inverse discrete Fourier transform

(inverse DFT, or IDFT) of X̃ . Then, there exists a minimal and asymptotically stable system
(A, B,C), such that

X(n) = CAn−1B, n = 1, 2, ..., N . (2)
Moreover,

X̃(k) = C̃(ei2πk/N I − Ã)−1B̃, k = 1, 2, ..., N, (3)
where Ã := A, B̃ := (I − AN )B, C̃ = C. If AN = 0, then (Ã, B̃, C̃) = (A, B,C).
Proof. Let X̃(k) ∈ R, k = 1, 2, ..., N , be a finite 1D sequence. Let

X(n) := (IDFT(X̃))(n) = 1
N

N∑
k=1

X̃(k)ei2πkn/N, n = 1, 2, ..., N, (4)
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be the IDFT of X̃ . Then, according to Proposition 1, there exists a minimal and asymptotically
stable system (A, B,C), such that

X(n) = CAn−1B, n = 1, 2, ..., N . (5)

According to Eqs. (4) and (5), we then have, for k = 1, 2, ..., N ,

X̃(k) = (DFT(X))(k)

=

N∑
n=1

X(n)e−i2πkn/N

= CBe−i2πk/N + CABe−i4πk/N + · · · + CAN−1Be−i2πkN/N

= Ce−i2πk/N
(
I + Ae−i2πk/N + · · · + AN−1e−i2πk(N−1)/N

)
B

= Ce−i2πk/N
[
N−1∑
n=0

(
Ae−i2πkn/N

)n]
B. (6)

For a square matrix T ∈ Cm×m,m ∈ N, where the number 1 is not an eigenvalue of T , we have
the identity

∑N−1
n=0 Tn = (I −T)−1(I −TN ). Then, since the realization (A, B,C) is asymptotically

stable, i.e., |λ(A)| < 1 holds for any eigenvalue λ(A) of A, the number 1 is not an eigenvalue
of Ae−i2πk/N, k = 1, ..., N (or equivalently, I − Ae−i2πk/N, k = 1, ..., N , is invertible), and∑N−1

n=0

(
Ae−i2πk/N

)n
= (I − Ae−i2πk/N )−1(I − AN ). Substituting this expression into Eq. (6), we

have, for k = 1, 2, ..., N ,

X̃(k) = Ce−i2πk/N (I − Ae−i2πk/N )−1(I − AN )B
= C(ei2πk/N I − A)−1(I − AN )B
= C̃(ei2πk/N I − Ã)−1B̃, (7)

where Ã := A, B̃ := (I − AN )B, C̃ = C. If AN = 0, then (Ã, B̃, C̃) = (A, B,C). �

In the following theorem, we extend the results obtained for 1D sequences to 2D sequences.

Theorem 1. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, be a finite 2D sequence. For ni =
1, 2, ..., Ni, i = 1, 2, let

X(n1, n2) := (IDFT2D(X̃))(n1, n2) =
1

N1N2

N1∑
k1=1

N2∑
k2=1

X̃(k1, k2)ei2π(k1n1/N1+k2n2/N2), (8)

be the inverse 2D DFT of X̃ . Then, there exist minimal and asymptotically stable systems
(Ai, Bi,Ci), i = 1, 2, such that

X(n1, n2) = X1(n1)X2(n2), ni = 1, 2, ..., Ni, i = 1, 2, (9)

where, for i = 1, 2,
Xi(ni) := Ci A

ni−1
i Bi, ni = 1, 2, ..., Ni . (10)

Moreover,
X̃(k1, k2) = X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (11)

where, for k j = 1, 2, ..., Nj, j = 1, 2,

X̃ j(k j) := C̃j(ei2πk j /N j I − Ãj)−1B̃j, (12)

where Ãj := Aj, B̃j := (I − AN j

j )Bj, C̃j := Cj . For j = 1, 2, if AN j

j = 0, then (Ãj, B̃j, C̃j) =
(Aj, Bj,Cj).
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Proof. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, be a finite 2D sequence. For ni = 1, ..., Ni, i =
1, 2, let

X(n1, n2) := (IDFT2D(X̃))(n1, n2) =
1

N1N2

N1∑
k1=1

N2∑
k2=1

X̃(k1, k2)ei2π(k1n1/N1+k2n2/N2), (13)

be the inverse 2D DFT of X̃ . Arrange the entries of X to form a matrix Q as

Q :=


X(1, 1) X(1, 2) · · · X(1, N2)
X(2, 1) X(2, 2) · · · X(2, N2)
...

...
. . .

...
X(N1, 1) X(N1, 2) · · · X(N1, N2)


. (14)

Decompose Q via SVD as Q = UΣV , where for r ∈ N, U ∈ CN1×r, Σ ∈ Cr×r and V ∈ Cr×N2 .
For ni = 1, 2, ..., Ni, i = 1, 2, define X1(n1) ∈ C1×r and X2(n2) ∈ Cr×1, such that

X1(1)
X1(2)
...

X1(N1)


:= UΣ1/2,

[
X2(1) X2(2) · · · X2(N2)

]
:= Σ1/2V . (15)

Then
X(n1, n2) = X1(n1)X2(n2), ni = 1, 2, ..., Ni, i = 1, 2. (16)

Moreover, according to Proposition 1, there exist minimal and asymptotically stable systems
(Ai, Bi,Ci), i = 1, 2, such that, for i = 1, 2,

Xi(ni) = Ci A
ni−1
i Bi, ni = 1, 2, ..., Ni . (17)

According to Eqs. (13) and (16),

X̃(k1, k2) = (DFT2D(X))(k1, k2)

=

N1∑
n1=1

N2∑
n2=1

X(n1, n2)e−i2π(k1n1/N1+k2n2/N2)

=

(
N1∑
n1=1

X1(n1)e−i2πk1n1/N1

) (
N2∑
n2=1

X2(n2)e−i2πk2n2/N2

)
= X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (18)

where X̃i(ki) := (DFT(Xi))(ki), ki = 1, 2, ..., Ni, i = 1, 2. Then, according to Lemma 1, for
k j = 1, 2, , ..., Nj, j = 1, 2,

X̃ j(k j) := C̃j(ei2πk j /N j I − Ãj)−1B̃j, (19)

where Ãj := Aj, B̃j := (I − AN j

j )Bj, C̃j := Cj . For j = 1, 2, if AN j

j = 0, then (Ãj, B̃j, C̃j) =
(Aj, Bj,Cj). �

3. Location estimation

So far, we have shown the existence of minimal and asymptotically stable systems (Ai, Bi,Ci), i =
1, 2, that realize a finite 2D sequence X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, in the frequency
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domain. Here, we summarize our overall localization approach. Given that X̃ is a single molecule
image with multiple peaks of intensity, we determine the locations of the molecules by calculating
the pole locations of (Ai, Bi,Ci), i = 1, 2.
In Theorem 1, we have shown that there exist minimal and asymptotically stable systems
(Ai, Bi,Ci), i = 1, 2, such that

X̃(k1, k2) = X̃1(k1)X̃2(k2), ki = 1, 2, ..., Ni, i = 1, 2, (20)

where, for k j = 1, 2, ..., Nj, j = 1, 2,

X̃ j(k j) := C̃j(ei2πk j /N j I − Ãj)−1B̃j, (21)

where Ãj := Aj, B̃j := (I − AN j

j )Bj , and C̃j := Cj . For j = 1, 2, if AN j

j = 0, then (Ãj, B̃j, C̃j) =
(Aj, Bj,Cj). If we diagonalize Ai, i = 1, 2, then the diagonal elements of the resulting matrix
Āi give the poles of the system. In the following, we use matrix diagonalization in Eq. (20) to
express X̃ in terms of the poles of the system.
For s1, s2 ∈ N and Ai ∈ Csi×si , i = 1, 2, which are diagonalizable, i.e., for ti =

1, 2, ..., si, i = 1, 2, and some invertible Ti ∈ Csi×si , we have the diagonal matrix Āi :=
Ti AiT−1

i = diag(ai1, · · · , a
i
si
), aiti ∈ C, then with B̄i := TiBi =

[
bi1, · · · , b

i
si

]T
, C̄i := CiT−1

i =[
ci1, · · · , c

i
si

]
, i = 1, 2, where b1

t1
∈ C1×r, b2

t2
∈ C, c1

t1
∈ C, c2

t2
∈ Cr×1, ti = 1, 2, ..., si, i = 1, 2, for

k j = 1, 2, ..., Nj, j = 1, 2, we can write X̃ in terms of the poles of the system as

X̃(k1, k2) =
2∏
j=1

C̄j(ei2πk j /N j I − Āj)−1B̄j

= C̄1



b1
1c

2
1

(ei2πk1/N1−a1
1 )(e

i2πk2/N2−a2
1 )

b1
1c

2
2

(ei2πk1/N1−a1
1 )(e

i2πk2/N2−a2
2 )

· · ·
b1

1c
2
s2

(ei2πk1/N1−a1
1 )(e

i2πk2/N2−a2
s2 )

b1
2c

2
1

(ei2πk1/N1−a1
2 )(e

i2πk2/N2−a2
1 )

b1
2c

2
2

(ei2πk1/N1−a1
2 )(e

i2πk2/N2−a2
2 )

· · ·
b1

2c
2
s2

(ei2πk1/N1−a1
2 )(e

i2πk2/N2−a2
s2 )

.

.

.
.
.
.

. . .
.
.
.

b1
s1 c2

1
(ei2πk1/N1−a1

s1 )(e
i2πk2/N2−a2

1 )

b1
s1 c2

2
(ei2πk1/N1−a1

s1 )(e
i2πk2/N2−a2

2 )
· · ·

b1
s1 c2

s2
(ei2πk1/N1−a1

s1 )(e
i2πk2/N2−a2

s2 )


B̄2

=

s1∑
l=1

s2∑
j=1

c1
l
b1
l
c2
j b2

j

(ei2πk1/N1 − a1
l
)(ei2πk2/N2 − a2

j )
. (22)

Equation (22) provides an analytical expression for the reconstructed image, in which the poles of
X̃ occur at (a1

t1
, a2

t2
), ti = 1, ..., si, i = 1, 2. (Note that for ti = 1, ..., si, i = 1, 2, if the row b1

t1
of B̄1

and the column c2
t2
of C̄2 are perpendicular, i.e., b1

t1
c2
t2
= 0, then the residual of the pole (a1

t1
, a2

t2
)

is equal to zero, and (a1
t1
, a2

t2
) is not associated with a peak in the corresponding 2D image.)

We next obtain the locations of the molecules in the object space in terms of the phase of
the calculated poles. Let the 2D sequence X̃ denote the pixel intensities of our N1 × N2 image
with pixel width ∆x and pixel height ∆y, obtained by sampling the image at the center of each
pixel. Assume a j

tj
=

���a j
tj

��� eiw
j
t j , 0 ≤ w

j
tj
≤ 2π, tj = 1, ..., sj, j = 1, 2. Then, by linearly mapping a

2π×2π square region in the frequency domain to the region with area N1 ×N2 pixels in the image
space (between the center of the first pixel and the center of the last pixel) and converting from
image space units to object space units, the set containing the peak locations (i.e., the molecule
locations) in the object space is given by

{
(xt2, yt1 ) : c1

t1
b1
t1

c2
t2

b2
t2
, 0, ti = 1, ..., si, i = 1, 2

}
, where

xt2 :=
∆xw2

t2
N1

2Mπ
+
∆x
2M

, yt1 :=
∆yw1

t1
N2

2Mπ
+
∆y

2M
, (23)

and M > 0 denotes the lateral magnification of the microscope system.
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4. Algorithm

We now explain our proposed approach in more detail. In Section 3, we have calculated the
poles of a 2D single molecule image X̃ in terms of the elements of minimal and asymptotically
stable systems (Ai, Bi,Ci), i = 1, 2. Here, using the balanced state space realization algorithm
introduced by Maciejowski [19], we propose a step-by-step algorithm to calculate systems
(Ai, Bi,Ci), i = 1, 2, that realize X̃ , and to determine the locations of the single molecules using
the realization.

Algorithm. Let X̃(k1, k2) ∈ R, ki = 1, 2, ..., Ni, i = 1, 2, represent the acquired image data.
I. Subtract an estimated background level β̂, e.g., the average of the data points near the

boundary of the image data X̃ , from the image data X̃ , and define the background-subtracted
image X̃bs as

X̃bs(k1, k2) := X̃(k1, k2) − β̂, ki = 1, 2, ..., Ni, i = 1, 2. (24)

II. Let X be the 2D IDFT of X̃bs , i.e.,

X(n1, n2) := (IDFT2D(X̃bs))(n1, n2), ni = 1, 2, ..., Ni, i = 1, 2. (25)

III. Arrange the entries of X to form a matrix Q as

Q :=


X(1, 1) X(1, 2) · · · X(1, N2)
X(2, 1) X(2, 2) · · · X(2, N2)
...

...
. . .

...
X(N1, 1) X(N1, 2) · · · X(N1, N2)


. (26)

Decompose Q via SVD as Q = UΣV . Let the positive integer r ≤ K,K = min(N1, N2), denote the
number of retained singular values (see Section 4.1). Partition Σ = diag(Σ̂, ˆ̂

Σ), Σ̂ ∈ Cr×r,U =[
Û ˆ̂U

]
, Û ∈ CN1×r , and V =

[
V̂ ˆ̂V

]T
, V̂ ∈ Cr×N2 . For ni = 1, 2, ..., Ni, i = 1, 2, define

Xr
1 (n1) ∈ C1×r and Xr

2 (n2) ∈ Cr×1, such that
Xr

1 (1)
Xr

1 (2)
...

Xr
1 (N1)


:= ÛΣ̂1/2,

[
Xr

2 (1) Xr
2 (2) · · · Xr

2 (N2)
]

:= Σ̂1/2V̂ . (27)

IV. Construct the Hankel matrices H1 ∈ C(N1+1)×(N1+1)r,H2 ∈ C(N2+1)r×(N2+1) as

Hi :=



Xr
i (1) Xr

i (2) · · · Xr
i (Ni − 1) Xr

i (Ni) 0
Xr
i (2) Xr

i (3) · · · Xr
i (Ni) 0 0

...
...

. . .
...

...
...

Xr
i (Ni) 0 · · · 0 0 0
0 0 · · · 0 0 0


, i = 1, 2, (28)

where 0 denotes a block of zeros of the corresponding size. For i = 1, 2, decompose Hi

via SVD as Hi = UiΣiVi . Let the positive integers si ≤ Ni, i = 1, 2, denote the numbers
of retained singular values in the respective SVDs (see Section 4.2). For i = 1, 2, partition
Σi = diag(Σ̂i, ˆ̂

Σi), Σ̂i ∈ Csi×si ,Ui =
[
Ûi

ˆ̂Ui

]
, Û1 ∈ C(N1+1)×s1, Û2 ∈ C(N2+1)r×s2 , and Vi =[

V̂i
ˆ̂Vi

]T
, V̂1 ∈ Cs1×(N1+1)r, V̂2 ∈ Cs2×(N2+1), conformally. Let Cr ;s1

1 ∈ C1×s1 and Cr ;s2
2 ∈ Cr×s2

be the first row of Û1Σ̂
1/2
1 and the first r rows of Û2Σ̂

1/2
2 , respectively. Also, let Br ;s1

1 ∈ Cs1×r
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and Br ;s2
2 ∈ Cs2×1 be the first r columns of Σ̂1/2

1 V̂1 and the first column of Σ̂1/2
2 V̂2, respectively.

Assuming

Ûi =


Ūi

1
...

Ūi
Ni

Ūi
Ni+1


, i = 1, 2, (29)

where Ū1
n1 ∈ C

1×s1, Ū2
n2 ∈ C

r×s2, ni = 1, ..., Ni + 1, i = 1, 2, define

Û↑i :=


Ūi

2
...

Ūi
Ni+1

 , Û↓i :=


Ūi

1
...

Ūi
Ni

 , i = 1, 2. (30)

Then, let Ar ;si
i = Σ̂

−1/2
i Û↓∗i Û↑i Σ̂

1/2
i ∈ Csi×si , i = 1, 2.

V. Diagonalize Ar ;sj
j ∈ Csj×sj , j = 1, 2, i.e., for tj = 1, 2, ..., sj, j = 1, 2, and some invertible

Tj ∈ Csj×sj , let Ār ;sj
j := Tj A

r ;sj
j T−1

j = diag(a j
1, · · · , a

j
sj ), a

j
tj
=

���a j
tj

��� eiw
j
t j ∈ C, 0 ≤ w

j
tj
≤ 2π, be

a corresponding diagonal matrix for Ar ;sj
j . Also, let B̄r ;sj

j := TjB
r ;sj
j =

[
bj

1, · · · , b
j
sj

]T
, C̄r ;sj

j :=

Cr ;sj
j T−1

j =
[
c j

1, · · · , c
j
sj

]
, j = 1, 2, where b1

t1
∈ C1×r, b2

t2
∈ C, c1

t1
∈ C, c2

t2
∈ Cr×1, tj =

1, 2, ..., sj, j = 1, 2.
Note that in theory, there is a possibility that Ar ;s1

1 and/or Ar ;s2
2 are not diagonalizable. In

practice, however, because the diagonalization is numerically computed, Ar ;s1
1 and/or Ar ;s2

2 can
be expected to be diagonalizable. In the unlikely scenario where Ar ;s1

1 and/or Ar ;s2
2 are not

diagonalizable, very small perturbations of the data can be introduced to alter slightly their
eigenvalues and make them diagonalizable. A perturbation can be achieved, for example, by
simply adding a very small value to a pixel of the image.

VI. For h = min(s1, s2), calculate, in the object space, the estimated peak locations (xk, yk), xk ∈{
x̂1, ..., x̂s2

}
, yk ∈

{
ŷ1, ..., ŷs1

}
, k = 1, ..., h, where

x̂t2 :=
∆xw2

t2
N1

2Mπ
+
∆x
2M

, ŷt1 :=
∆yw1

t1
N2

2Mπ
+
∆y

2M
, ti = 1, 2, ..., si, i = 1, 2, (31)

where ∆x and ∆y are the width and height of each pixel of the image, respectively, and M > 0
denotes the lateral magnification of the microscope system.

The proposed algorithm crucially depends on SVD. Most of the singular values resulting
from an SVD are relatively small and are considered to correspond to noise [16]. Here, an
important question is how many singular values are associated with noise and should be discarded
in each SVD? In the following subsections, we describe the determination of the number of
retained singular values in the three SVDs of the algorithm, and importantly, the number of single
molecules in the given image. In addition, we give a description of the maximum likelihood
estimator with which we will demonstrate the use of the results of the algorithm as the initial
conditions for an estimation routine.

4.1. Determination of the number of retained singular values in the first SVD

Let σ1 ≥ ... ≥ σK ≥ 0,K = min(N1, N2), denote the singular values in the first SVD. For
r = 1, ...,K , let Er :=

∑r
i=1 σ

2
i be the energy of the sequence σi, i = 1, ..., r . Estimate the optimal

number of retained singular values r in the first SVD as

r̂ = min
r=1,...,K

{
r :

Er

EK
> τ

}
, (32)
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where EK :=
∑K

i=1 σ
2
i is the energy of the sequence of all singular values and τ ∈ R denotes a

threshold value typically chosen in the range [0.8, 0.9] [11]. In Section 6.1.3, we examine the
effect of different threshold values on the detection rate of the algorithm.

4.2. Determination of the number of retained singular values in the second and third
SVDs, and the number of single molecules in the image

Let σi
1 ≥ ... ≥ σ

i
Ni
≥ 0, i = 1, 2, be the singular values in the second and third SVDs, respectively.

For li = 1, ..., Ni, i = 1, 2, let

l̂i = min
li=1,...,Ni

{
li :

Eli

ENi

> τi

}
, (33)

where Eli :=
∑li

j=1(σ
i
j )2 and ENi :=

∑Ni

j=1(σ
i
j )2 are the energies of the sequences σi

1, ..., σ
i
li
and

σi
1, ..., σ

i
Ni
, respectively, and τi ∈ R denotes a threshold value which is again typically chosen

in the range [0.8, 0.9] (see Section 6.1.3). The estimates l̂i, i = 1, 2, thus denote the number of
singular values that remain after discarding those that are considered to obviously correspond to
noise.
We next try to reduce further the number of singular values to retain using an optimization

approach that minimizes the difference between the original image and the reconstructed image
obtained by the estimated locations of the peaks of the image. For si = 1, ..., l̂i, i = 1, 2, let

X̃r ;s1,s2 (k1, k2) =
∑s1

l=1
∑s2

j=1
c1
l
b1
l
c2
jb

2
j

(ei2πk1/N1−a1
l
)(ei2πk2/N2−a2

j )
, kt = 1, ..., Nt, t = 1, 2, be the estimated

data calculated via the algorithm by retaining r singular values in the first SVD and s1 and
s2 singular values in the second and third SVDs, respectively. In other words, X̃r ;s1,s2 is
the reconstructed image of Eq. (22) after discarding the singular values corresponding to
noise. Denoting the poles of X̃r ;s1,s2 by (ā1

k
, ā2

k
), āt

k
∈

{
at

1, · · · , a
t
st

}
, āt

k
:=

��āt
k

�� eiw̄
t
k , 0 ≤ w̄t

k
≤

2π, k = 1, ..., s1s2, t = 1, 2, and their corresponding product of coefficients in the numerator by
pk ∈ C, k = 1, ..., s1s2, assume the peak magnitudes to be |p1 | ≥ · · · ≥

��ps1s2

�� ≥ 0.
Let h = min(s1, s2) denote the number of single molecules, assuming that we retain s1 and

s2 singular values in the second and third SVDs, respectively. In the following, we estimate the
optimal number of single molecules. Let θ̂h := (θ̂1, ..., θ̂h) ∈ R2h, θ̂n := (x̂n, ŷn) ∈ R2, n = 1, ..., h,
such that

x̂n :=
∆x
2M

w̄2
nN1

π
+
∆x
2M

, ŷn :=
∆y

2M
w̄1
nN2

π
+
∆y

2M
, (34)

are the estimated locations of the h peaks with the largest magnitudes. In general, we consider
all possible h-combinations of the poles of X̃r ;s1,s2 , but in most cases, the single molecules are
associated with the peaks with the largest magnitudes. Let

{
z1, ..., zNpix

}
denote our acquired

data, where Npix denotes the number of pixels in the image. Then, the estimated number of
single molecules ĥ is given by

ĥ = arg min
h=min(s1,s2), si=1,..., l̂i, i=1,2

©­«
Npix∑
k=1

(
zk − µθ̂h (k)

)2ª®¬ , (35)

where, in the case that the single molecule image is modeled with a 2D PSF, we have, for
k = 1, ..., Npix , the mean number of photons detected in the k th pixel given by [17]

µθ̂h (k) :=
h∑

n=1

Np,n

M2

∫
Ck

q
( x

M
− x̂n,

y

M
− ŷn

)
dxdy, θ̂h ∈ R2h, h = min(s1, s2), (36)

where Np,n is the expected number of photons due to the nth molecule that impact the detector
plane during the image exposure, Ck ⊂ R2 denotes the region in the detector plane occupied by
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the k th pixel, and q is the 2D PSF of the optical system. If the PSF is the Airy profile, then q is
given by

q(x, y) :=
J2

1

(
2πna

λ

√
x2 + y2

)
π(x2 + y2)

, (x, y) ∈ R2, (37)

where na denotes the numerical aperture of the objective lens, λ denotes the emission wavelength
of the molecule, and J1 denotes the first order Bessel function of the first kind.

4.3. Fitting single molecule images using the maximum likelihood estimator

The molecule locations estimated with the proposed algorithm can be used as the initial conditions
in any estimation routine. In this paper, we demonstrate this using the maximum likelihood
estimation routine [21, 22]. In the following, we briefly explain the basis of the maximum
likelihood estimation.
Let Θ denote the parameter space that is an open subset of Rn. The maximum likelihood

estimate θ̂mle of θ ∈ Θ, for data incorporating Gaussian readout noise, is given by

θ̂mle = arg min
θ∈Θ

(
−L(θ |z1, ..., zNpix )

)
, (38)

where
{
z1, ..., zNpix

}
denotes an image with Npix pixels and L is the log-likelihood function

given by [17]

L(θ |z1, ..., zNpix ) =
Npix∑
k=1

log

(
1

√
2πσk

∞∑
l=0

(
[µθ (k) + βk]l e−[µθ (k)+βk ]

l!
e−

1
2

(
zk−l−ηk

σk

)2
))
. (39)

In Eq. (39), in the case of one molecule, µθ (k) is the mean photon count in the k th pixel due to
the molecule and is given by

µθ (k) :=
Np

M2

∫
Ck

q
( x

M
− x0,

y

M
− y0

)
dxdy, k = 1, ..., Npix, (40)

where θ = (x0, y0) ∈ R2 denotes the location of the molecule in the object space, Np is the
expected number of photons from the molecule that are detected over the detector plane, and q
is the Airy profile given by Eq. (37). Also, βk is the background level in the k th pixel, and ηk
and σk denote the mean and standard deviation of the Gaussian readout noise in the k th pixel,
respectively.

5. Methods

5.1. Simulation parameters

To analyze the performance of the proposed algorithm, we simulated different data sets using
parameters commonly used in single molecule experiments. Some data sets comprise repeat
images of one molecule, and some comprise repeat images of more than one molecule. Also,
some data sets are such that each image contains a different set of molecules whose locations are
randomly chosen based on uniform distributions that place the molecules within different spatial
intervals inside the image. Regardless of the data set, the image of a molecule was generated with
the Airy profile of Eq. (37) with a numerical aperture of na = 1.4 and an emission wavelength of
λ = 485 nm. Furthermore, a lateral magnification of M = 100, a detector pixel size of 6.5 µm ×
6.5 µm, and a zero-mean Gaussian readout noise with standard deviation σ = 6 e− per pixel,
were assumed. Also, we assumed that all simulated images are background-subtracted.
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5.2. Imaging experiments

5.2.1. Sample preparation

High-performance Zeiss coverslips (#1.5) were prepared as follows: coverslips were sonicated
with the following solutions in succession (each for 20 minutes): 50% HPLC-grade ethanol,
1mM HCl with 50% HPLC-grade ethanol, 1M KOH with 50% HPLC-grade ethanol, and
50% HPLC-grade ethanol. The cleaned coverslips were attached to MatTek dishes. 200 µl of
Poly-L-lysine (PLL) solution (Sigma-Aldrich) were added to the glass bottom area of the dishes
for 10 minutes at room temperature. PPL was removed and 250-pM Alexa Fluor 647 fluorescent
dye (Invitrogen) in 200 µl of phosphate-buffered saline (PBS) was applied for 10 minutes at
room temperature. The sample was then washed with PBS twice at room temperature followed
by the addition of 1 ml of PBS to the sample.

5.2.2. Microscopy setup

Custom laser excitation optics were installed for a Zeiss Axio Observer.A1 microscope. The laser
optics were configured with 635-nm and 405-nm diode lasers (OptoEngine) for the excitation
and photoactivation, respectively, of Alexa Fluor 647. The excitation light was reflected using a
dichroic filter (Di01-R405/488/561/635-25x36; Semrock) and focused on the back focal plane of a
63×, 1.46 NA Zeiss objective lens. The emission light from the Alexa Fluor 647 dye was collected
by the objective lens and filtered using a single bandpass filter (FF01-676/29-25; Semrock).
The images were recorded using an electron-multiplying charge-coupled device camera (iXon
DU897-BV; Andor) in conventional readout mode. The camera pixel size was 16 µm × 16 µm.
All components, including lasers, shutters and cameras, were controlled and synchronized using
custom software written in the C programming language.

5.2.3. Super-resolution imaging

We first removed PBS from the single molecule sample prepared in Section 5.2.1 and added the
imaging buffer (50-mM beta-mercaptoethylamine (MEA), 0.5-mg/ml glucose oxidase, 40-µg/ml
catalase in PBS, pH 7.4, with 10% glucose). The sample was sealed with a coverslip and then
positioned on the sample stage of the microscope for 5 to 10 minutes for temperature equilibration
and the oxygen scavenging process. Images were subsequently acquired at a rate of 20 frames per
second. The sample was illuminated with the 635-nm and 405-nm diode lasers alternately with
photoactivation by the 405-nm laser every third frame. The frames with 405-nm laser illumination
were excluded from data analysis.

6. Results and discussion

In this section, we present and discuss the results of the proposed algorithm when applied to both
simulated and experimental images of single molecules.

6.1. Results for simulated data

Using simulated data sets, we first examine the performance of the algorithm in terms of the
detection rate. We then analyze the bias and accuracy of the algorithm. The bias is assessed by
the average of the deviations of the estimated molecule locations from the ground truth. The
accuracy is assessed by looking at the square root of the average of the squared deviations from
the ground truth. For repeat images of the same molecules, however, we look instead at the
standard deviation of the estimates. In particular, for data sets containing repeat images of one
molecule, we compare the standard deviation of the estimates with the limit of the localization
accuracy given by the square root of the CRLB. Besides these analyses, we examine the effect on
the detection rate when different threshold values are used in the first, second, and third SVDs of
the algorithm.
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6.1.1. One molecule

Here, to evaluate the detection rate of the algorithm, we first simulated data sets in which
each image contains one molecule, whose location was randomly chosen based on a uniform
distribution that places it within the image. For a given data set, the mean photon count is the same
for the molecule in every image. Different data sets differ by this mean photon count, which ranges
from 500 to 4500. For each mean photon count, we simulated 200 images. To establish statistical
measures of the detection rate, we needed to pair the molecules localized by the algorithm with
the molecules from the ground truth. For this purpose, we used the Hungarian algorithm with a
search area of radius 100 nm [20]. Then, we categorized the localized molecules which were
successfully paired with ground truth molecules as true positives. The ground truth molecules
that were not paired with any localized molecule and the localized molecules which were not
paired with any ground truth molecule were categorized as false negatives and false positives,
respectively. Denoting the number of true positives by TP, the number of false negatives by
FN , and the number of false positives by FP, we define the precision (PRE) and recall (REC)
measures as [20]

PRE :=
TP

FP + TP
, REC :=

TP
FN + TP

. (41)

Figure 1 shows the results of the measures of the detection rate for data sets consisting of
images containing one molecule each. It can be seen that for all mean photon counts considered,
there are no false negatives and the recall is 1. Also, the figure shows that by increasing the mean
photon count, the precision increases. However, it is important to note that even when the mean
number of photons is as low as 500, a relatively large number of detected molecules are true
positives (about 86%).
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Fig. 1. Analysis of the detection rate of the algorithm, applied to data sets in which each
image contains one molecule, whose location in the image is chosen randomly according to
a uniform probability distribution. For a given data set, the same mean photon count is used
to simulate the molecule in each image. Different data sets differ by this mean photon count.
For each mean photon count, 200 images of size 30 × 30 pixels were simulated using the
parameters given in Section 5.1. The Hungarian algorithm with a search area of radius 100
nm is used to pair the localized molecules with the ground truth molecules.

We next examine the bias of the algorithm for a data set in which each frame contains one
molecule whose location in the image is chosen randomly. For this purpose, we simulated 1000
15 × 15-pixel images, each containing one molecule with a mean photon count of 1500 photons.
In each image, the location of the molecule was drawn from a uniform probability distribution
that places it between the 2nd and 14th pixel in both the x and y dimensions. (We assumed that
no molecule was located near the edges of the 15 × 15-pixel image.) As shown in Fig. 2, the
deviations of both the x and y location estimates from the ground truth are, overall, centered
around 0 nm. Therefore, the results suggest that, in the case where there is only one molecule per

                                                                                Vol. 8, No. 3 | 1 Mar 2017 | BIOMEDICAL OPTICS EXPRESS 1344 



100 200 300 400 500 600 700 800

True x-location (nm)

-40

-20

0

20

40

E
s

ti
m

a
te

d
 -

 t
ru

e
 x

-l
o

c
a

ti
o

n
 (

n
m

)

100 200 300 400 500 600 700 800

True y-location (nm)

-40

-20

0

20

40

E
s

ti
m

a
te

d
 -

 t
ru

e
 y

-l
o

c
a

ti
o

n
 (

n
m

)

Fig. 2. Analysis of the error of location estimates obtained from a data set in which each
frame contains one molecule whose location in the image is chosen randomly. Shown in the
left and right plots are the differences between the x-estimates and the true x-values, and the
differences between the y-estimates and the true y-values, respectively, for the true positives
obtained with the algorithm. The data set consists of 1000 15 × 15-pixel images, each of a
molecule with a mean photon count of 1500 photons whose location is randomly chosen
from a uniform probability distribution that places the molecule between the 2nd and 14th
pixel in both the x and y dimensions. The images were simulated using the parameters given
in Section 5.1.

image, there is no systematic bias associated with the algorithm in this case (the average of x and
y deviations are 0.321 nm and 0.335 nm, respectively). Also, the square root of the average of
the squares of the x and y deviations are 9.123 nm and 9.467 nm, respectively, which are close
to the standard deviations of the estimated locations obtained for a data set consisting of repeat
images of one molecule with the same mean photon count of 1500 photons (analysis of data sets
with repeat images is presented next). This suggests that the variation of the deviations about the
ground truth is reasonable.

To examine further the bias of the algorithm, we simulated data sets containing repeat images
of one molecule. The data sets differ by the mean photon count of the molecule, which we assume
does not vary from frame to frame in a given data set. This mean photon count ranges from 500
to 4500 for the different data sets. For each data set, we simulated 1000 repeat images. Figure 3
shows, as a function of the mean photon count, the differences between the averages of the x- and
y-estimates for the correctly detected (i.e., true positive) molecules and the corresponding true x-
and y-coordinates. Similar to the case of data sets with non-repeat images [Fig. 2], the evenness
of the spread of the estimated bias about 0 nm for both coordinates suggests that when there is
only one molecule per image, there is no systematic bias associated with our proposed algorithm.
We next evaluate the performance of the algorithm in terms of the standard deviation of the

estimates for the sets of repeat images. For nine of the data sets from Fig. 3, we calculated the
standard deviations of the x-estimates and y-estimates for the correctly detected (i.e., true positive)
molecules. The percentage differences between the standard deviations and the CRLB-based
limits of the x-localization accuracy and y-localization accuracy [17] are shown in Fig. 4. The
percentage difference is the absolute difference between the standard deviation of the estimates
and the corresponding limit of accuracy, expressed as a percentage of the limit of accuracy. As
shown in Fig. 4, when the mean number of photons increases, the standard deviation of the
estimates decreases. Also, as can be seen in the second row of Fig. 4, the differences between the
standard deviations of the estimates and their respective limits of the localization accuracy are
around twice (i.e., around 200% of) the limits of accuracy. This difference likely arises from the
fact that our algorithm approximates an Airy profile with the frequency response of a first-order
system, and there is a difference between the shape of the peak of an Airy profile and that of the
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Fig. 3. Analysis of the average of location estimates obtained from repeat images of one
molecule. Shown in the left and right plots are the difference between the average of the
x-estimates and the true x-value, and the difference between the average of the y-estimates
and the true y-value, respectively, for data sets that differ by the mean photon count assumed
for the molecule per image. For each mean photon count, the data set consists of 1000 images
of size 15 × 15 pixels, simulated using the parameters given in Section 5.1.
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Fig. 4. Analysis of the standard deviation of location estimates obtained from repeat images
of one molecule. (a) The standard deviations of the x- and y-estimates for nine of the
data sets from Fig. 3. (b) The percentage difference between the standard deviation of
the x-estimates and the limit of the x-localization accuracy, and the percentage difference
between the standard deviation of the y-estimates and the limit of the y-localization accuracy.
The percentage difference is the absolute difference between the standard deviation of the
estimates and the corresponding limit of accuracy, expressed as a percentage of the limit of
accuracy.
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Fig. 5. Analysis of the standard deviation of location estimates produced by the maximum
likelihood estimator when the location estimates obtained with the algorithm are used as the
initial conditions. (a) The standard deviations of the maximum likelihood x- and y-estimates
for the same data sets as in Fig. 4, which comprise repeat images of one molecule. (b) The
percentage difference between the standard deviation of the x-estimates and the limit of the
x-localization accuracy, and the percentage difference between the standard deviation of the
y-estimates and the limit of the y-localization accuracy.

first-order system in the frequency domain. In Appendix A, we applied our algorithm to images
simulated using the frequency response of a first-order system rather than an Airy profile, and in
that case, the standard deviations of the x- and y-estimates came close to their respective limits
of accuracy.
Also, we used the location estimates obtained with the algorithm from a set of repeat images

as initial conditions for the maximum likelihood estimation of the location of the molecule from
those same images. This maximum likelihood estimator fits an Airy photon distribution profile
to the image data, and the equations that describe how the maximum likelihood estimates are
calculated are given in Section 4.3 [Eqs. (38) and (39)]. We calculated the standard deviations of
the resulting x-estimates and y-estimates, and the percentage differences between them and the
limits of the x-localization accuracy and y-localization accuracy [Fig. 5]. We only considered
those estimates for which the estimated locations were within the image. As can be seen in Fig. 5,
the standard deviations are substantially smaller compared to those obtained with the algorithm
[Fig. 4], and come close to the limits of accuracy, consistent with the results in [21] and [22].

6.1.2. Multiple molecules

So far, we have evaluated the performance of the algorithm in the case where we have only one
molecule in any given image. Here, we analyze the results obtained when the algorithm was used
to simultaneously localize molecules from images that contain multiple closely spaced molecules.
As before, we first analyze the detection rate of the algorithm. For this purpose, we simulated
data sets containing images of either two or three molecules. For each image, the location of each
molecule is randomly chosen from a uniform probability distribution that places the molecule
inside the image, with the constraint that the distance between each pair of molecules is not less
than a minimum distance dmin. In one case, all data sets are simulated with the same minimum
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Fig. 6. Analysis of the detection rate of the algorithm, applied to data sets in which each
image contains multiple molecules whose locations in the image are chosen randomly. For a
given data set, the mean photon count is the same for each molecule in every frame. The
location of each molecule is drawn from a uniform distribution that places it inside the image,
with the constraint that the distance between each pair of molecules is not less than the
minimum distance dmin. For each data set, we simulated 200 images of size 30 × 30 pixels
using the parameters given in Section 5.1. For data sets in which there are two molecules per
image, the precision and recall measures are shown as a function of dmin in (a), where the
mean photon count is 2500 photons/molecule, and as a function of the mean photon count in
(b), where dmin = 100 nm. For data sets in which there are three molecules per image, the
precision and recall measures are shown as a function of dmin in (c), where the mean photon
count is 2500 photons/molecule, and as a function of the mean photon count in (d), where
dmin = 100 nm. The Hungarian algorithm with a search area of radius 100 nm is used to
pair the localized molecules with the ground truth molecules.

distance of dmin = 100 nm, but differ by the mean photon count per molecule, which ranges from
500 to 4500. More specifically, each data set comprises 200 images, where each image contains
molecules with the same given mean photon count. In another case, the mean photon count is the
same for all data sets at 2500 photons/molecule, but the data sets differ by dmin, which ranges
from 100 nm to 500 nm. Here, each data set comprises 200 images, where each image contains
molecules separated by the same given minimum distance dmin. Figure 6 shows the precision
and recall measures for the different data sets (similar to the one-molecule case, the Hungarian
algorithm with a search area of radius 100 nm was used to pair the localized molecules with the
ground truth molecules). Specifically, the figure shows that the recall for all data sets is more
than 95%. The precision is likewise quite good, as even when the mean number of photons is as
low as 500 photons/molecule, or the minimum distance between each pair of molecules is as
small as 100 nm, a relatively high percentage (around 85%) of the detected molecules are true
positives. We also analyzed the detection rate for data sets with more molecules per image (5, 7,
and 9 molecules per image), and obtained similar results. To give examples of the reconstructed
image calculated from our algorithm, we simulated images of size 60 × 60 pixels containing two
or three closely spaced molecules separated by a distance d of 50 nm, 250 nm, and 300 nm, with
a mean photon count of 1500 photons/molecule. We then reconstructed each image by applying
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Fig. 7. Reconstruction of images containing two or three closely spaced molecules. (a)
Images of size 60 × 60 pixels of 2, 3, and 2 closely spaced point sources separated from
one another by a distance d of 300 nm, 250 nm, and 50 nm, respectively. The images are
simulated using the parameters given in Section 5.1. (b) Mesh plots of the images shown in
(a). (c) Mesh plots of the magnitude of the reconstructed image (algorithm result), showing
the detection of 2, 3, and 2 single molecules in the image.

our algorithm. As shown in Fig. 7, in all cases we were able to distinguish the closely spaced
molecules from each other.

We next analyze the bias and accuracy of the algorithm when applied to data sets consisting of
repeat images of multiple molecules. Unlike the one-molecule case, bias is observed here. We first
characterize this bias by demonstrating its dependence on the distances between the molecules
relative to the image size. In the following, we focus on data sets comprising images of two
molecules, though we also analyzed data sets with three and five molecules and obtained similar
results. We simulated data sets comprising 15× 15-pixel, 20× 20-pixel, and 40× 40-pixel images
in order to evaluate different combinations of the distance d between the two molecules and the
image size. For a given data set, we simulated 500 images with a mean photon count of 2500
photons/molecule, a pixel size of 6.5 µm × 6.5 µm, and a lateral magnification of 100. For these
settings, the area occupied by an N × N-pixel image in the object space is an s × s square region,
where s = 65N nm (e.g., for N=20, s = 1300 nm). For each data set, the difference between the
average of the estimated x-locations for the correctly detected molecules and the corresponding
true x-coordinate is plotted in Fig. 8. For each image size considered, the figure shows that as d
approaches s/2 (e.g., for N=20, s/2 = 650 nm), i.e., as the difference between the phases of the
poles of the second-order system resulting from the algorithm approaches the maximum of π
rad on the unit circle, the effect of the poles on each other decreases and the estimated bias for
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Fig. 8. Analysis of the average of the location estimates obtained from sets of repeat images
of two molecules. Shown in the left and right plots are the differences between the average
of the x-estimates and the true x-value for the first and second molecules, respectively, for
data sets comprising 15 × 15-pixel, 20 × 20-pixel, and 40 × 40-pixel images. For each image
size, distances d between the two molecules are chosen around half of the side length of the
square region occupied by the image in the object space. For a given data set, we simulated
500 images with a mean photon count of 2500 photons/molecule and the parameters given
in Section 5.1. The results for d = s/2, where s = 65N nm is the side length of the square
region occupied by an N × N-pixel image in the object space, are shown with filled symbols.
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Fig. 9. Analysis of the average and standard deviation of location estimates obtained from
sets of repeat images of two molecules as a function of the mean photon count per molecule.
Two scenarios are considered - one in which the distance d between the two molecules
is 650 nm, and one in which d is 487.5 nm. For each scenario, the data sets differ by the
mean photon count per molecule. For each mean photon count, the data set consists of 500
repeat images of size 20 × 20 pixels, simulated using the parameters given in Section 5.1. (a)
Differences between the average of the estimated x-locations and the corresponding true
x-coordinates for the two molecules. (b) The standard deviations of the estimated x-locations
for the two molecules.
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the location of each molecule approaches 0 nm. The results for d = s/2 are shown with filled
symbols in Fig. 8. Also, we calculated the results for the y-estimates and obtained similar results.
Having characterized the nature of the bias, we next analyze, as we did in the case of one

molecule, the bias and accuracy of the algorithm as a function of the mean photon count per
molecule. For this purpose, we simulated data sets which contain repeat images of two molecules.
These data sets again differ by the mean photon count per molecule, which we assume does not
vary from frame to frame. This mean photon count ranges from 500 to 4500 for the different data
sets. We simulated 500 20 × 20-pixel images per data set. In one case, the distance d between the
two molecules is 650 nm (which corresponds to the filled circle in Fig. 8), and in another case,
d = 487.5 nm (which corresponds to the first open circle to the left of the filled circle in Fig.
8). Looking at the two distances allows us to verify the effect of different distances between the
molecules relative to the image size. To assess the bias of the algorithm, for each molecule in a
given data set we calculated the difference between the average of the estimated x-locations and
the corresponding true x-coordinate. As can be seen in Fig. 9, when d = 650 nm, the estimated
bias is around 0 nm for both molecules. On the other hand, when d = 487.5 nm, the estimated
bias levels are around 3.5 nm and -3.5 nm for molecules 1 and 2, respectively. These bias results
are consistent with the illustration of bias in Fig. 8. Note that we also analyzed the y-estimates
and obtained similar results.

Fig. 10. Result of the algorithm applied to an experimental super-resolution image. (a) Image
of individual Alexa Fluor 647 molecules acquired using the microscopy setup described
in Section 5.2. The pixel size and image size are 16 µm × 16 µm and 192 × 192 pixels,
respectively. (b) The magnitude of the reconstructed image obtained with the algorithm.

For each distance d, we calculated the standard deviations of the estimated x-locations for
nine of the data sets. As shown in Fig. 9, for both distances, as the mean number of photons
per molecule increases, the standard deviation of the estimates decreases. Also, even when the
mean photon count is as low as 500 photons/molecule, the plots show that our algorithm can still
localize the molecules with relatively high accuracy (the standard deviations of the x-estimates
are around 30 nm for both molecules when d = 487.5 nm, and around 27 nm when d = 650 nm).
Similar results were obtained for the y-estimates.

6.1.3. Analysis of the effect of threshold values on the detection rate of the algorithm

In Sections 4.1 and 4.2, typical threshold values in the range [0.8, 0.9] are suggested for the first,
second, and third SVDs of the algorithm. Here, we carry out a more in-depth analysis on the
effect of the threshold values on the detection rate of the algorithm. The results of our analysis
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Table 1. Detection rate of the algorithm as a function of the threshold values used for the
retention of singular values in the first, second and third SVDs.

Data set Mean photon count
per molecule

Threshold for
the 1st SVD

Threshold for the
2nd and 3rd SVDs Recall Precision

1 500

0.7 0.7 1 0.857
0.7 0.8 1 0.850
0.7 0.9 1 0.850
0.8 0.7 1 0.786
0.8 0.8 1 0.768
0.8 0.9 1 0.768
0.9 0.7 0.994 0.755
0.9 0.8 0.994 0.722
0.9 0.9 0.994 0.722

2 1000

0.7 0.7 0.994 0.933
0.7 0.8 0.994 0.933
0.7 0.9 0.994 0.933
0.8 0.7 0.994 0.933
0.8 0.8 0.994 0.933
0.8 0.9 0.994 0.933
0.9 0.7 0.994 0.933
0.9 0.8 0.994 0.933
0.9 0.9 0.994 0.933

3 2500

0.7 0.7 0.994 0.994
0.7 0.8 0.994 0.994
0.7 0.9 0.994 0.994
0.8 0.7 0.994 0.994
0.8 0.8 0.994 0.994
0.8 0.9 0.994 0.994
0.9 0.7 0.994 0.994
0.9 0.8 0.994 0.994
0.9 0.9 0.994 0.994

Results are shown for three simulated data sets that differ by the mean photon count per molecule
per image. Each data set consists of 100 images in which there are two molecules per image. The
location of each molecule is randomly chosen from a uniform distribution that places the
molecule inside the image, and is subject to the constraint that the distance between the two
molecules is not less than 400 nm.
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Fig. 11. Results of the algorithm applied to an ROI from an experimental super-resolution
image. (a) A 41 × 41-pixel ROI of the super-resolution image shown in Fig. 10. (b) The
magnitude of the reconstructed image (algorithm result). (c) The image reconstructed using
Eq. (36), in which the single molecule locations estimated using our algorithm are used in
the computation of the Airy profile q in Eq. (37), and in which the mean photon counts Np,n

and the parameter α := 2πna
λ are separately estimated with a maximum likelihood estimator.

(d), (e), and (f) show the mesh plots of the images in (a), (b), and (c), respectively.

show that in the case that we have a relatively large number of photons per molecule, the detection
rate of the algorithm is not very sensitive to the threshold values. Provided that a relatively high
threshold value (e.g., in the range [0.7, 0.9]) is used to ensure that singular values corresponding
to signal are not discarded, it appears that the optimization procedure of Section 4.2 is able to
remove the singular values corresponding to noise and yield the correct result. On the other hand,
in the case of a low number of photons per molecule, the differences between the singular values
that correspond to noise and the singular values associated with signal are often small, and there
is no straightforward guideline to choose the threshold values.
In our analysis, we consider three simulated data sets in which there are two molecules per

image. The three data sets differ by the mean photon count per molecule per image, which we
chose to be 500, 1000, and 2500. As can be seen in Table 1, when the mean photon count is 1000
or 2500 per molecule, the recall and precision remain unchanged for threshold values of 0.7, 0.8,
and 0.9. However, in the case of the low mean photon count of 500 per molecule, use of a high
threshold value, such as 0.8 or 0.9, for the first SVD, leads to the retention of more noise singular
values and results in a nontrivial reduction of the precision.
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6.2. Results for experimental data

Here, we present the results obtained by applying the proposed localization algorithm to
experimental single molecule image data acquired as described in Section 5.2. Both the acquired
image and the reconstructed image are shown in Fig. 10, demonstrating that we were able to
recover the locations of the significant peaks in the original image that are associated with the
locations of individual Alexa Fluor 647 dye molecules.
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Fig. 12. Analysis of the bias of location estimates obtained from repeat images containing
exactly one molecule, simulated using the frequency response of a first-order system. (a)
Image of a point source simulated using the frequency response of a first-order system, i.e.,
using Eq. (42) with h = 1, and a mean photon count of Np,1 = 1000. (b) Mesh view of
the image shown in (a). (c) Difference between the average of the x-estimates and the true
x-value, and difference between the average of the y-estimates and the true y-value for data
sets that differ by the mean photon count per image assumed for the molecule. For each mean
photon count, the data set consists of 1000 repeat images of size 20 × 20 pixels, simulated
using the frequency response of a first-order system.

We next applied the algorithm to a relatively small 41 × 41-pixel region of interest (ROI) [Figs.
11(a) and 11(d)] in the acquired image so that a better visual comparison can be made between
the reconstructed image obtained with the algorithm and the actual image. In addition to the
image reconstructed in terms of the parameters of the multi-order system [Figs. 11(b) and 11(e)],
an image is reconstructed using Eq. (36), in which the single molecule locations estimated using
our algorithm are used in the computation of the Airy profile q [Figs. 11(c) and 11(f)]. For this
purpose, we separately estimated the mean photon counts Np,n in Eq. (36) and the parameter
α := 2πna

λ in Eq. (37) using a maximum likelihood estimator. The reconstruction using the Airy
profile provides a better visual comparison with the actual image by showing peaks with more
comparable intensities.
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Fig. 13. Analysis of the standard deviation of location estimates obtained from repeat images
containing exactly one molecule, simulated using the frequency response of a first-order
system. Shown in the left and right plots are the standard deviations of the x- and y-estimates
and the limits of the x- and y-localization accuracy, respectively, for nine of the data sets
from Fig. 12.

Appendix A: Frequency response of a multi-order system as the PSF model

In this section, we present the results of the proposed algorithm applied to images simulated using
the frequency response of a multi-order system. In this case, instead of Eq. (36), µθ̂h is given as

µθ̂h (k1, k2) :=
1
C

����� h∑
n=1

Np,n

(ei2πk1/N1 − ā1
n)(ei2πk2/N2 − ā2

n)

����� , ki = 1, ..., Ni, i = 1, 2, (42)

where C :=
∑N1

k1=1
∑N2

k2=1

���∑h
n=1

1
(ei2πk1/N1−ā1

n)(ei2πk2/N2−ā2
n)

��� is the normalization factor. Here, to
analyze the performance of the algorithm, we simulated data sets containing repeat images of one
molecule using the frequency response of a first-order system, i.e., using Eq. (42) with h=1. The
data sets differ by the mean photon count Np,1 for the molecule. For each mean photon count,
the data set consists of 1000 repeat images of size 20 × 20 pixels. In Figs. 12(a) and 12(b), an
example of an image with a mean photon count of Np,1 = 1000 is shown. To assess the bias of the
algorithm, we calculated the differences between the averages of the x- and y-estimates and the
corresponding true x- and y-coordinates. Similar to the case of images simulated with the Airy
profile [Fig. 3], the evenness of the spread of the estimated bias about 0 nm for both coordinates
[Fig. 12(c)] demonstrates that there is no systematic bias associated with our proposed algorithm
when there is only one molecule per image.

Also, we calculated the standard deviation of the estimates for nine of the data sets and
compared the results with the limit of the localization accuracy calculated using the approach
for experimental PSFs presented in [23]. It can be seen in Fig. 13 that when the image of the
molecule is simulated as the frequency response of a first-order system, the accuracy of the
algorithm comes close to the limit of the localization accuracy.
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