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Abstract

Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting
and dark states underpin some of the most celebrated advancements in super-resolution mi-
croscopy. While this stochastic behavior has been heavily exploited, full characterization of
the underlying models can potentially drive forward further imaging methodologies. Under
the assumption that fluorophores move between fluorescing and dark states as continuous
time Markov processes, the goal is to use a sequence of images to select a model and es-
timate the transition rates. We use a hidden Markov model to relate the observed discrete
time signal to the hidden continuous time process. With imaging involving several repeat
exposures of the fluorophore, we show the observed signal depends on both the current and
past states of the hidden process, producing emission probabilities that depend on the tran-
sition rate parameters to be estimated. To tackle this unusual coupling of the transition and
emission probabilities, we conceive transmission (transition-emission) matrices that capture
all dependencies of the model. We provide a scheme of computing these matrices and
adapt the forward-backward algorithm to compute a likelihood which is readily optimized
to provide rate estimates. When confronted with several model proposals, combining this
procedure with the Bayesian Information Criterion provides accurate model selection.

Keywords: Hidden Markov models, Markov processes, rate estimation, forward-backward algo-
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1 INTRODUCTION

Fluorescence microscopy is a collection of techniques that utilize the photon emitting prop-

erties of fluorescing molecules, called fluorophores, to perform optical imaging, particularly in

cell biology and biomedical applications. Recent years have seen the advent of a number of

super-resolution microscopy techniques that have bypassed the classical resolution limits of flu-

orescence microscopy (Huang et al., 2009). Specifically, single molecule localization microscopy

(SMLM) approaches, such as photoactivated localization microscopy (PALM) (Betzig et al.,

2006; Hess et al., 2006) and stochastic optical reconstruction microscopy (STORM) (Rust

et al., 2006; Heilemann et al., 2008), rely on the ability exhibited by some fluorophores to pho-

toswitch stochastically between a photon emitting On state and non-emitting dark states (Van

de Linde and Sauer, 2014; Ha and Tinnefeld, 2012). A specimen decorated with a spatially

dense number of photon emitting fluorophores prevents accurate identification of individual flu-

orophores and resolution of structures smaller than the diffraction limit – see Figure 1 (a). Using

a fluorophore with stochastic photo-switching properties can provide an imaging environment

where the majority of fluorophores are in a dark state, while a sparse number have stochastically

switched into a transient photon emitting On state. This results in the visible fluorophores being

sparse and well separated in space; with the use of a high-performance camera the individual
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Figure 1: (a) Illustration of the SMLM imaging process. When all fluorophores simultaneously
stay in a photon emitting On state, diffraction renders structures unresolvable. Stochastically
photo-switching fluorophores imaged over time across several frames give rise to a sequence
of sparsely populated images where each fluorophore can be isolated and localized with high
precision. Aggregating these frames gives rise to a super-resolved image. Data from Sage et al.
(2015) (b) Isolated fluorophores are localized by fitting the point spread function (PSF) to the
diffraction limited spot.
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fluorophores in the On state can be identified and localized with nanometer scale precision by

fitting point spread functions (Sage et al., 2015; Ober et al., 2015) – see Figure 1 (b). Through

the acquisition across time of a large sequence of images (typically thousands) – see Figure 1

(a) – many more photo-switching fluorophores can be isolated in time and precisely localized in

space. When aggregated and plotted, these localizations provide an accurate and detailed map

of fluorophore positions giving rise to a super-resolved image.

While lateral resolutions of 10 - 30 nanometers (nm) are possible in biological samples using

SMLM, the resolution and image quality is strongly dependent on the photo-switching properties

of the fluorophore used. This dependence arises primarily because longer On states provide a

greater number of photons being recorded by the camera, which in turn leads to greater precision

in localizing fluorophores (Ober et al., 2004; Ram et al., 2012; Thompson et al., 2002; Rieger

and Stallinga, 2014). However, the increased random occurrence of fluorophores simultaneously

occupying the On state within a diffraction limited spot can lead to significant imprecision,

missed events and unwanted artifacts (Van de Linde et al., 2010; Nieuwenhuizen et al., 2015).

Thus, a careful choice of fluorophore and the environment used to promote photo-switching –

controlled by the buffer solution and illumination intensity – must be made for the intended

application. This is particularly important in live-cell applications when considerations must be

made for temporal resolution and reduced laser intensities.

In order to inform the choice of fluorophore with its environment, and aid the development

of novel fluorophores, accurate characterization of the photo-kinetic model of the fluorophore,

together with estimation of photo-switching rates (the rate at which fluorophores transition

between On and dark states) is required (Dempsey et al., 2011; Lehmann et al., 2016). Further to

this, accurate knowledge of the photo-switching characteristics could be employed to maximize

resolutions achieved using advanced analytical methods, for example, 3B analysis (Cox et al.,

2011) and DeconSTORM (Mukamel et al., 2012) and improve the performance of molecular

counting techniques (Rollins et al., 2014; Lee et al., 2012).

A number of attempts have been made to model the kinetic schemes of fluorophore photo-

switching and estimate the corresponding photo-switching rates. These kinetic schemes, as is

common across single molecule biophysics, are characterized by Markovian transitions between a

finite set of discrete states and are therefore ideally suited to being modeled as continuous time

Markov processes. In Figure 2 are four models for photo-switching fluorophores. The first, 2a,

depicts a typical kinetic model, accompanied by the state-space diagram we will adopt in this
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Figure 2: Common models used to describe the continuous time photo-switching dynamics of
a fluorophore with homogeneous transition rates. See text for details.

paper. In this model there is a photon emitting On state 1 (involving rapid transitions between

excited state S1 and ground state S0 via the absorption and emission of a photon), two temporary

dark states 0 and 01 (the triplet state, T1 and the redox states, F+ and F−) and an absorption 2

(BF/BT0/BS0) which in this application is known as the photobleached state. Then in Figures

2b-2d are three further common state space models. Figure 2b portrays a photo-switching

model with a simple two state {On(1) Dark(0)} structure. Models of this type are suitable
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for super-resolution methods including point accumulation for imaging in nanoscale topography

(PAINT) and DNA-PAINT (Sharonov and Hochstrasser, 2006; Jungmann et al., 2010). Figure

2c depicts a model that incorporates an absorbing state 2. This form of photo-switching followed

by absorption describes a first approximation to the behavior that occurs spontaneously in a

number of organic fluorophores and post-activation of photoactivatable proteins (Van de Linde

and Sauer, 2014; Ha and Tinnefeld, 2012; Vogelsang et al., 2010). Figure 2d considers a model

in which three distinct dark states are hypothesized which in some cases is a necessary extension

to model (c), for instance when very rapid imaging is used (Lin et al., 2015).

The challenge comes in selecting the correct model and estimating the transition rates

of the continuous time Markov process {X(t) : t ∈ R≥0} from an observed discrete-time

random process {Yn : n ∈ Z≥0}. Here, R≥0 and Z≥0 denote the non-negative reals and

integers, respectively. Typically, {Yn} is derived from a sequence of images (frames) with Yn

corresponding to the observed state of the molecule in the nth frame. This is formed by an

exposure of the continuous time process {X(t)} over the time-interval [n∆, (n+ 1)∆), where

∆ is the frame length. Process {Yn} can either be a sequence of photon fluxes associated

with that molecule for each frame (Figure 3a), or a simple sequence of 1s and 0s indicating if

the molecule was detected in the frame or not (Figure 3b). In all cases, the observations are

subject to the effects of noise and instrument limitations. Essential to the subsequent analysis,

therefore, is the ability to account for missed state transition events due to noise and the

temporal resolution of the data acquisition, as well as the detection threshold used to determine

the state of the system (Figure 3c). Similar problems occur in other areas of biophysics where

estimating transition rates of an underlying continuous time Markov process must be inferred

from an observed discrete time signal. In particular, ion-channels have formed the focus of much

work (Colquhoun and Hawkes, 1981; Qin and Li, 2004; Rief et al., 2000), including methods

that attempt to account for missed events (Qin et al., 1996; Colquhoun et al., 1996; Hawkes

et al., 1990, 1992; Epstein et al., 2016). However, the mechanism by which the observed signal

is obtained and processed from the raw signal is fundamentally different to that of fluorescence

microscopy imaging.

Up until now, methods for estimating photo-switching transition rates in fluorescence mi-

croscopy are limited. The method in Lin et al. (2015) involves defining {Yn} to be the sequence

of 1s and 0s and extracting the dwell times. These are the set of time lengths that {Yn} is seen

to sit in the On state and the set of time lengths it is seen to sit in a dark state. Assuming
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Figure 3: (a) A simulated intensity signal of a fluorophore across time. Each measurement
corresponds to the intensity in a frame. 7500 frames were recorded over 250 seconds at a rate
of 30 frames per second. (b) Close up of the signal over the time window of 35s to 55s. In
red is the observed signal {Yn} indicating if the fluorophore was detected in a particular frame.
(c) A further close up of the signal showing intensity read-outs for independent frames. The
true, hidden photon emitting On state of the molecule is also indicated, demonstrating how
sub-frame length photon emitting events can be missed due to noise or the temporal resolution
of the data acquisition.

these dwell times to be exponentially distributed (or a mixture of exponential distributions in

the case of multiple dark states), maximum likelihood estimates of the transition times are then

computed. This method, which will be referred to here as exponential fitting, has two flaws.

Firstly, it does not correctly account for the effect the imaging procedure has on the stochastic
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structure of the discrete time process. Secondly, it does not allow for the absorbing (photo-

bleached) state, which must be identified and accounted for by truncation of the data to the

last observed On state. This is especially troublesome as, to an observer, it is indistinguishable

from a temporary dark state. This method therefore results in the absence of estimates for the

absorption rate and can lead to significantly biased estimates of the transition rates between

On and dark states.

Hidden Markov models (HMMs) are widely used across a range of scientific and engineering

disciplines to relate a sequence of observations, called emissions, to the states of an unobserved

(hidden) Markov process that one wishes to perform inference on. Their use is particularly

prevalent in image processing where the observations are a sequence of images in time and it

is commonly assumed that each image is dependent only on the state of the hidden process

at the time at which it is observed. Such an approach has been proposed for this problem in

Greenfeld et al. (2015), where the hidden process is a discretized version of {X(t)}. Here, they

let {Yn} be the sequence of photon-fluxes such that it is a standard (first-order) HMM with

Poisson emissions. They then implement the Baum-Welch algorithm (Baum and Petrie, 1966;

Baum and Eagon, 1967; Baum and Sell, 1968; Baum et al., 1970) to estimate the transition

probabilities of the discretized process and use an approximation to obtain the transition rates

of the continuous time process {X(t)}. In doing so, they acknowledge that missed events will

heavily bias rate estimates. Furthermore, their model is also unable to deal with the absorbing

state.

In this paper we provide two important contributions. Firstly, in Section 2, by considering a

general model for {X(t)} that includes multiple dark states and an absorbing state, we rigorously

formulate the discrete time stochastic process {Yn} that indicates whether a molecule is detected

in each frame. A crucial part of this formulation is recognizing that a image is not formed from

an instantaneous sampling of the true state, as is usually assumed in image processing, but is

instead formed by exposing a camera sensor over a time interval of length ∆. That is to say,

Yn is not dependent on just X(n∆), but instead on the integral (i.e. all values) of {X(t)}

over the interval [n∆, (n + 1)∆). Taking consideration of noise and instrument sensitivity, we

fully account for missed events and give important results on the stochastic structure of {Yn},

including showing it is non-Markovian.

The second contribution of this paper is to propose novel methodology for estimating the

state transition rates of {X(t)} under this correct treatment of the imaging procedure. In Sec-
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tion 3, we develop an HMM for {Yn} where we first implement a time discretization scheme

on the hidden Markov process {X(t)}. Crucially, as discussed above, correct understanding

of the imaging procedure dictates two key properties. Firstly, Yn depends on both the current

(end of frame) and previous (beginning of frame) hidden states, X((n + 1)∆) and X(n∆),

respectively. Secondly, this HMM possesses emission probabilities that are dependent on the

static parameters of the hidden process state transitions that we ultimately wish to estimate.

This coupled behavior renders traditional expectation maximization (EM)-type methods (e.g.

Baum et al. (1970)) of parameter estimation inappropriate. We therefore make the novel step

of introducing what we call transmission (transition-emission) matrices that incorporate this

coupling between transition and emission probabilities by capturing all the dependencies in the

model. For a given photo-switching kinetic model, we provide both a scheme for computing

these matrices and an adaptation of the forward-backward algorithm to compute the likelihood

of observations. Through numerical optimization we are able to compute maximum likelihood

estimates of the transition rate parameters for the continuous time process {X(t)} that we

wish to draw inference on. A bootstrapping scheme is also presented for computing confidence

intervals. In the case of an unknown kinetic model, we propose the use of the Bayesian infor-

mation criterion (BIC) for selecting the best suited model from a set of proposals, thus also

providing a powerful tool for chemists wishing to infer the number of quantum states a particular

fluorophore can exist in.

In Section 4, we provide a simulation study that compares this new estimation scheme to

the exponential fitting method on a range of photo-switching models, demonstrating significant

improvements in both the bias and the variance of our rate estimates. We further show the

BIC performs accurate model selection when presented with a range of model proposals. In

Section 5, the estimation scheme presented in this paper is applied to the Alexa Fluor 647 data

originally analysed by the exponential fitting method in Lin et al. (2015), consistently selecting

the hypothesised three temporary off-state model (Figure 2d) and revealing clear dependence

between laser intensity and key transition rate parameters. In the accompanying supplementary

material, as well as key mathematical details, we include an extensive simulations section where

we report a significant improvement on rate estimates across a range of models and relevant

experimental conditions.
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2 MODELING PHOTO-SWITCHING BEHAVIOR

The true photo-switching behavior of the fluorophore is a continuous time stochastic phe-

nomenon. However, an experimenter can only ever observe a discretized manifestation of this

by imaging the fluorophore in a sequence of frames. These frames are regarded as a set of

sequential exposures of the fluorophore and the observed discrete time signal indicates whether

the fluorophore has been observed in a particular frame. It is the continuous time process on

which we wish to draw inference based on the observed discrete-time process indicating whether

the fluorophore was observed in a frame. In this section we first present the continuous time

Markov model of the true (hidden) photo-switching behavior, and then derive the observed

discrete time signal, together with key results on its statistical properties.

2.1 Continuous time

We model the true photo-switching effect of the fluorophore as a continuous time Markov

process, {X(t) : t ∈ R≥0} with discrete state space SX . This is a stochastic process which

satisfies the Markov property

P(X(tn) = in|X(tn−1) = in−1, . . . , X(t0) = i0) = P(X(tn) = in|X(tn−1) = in−1),

for any sequence of times 0 ≤ t0 < t1 < · · · < tn <∞ and any sequence of states ij ∈ SX for

j = 0, . . . , n.

In this paper we consider a general model for {X(t)} that can accommodate the numerous

mechanisms of photo-switching utilized in standard SMLM approaches such as (F)PALM and

(d)STORM. Specifically, this model consists of a photon emitting (On) state 1, m+1 non photon

emitting (dark/temporary off) states 00, 01, . . . , 0m, where m ∈ Z≥0, and a photobleached

(absorbing/permanently off) state 2. In order to accommodate for the m = 0 case when we

have a single dark state, we use the notational convention that state 00 ≡ 0. The model,

illustrated in Figure 4, allows for transitions from state 1 to the multiple dark states (from a

photochemical perspective, these can include triplet, redox and quenched states). These dark

states are typically accessed via the first dark state 0 (reached as a result of inter-system crossing

of the excited S1 electron to the triplet T1 state - see Figure 2a). Further dark states 0i+1,

i = 0, . . . ,m − 1, are accessible by previous dark states 0i (by, for example, the successive

additions of electrons forming radical anions (Van de Linde et al., 2010)). We allow the On
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state 1 to be accessible by any dark state and we consider the most general model in which the

absorption state 2 is accessible from any combination of other states (Vogelsang et al., 2010;

Van de Linde and Sauer, 2014; Ha and Tinnefeld, 2012).

The state space of {X(t)} is SX = {0, 01, . . . , 0m, 1, 2} and is of cardinality m + 3. We

denote λij to be the transition rate between states i and j and µi to be the absorbing rate from

state i to 2, where i, j ∈ S̄X := SX \ {2}.

The generator matrix for {X(t)} is therefore given as

G =



−σ0 λ001 0 0 0 0 . . . λ01 µ0

0 −σ01 λ0102 0 0 0 . . . λ011 µ01

0 0 −σ02 λ0203 0 0 . . . λ021 µ02

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . −σ0m λ0m1 µ0m

λ10 0 0 0 0 0 . . . −σ1 µ1

0 0 0 0 0 0 . . . 0 0


, (1)

where σ0m = λ0m1 + µ0m , σ1 = λ10 + µ1 and when m > 0, σ0i = λ0i0i+1 + λ0i1 + µ0i ,

for i = 0, . . . ,m − 1. For full characterization, we define its initial probability mass νX :=(
ν0 ν01 . . . ν0m ν1 ν2

)>
with

∑
j∈SX νj = 1. The most commonly occurring in practice

is with ν1 = 1. Moreover, although the case when 1 > ν2 > 0 may give rise to fluorophores

that are never observed, for inference purposes, we discard all traces containing no observations

(1s) of fluorophores and set ν2 = 0.

In this paper, we will refer to specific models (from that shown in Figure 4) in the form

Mm
A . Here, m is as previously defined (denoting the number of multiple dark states beyond the

00 state that are present in all models) and A ⊆ S̄X denotes the set of states from which the

absorption state 2 is accessible. In particular, considering the three classical models presented

in Figure 2: model (a) is M0
∅ : the m = 0 case where µ0 = µ1 = 0, model (b) is M0

{0,1}: the

m = 0 case where µ0, µ1 > 0, and model (c) is M2
∅ : the m = 2 case where µ0 = µ01 = µ1 = 0.

2.2 Discrete time observation process

Having presented the continuous time model for the true photo-switching behavior, we will now

introduce the model for the observed discrete time process and show how the transition rates

given in (1) are not amenable to direct estimation.
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Figure 4: General m+ 3 state (m ∈ Z≥0) model of a fluorophore.

The imaging procedure requires taking a series of successive frames. Frame n is formed by

taking an exposure over the time interval [n∆, (n + 1)∆), where n ∈ Z≥0. The constant ∆

corresponds to the exposure time for a single frame, also known as the frame length. We define

the discrete time observed process {Yn : n ∈ Z≥0}, with state space SY = {0, 1}, as Yn = 1 if

the fluorophore (characterized by {X(t)}) is observed in frame n and equal to 0 otherwise. For

the fluorophore to be observed in the time interval [n∆, (n+ 1)∆) it must be in the On state

1 for a minimum time of δ ∈ [0,∆). The value of δ is unknown and is a result of background

noise and the imaging system’s limited sensitivity. We note that if {X(t)} exhibits multiple

jumps to state 1 within a frame, then a sufficient condition for observing the fluorophore is that

the total time spent in the On state exceeds δ. The δ = 0 case is the idealistic scenario of a

noiseless system and perfect sensitivity such that the fluorophore is detected if it enters the On

state for any non-zero amount of time during the exposure time ∆.

We formally define the observed process as

Yn = 1[δ,∆)

(∫ (n+1)∆

n∆
1{1}(X(t)) dt

)
, (2)

where 1A(·) is the indicator function such that 1A(x) = 1 if x ∈ A and is zero otherwise.

Figure 5 illustrates the manifestation of the discrete time signal {Yn} from the continuous time

signal {X(t)}.
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X(t)

t0
01

02

0m

1
2 δ

∆ 2∆ 3∆ 4∆ 5∆ 6∆
Yn 1 1 0 0 1 0

Figure 5: Illustration of how the states for Yn derive from the process X(t)

2.3 The inference problem

The inference problem is two-fold. Firstly for a given model, the aim is to estimate the unknown

parameters

θ =
(
λ001 . . . λ0m−10m λ01 . . . λ0m1 λ10 µ0 . . . µ0m µ1 νX δ

)>
from a finite length realization of {Yn}. Crucially, it is shown in the Supplementary Materials

Section S1 that {Yn} does not exhibit the Markov property (of any order) for any m ∈ Z≥0,

and for any ∆ and δ such that ∆ > δ ≥ 0. The non-Markovianity excludes classical inference

methods and motivates the use of a Hidden Markov Model (HMM), with a likelihood based

approach for estimating θ.

Beyond this, it may be the case that the true model (characterized by its number of dark

states) is unknown and may need to be selected in addition to estimating the unknown param-

eters. We tackle both of these problems in the next section.

3 CHARACTERIZING PHOTO-SWITCHING BEHAVIOR

Hidden Markov models, first presented in Baum and Petrie (1966), relate a sequence of obser-

vations to the states of an unobserved or hidden Markov chain. The aim of building a hidden

Markov model (HMM) is to allow inference on the hidden process using these observations.

In its simplest form, an HMM assumes the propagation of both state and observed sequences

to be in discrete time, and a general first order HMM assumes that the observation process

{Yn : n ∈ Z≥0} is related to a hidden first order Markov Chain {Xn : n ∈ Z≥0} via an emission

probability distribution B := (B)i,j = P(Yn = j|Xn = i), considered to be fully indepen-
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dent of the static parameters that characterize the probability distribution of state transitions

P := (P )i,j = P(Xn = j|Xn−1 = i). In this setting we say B and P are decoupled. For a

sequence y0, y1, . . . , yN of observations from this model, the Baum-Welch re-estimation algo-

rithm (Baum and Petrie, 1966; Baum and Eagon, 1967; Baum and Sell, 1968; Baum et al.,

1970) is an EM type method that utilizes the forward-backward algorithm (see Levinson et al.

(1983) for details) to optimize the likelihood function and compute maximum likelihood esti-

mates of νX (the probability mass of X0), B and P . This in turn can be used to estimate

parameters of the emission and state transition probabilities. When the hidden Markov process

and/or the observation process are of higher order, the HMM can be transformed to a general

first order process (Du Preez, 1998; Lee and Lee, 2006; Ching et al., 2003) and Baum-Welch

can be applied in the usual way. Readers are directed to MacDonald and Zucchini (1997) for a

comprehensive review.

Whilst standard, first (or higher) order HMMs have been extensively studied and are most

frequently used in applications, the rigid framework of being in discrete time with emission

probabilities decoupled from state transition probabilities is not always suitable, as we will

now show is the case for images formed by exposures over a time interval. We take time to

carefully formulate the HMM suitable for this application, presenting what we call transmission

(transmission-emission) matrices to capture the dependencies in the model. We then go on

to provide a novel adaptation of the forward-backward algorithm to estimate θ, the unknown

parameters of our HMM in the case of a known state-space SX of the hidden process. We will

then show how the Bayesian information criterion (BIC) can be used for model selection and

parameter estimation in the case of an unknown state-space.

3.1 Photo-switching hidden Markov model

In this section we build an HMM for our observation process {Yn}, which we call the Photo-

switching hidden Markov model (PSHMM). The first immediate reason as to why the standard

set-up outlined above is inappropriate for this application is because the hidden Markov process

{X(t)} evolves in continuous time. To deal with this, we need to adopt a time-discretization

scheme for the hidden process. Analogously to Liu et al. (2015), we state that {X(t)} propagates

in ∆-separated discrete time steps according to the transition probability matrix P∆ = eG∆,

where G is given in (1). Our hidden process is therefore now represented by the discrete time

Markov chain {X(n∆) : n ∈ Z≥0}.
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(b)

Figure 6: Illustration of the HMM setup. (a): Traditional HMM where observed state is
dependent on current hidden. (b): Our HMM where observed state depends on both the
current and past hidden states.

When Yn depends solely on X(n∆) (see Figure 6a) and the corresponding emission matrix

B is decoupled from P , a continuous time EM algorithm (Liu et al., 2015) analogous to the

Baum-Welch can be used to estimate νX , B and P . However, this will be inappropriate in

our setting for two related reasons. Firstly, we have shown in Section 2, specifically equation

(2), that exposing images over a non-zero length of time means Yn depends on the full path

of {X(t)} within the interval [n∆, (n + 1)∆). To correctly deal with this it is necessary to

construct the HMM to consider dependence between Yn and both X(n∆) and X((n + 1)∆)

(see Figure 6b). Secondly, this construction of {Yn} in (2) means the emission probabilities are

clearly dependent on the static parameters θ of the hidden process and are therefore coupled

with P . The EM procedures highlighted above require decoupled B and P so that at each step

the quasi-likelihood can be optimized separately. To the best of our knowledge, methods for

dealing with coupled systems have not been dealt with in the literature. While an EM algorithm

could be used for a coupled system, analytic forms for the update steps would in general be

intractable, leading to numerical maximization procedures at each iteration, thereby increasing

computational complexity. We will now formally characterize the PSHMM and provide a novel

method for estimating the unknown static parameters in the case of a coupled system.

3.1.1 Formal characterization of the PSHMM

Formally, we characterize our PSHMM with
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1. an initial probability vector νX =
(
ν0 ν01 . . . ν0m ν1 ν2

)>
where νi := P(X(0) =

i) for i ∈ SX ;

2. Transmission matrices

B
(l)
∆ =



b
(l)
00,∆ b

(l)
001,∆

. . . b
(l)
00m,∆

b
(l)
01,∆ b

(l)
02,∆

b
(l)
010,∆ b

(l)
0101,∆

. . . b
(l)
010m,∆

b
(l)
011,∆ b

(l)
012,∆

...
...

...
...

. . .
...

b
(l)
0m0,∆ b

(l)
0m01,∆

. . . b
(l)
0m0m,∆

b
(l)
0m1,∆ b

(l)
0m2,∆

b
(l)
10,∆ b

(l)
101,∆

. . . b
(l)
10m,∆

b
(l)
11,∆ b

(l)
12,∆

0 0 0 0 . . . b
(l)
22,∆


, (3)

where

b
(l)
ij,∆ : = P(Yn = l,X((n+ 1)∆) = j|X(n∆) = i)

= P(Y0 = l,X(∆) = j|X(0) = i) i, j ∈ SX , l ∈ SY ,

b
(l)
22,∆ = 1{0}(l).

These transmission matrices combine the transition and emission probabilities, thereby allowing

us to account for a coupled system. The full mathematical formulation for deriving their forms

involves conditioning on the number of jumps from all m + 1 dark states within the interval

[0,∆). From this, we use Laplace transforms and the distributions of state holding times to

iteratively compute matrices that converge to our set of transmission matrices. A more detailed

explanation of this methodology, along with full derivations and expressions is presented in

Supplementary Materials Section S2. Furthermore, an algorithm (Algorithm 1) detailing all

computational steps to evaluate these matrices suitable for any m ∈ Z≥0 (any number of

multiple dark states) can be found in Appendix A.

3.2 Estimating unknown parameters of the PSHMM

We now provide an algorithm for estimating the unknown parameters θ of the PSHMM, which

utilizes a suitable adaptation of the forward-backward dynamic programming algorithm (Rabiner

(1989)), making use of the transmission matrices in (3).

Let y =
(
y0 y1 . . . yNF−1

)>
be the sequence of observations across NF frames for a
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single photo-switching fluorophore. We define the forward-backward probabilities as

αn,i = P(Y0 = y0, . . . , Yn−1 = yn−1, X(n∆) = i) n = 1, . . . , NF ,

βn,i = P(Yn = yn, . . . , YNF−1 = yNF−1|X(n∆) = i) n = 0, . . . , NF − 1.

For each such n, we define the forward-backward vectorsαn =
(
αn,0 . . . αn,0m αn,1 αn,2

)>
and βn =

(
βn,0 . . . βn,0m βn,1 βn,2

)>
. Using this notation, we can show that α>n =

α>n−1B
(yn−1)
∆ for n = 2, . . . , NF and α>1 = ν>XB

(y0)
∆ when n = 1. This yields the following

recursion formula

α0 = νX α>n = α>n−1B
(yn−1)
∆ n = 1, . . . , NF , (4)

βNF = 1m+3 βn = B
(yn)
∆ βn+1 n = 0, . . . , NF − 1,

where 1m+3 is the (m+ 3)× 1 vector of ones. It now follows that the likelihood of observation

vector y given parameter vector θ is L(y;θ) = α>nβn for all n = 0, ..., NF . In particular,

we have L(y;θ) = α>NF 1m+3, which can be readily computed using the transmission matrices

together with recursive computation for α>
n as indicated in (4). In the situation where we have

NE ≥ 1 independent photo-switching fluorophores, the log-likelihood is given by

`(Y;θ) =

NE∑
k=1

log
(
α>NF ,k1m+3

)
, (5)

where Y =
(
y1 y2 . . . yNE

)
and αNF ,k is the forward probability vector for emitter

k = 1, . . . , NE . Maximizing (5) with respect to θ can be done either through numerically

approximating derivatives or by using derivative-free optimization, for example with the Nelder-

Mead algorithm. A discussion on multimodality and choosing a starting point for optimization

can be found in the Supplementary Materials Section S3.

3.2.1 Accounting for false positive observations

Occasionally, random peaks in the background noise may exceed the threshold value used

to determine a fluorophore in the On state, resulting in a false positive identification of the

fluorophore. For experiments conducted over a large enough number of frames, this false

positive rate may become significant in the observed process {Yn}.
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Specifically if α ∈ [0, 1] denotes the probability of falsely observing a fluorophore, assumed

independent of the general observation process, then we may use the updated transmission

matrices

B
∗(0)
∆ = (1− α)B

(0)
∆

B
∗(1)
∆ = B

(1)
∆ + αB

(0)
∆ ,

in the evaluation of the log-likelihood `(Y;θ∗) in (5). This would thus involve estimating

θ∗ = [θ> α]> from the observations Y.

3.3 Bootstrapping scheme

When only one experiment is conducted to produce an NF ×NE dataset Y, a single prediction

θ̂ is obtained. In this circumstance, a bootstrapping scheme can be used to gain approximate

confidence intervals for θ.

In the same manner as is presented in Efron and Tibshirani (1993), we generate R (typi-

cally large) bootstrap datasets Y∗1,Y∗2, . . . ,Y∗R each consisting of re-sampled (with replace-

ment) columns of Y. From each dataset, we acquire bootstrap replicated parameter estimates

θ̂
∗1
, θ̂
∗2
, . . . , θ̂

∗R
using the same PSHMM maximum likelihood procedure used to obtain θ̂. For

0.5 < p < 1, letting θ̂
∗
(p) and θ̂

∗
(1−p) be the 100 · pth and 100 · (1 − p)th empirical percentiles

from θ̂
∗1
, θ̂
∗2
, . . . , θ̂

∗R
(with each component being the percentile from its corresponding pa-

rameter), a percentile bootstrap interval of length 1− 2p is given by (see Efron and Tibshirani

(1993))

[θ̂%,lo, θ̂%,up] ≈ [θ̂
∗
(p), θ̂

∗
(1−p)].

3.4 Model selection

In order to determine the unknown number of multiple m dark states, we may use the Bayesian

information criterion (BIC) to determine the most likely model given data Y. This particular

model selection procedure is chosen due to the incorporation of the log-likelihood function which

can be readily and easily computed, and further due to its penalization of over-fitting.

The BIC is defined in our context as being q log(NENF ) − 2`(Y; θ̂), where q denotes the

number of unknown parameters estimated in θ and `(Y; θ̂) denotes the maximized log-likelihood

using the maximum likelihood estimates θ̂. This criterion can be computed among all suitable
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models, with the most preferred being chosen as that with the smallest BIC value.

4 SIMULATION STUDY

In order to test the performance of parameter estimation against ground truth, synthetic imaging

data of photo-switching fluorophores was simulated. We being our focus on the model M0
{1},

since for many practical applications the life-times of further dark (in particular the triplet (T1))

states is short relative to ∆. As such, this dark state has been considered as part of the

meta-stable On state (Ha and Tinnefeld, 2012; Vogelsang et al., 2010). Since the predominant

pathway to absorption is via the triplet state, this allows for a simplified model to be used in

which the absorption state 2 is only accessible from state 1. Given the popularity of this model

and its ease of analysis, we have derived the exact solution of the corresponding transmission

matrices (see Supplementary Materials Section S2).

Details on the image simulation method and how the discretized state sequences were

extracted can be found in the Supplementary Materials Section S4. Global parameter values are

also noted. The extracted state sequences were analyzed using an implementation of Algorithm

1 (see Appendix A for theoretical details). The resulting parameter estimates were compared

to estimates derived from the exponential fitting method, which was extended in this study to

allow the calculation of absorption rates (see Supplementary Materials Section S3).

Table 2 (see Appendix B) shows estimated parameter statistics over 16 image simulation

studies with 100 replicates (datasets) per study. Rate parameters θ, were chosen to cover a

range of observed behaviors of organic fluorophores and fluorescent proteins (Dempsey et al.,

2011) with NE = 100 fluorophores per study. The number of frames NF in each study was

adjusted to normalize against the average number of transitions predicted from θ. Scatterplots

of these rate estimates are presented in Figure 7. It is evident that the PSHHM yields estimates

with much lower bias and root mean squared errors (RMSE) when compared to the exponential

fitting method, although they have a tendency to increase as transition and absorption rates

are increased. The reported 95% simulated intervals contain true parameter values across all

studies from the PSHMM estimates and further highlight the bias in estimates obtained from

the exponential fitting.

For experimenters, the effect of imaging parameters on the performance of the estimators

is of particular interest and importance. Further simulation studies carried out under model
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M0
{1} highlight the consistency in both accuracy and precision of the PSHMM estimator across

a range of different experimental conditions. This is in particular emphasized in Figure 8,

where we compare PSHMM with exponential fitting rate estimates when we vary the emission

intensity of the fluorophores (measured in the mean number of photons each emits when in the

On state for time ∆). Further investigation of other parameters, including the frame length

(∆), the number of frames (NF ) and the detection threshold (proportional to δ) under this

model, are provided in the Supplementary Materials Section S4. It is noted that across the full

range of relevant parameters tested, the PSHMM estimator performs significantly better than

exponential fitting.
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(a) Estimates gained from exponentially fitting.
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(b) Estimates gained from the PSHMM fitting.

Figure 7: Estimates of log10(λ01) and log10(λ10) simulated from model M0
{1} using both expo-

nential fitting (7a) and PSHMM fitting (7b) are plotted in dark yellow and pink respectively.
True rates are plotted as black crosses. Estimates for the absorption rate µ1, along with means,
RMSEs and 95% simulated intervals are given in Table 2 (see Appendix B).

In order to assess the accuracy of parameter estimates for the extended models m = 1 and

m = 2 over fast, medium and slow switching scenarios, additional simulations were performed

by directly sampling the continuous time processes {X(t)} and extracting the observation se-

quences Y as in (2), using fixed values of θ. Results from the analyses of these simulations are

shown in Tables 3 and 4 in Appendix B. While it is evident that the estimates for λ0m0m+1 and

λ0m+11 incur greater bias as m increases, the 95% simulated intervals predominantly cover true

parameter values, albeit over a larger area due to the increase in the RMSEs. As is seen when

m = 0, the exponential fitting method performs less well, yielding much higher bias and RMSEs

for particular parameter values. The multimodality of the likelihood surface (see Supplementary

Materials Section S3), especially in the case m = 2 invokes poorer estimates from both fitted
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Figure 8: Top Left: Examples of single simulated frames at the indicated number of photons
per frame (Supplementary Materials Section S4). Boxplots showing quantiles from estimates
of λ01, λ10 and µ1 from both exponential fitting (black) and PSHMM fitting (red) are plotted
against increasing photons per frame. NF = 9872 for all simulations. True rates given by the
blue line.

methods.

Finally, using these simulated datasets, the BIC was used in model selection from the set of

proposals {M0
{1},M

1
{1},M

2
{1}} (i.e. under the assumption that the absorption state was known

to only be accessible by the On state). Applying model selection to the M0
{1} dataset used

to estimate parameters in Table 2 results in the true state model being chosen in all (100%)

cases. 100 datasets, each for m = 0, 1, 2 were generated for studies 2, 17 and 20 with ∆ = 1
50s

and NE = 300. These results presented in Table 1 demonstrate the accuracy of selecting the

correct model.
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Predicted → M0
{1} M1

{1} M2
{1}

True ↓

M0
{1} 100 0 0

M1
{1} 0 98 2

M2
{1} 0 1 99

Table 1: Confusion table showing the empirical percentage of models predicted from three
candidates: M0

{1}, M
1
{1} and M2

{1} under simulation studies 16, 19 and 20 (see Tables 2, 3 and

4 in Appendix B), with NE = 300, δ = 1
100 and ∆ = 1

50s. 100 datasets from each study were
generated and the BIC used to select the best fitted model.

5 APPLICATION TO ALEXA FLUOR 647 DATA

In this section we apply the method presented in this paper to the data analyzed with the

exponential fitting method in Lin et al. (2015). The details, including experimental methods,

can be found in this reference. In summary, antibodies labeled with Alexa Fluor 647 at a ratio

of 0.13-0.3 dye molecules per antibody were sparsely absorbed to a cover slip and imaged by

Total Internal Fluorescence microscopy to investigate the effect of eight different laser intensities

on the photo-switching behavior of Alexa Fluor 647. The study contains 27 experiments with

differing combinations of laser intensity and frame rate. These values, together with the number

of emitters detected and the number of frames over which they were imaged is summarized in

Table 5 of Appendix B. For each photo-switchable molecule detected the discrete observation

trace, indicating if the emitter was observed in each frame, was extracted (see Supplementary

Materials Section S4). In all experiments, the true model and its associated parameters were

unknown. Subsequently, we will show comparisons between estimates from both the PSHMM

and modified exponential fitting methods 1.

Initially, the BIC model selection criterion as outlined in Section 3.4 was used to select the

most suitable model for the data from the range of models M0
∅ , M0

{0}, M
0
{1}, M

1
∅ , M1

{0}, M
1
{01},

M1
{1}, M

2
∅ , M2

{0}, M
2
{01}, M

2
{02} and M2

{1}, with the model M2
{1} being selected on all (100%)

occasions. This supports Lin et al. (2015), who hypothesize this, with bleaching model and

assume the M2
∅ (without bleaching) model for rate estimates gained from exponential fitting.

PSHMM maximum likelihood estimates were then computed for the unknown parameter vec-

tor θ∗ =
(
λ001 λ01 λ0102 λ011 λ021 λ10 µ1 νX δ α

)>
for each of the 27 datasets.

1We modified the exponential fitting algorithm used by Lin et al. (2015) to allow for the absorption parameter
(see Supplementary Materials Section S3 for more details).
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Associated with these, 95% bootstrapped intervals were computed using the method in Section

3.3 (R = 100 due to computational intensity). The results are shown in Figures 9 and 10.

Comparisons with exponential fitting bootstrapped re-estimates (where νX , δ and α are not

estimable in this setting) are also shown.

The results indicate that the exponential fitting predicts a much slower switching scenario for

the Alexa Fluor 647 antibodies, with many estimates shown to be several orders of magnitude

below those predicted by the PSHMM. This resembles the conclusions reached from the results

of the simulation studies as described in Section 4 and are thought to occur as a result of the

exponential fitting method missing events within frames. Incidentally, the higher variance of

predictions from both methods are shown to be reported at higher laser intensities, where faster

switching of fluorophores is promoted. This is especially pronounced in some particularly large

simulated confidence sets for the exponential fitting estimates of λ0102 and λ021 (see Figure

10).
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Figure 9: Rate predictions and associated 95% bootstrap confidence sets are shown for λ01 (left),
and λ10 (middle) and µ1 (right) against increasing laser intensity (see Table 5 in Appendix B
for exact values). Intervals in blue correspond to those from exponential fitting and those in red
correspond to those gained from the PSHMM. Point estimates from each of the 27 datasets
are given by the diamond (PSHMM) or square (exponential).

6 SUMMARY AND DISCUSSION

Accurate measurement of fluorophore photo-switching rates has the potential to enable tailored

design of single molecule localization microscopy experiments to specific requirements. For

example, one may wish to select a fluorophore and photo-switching environment to achieve the

rapid photo-switching at low laser intensities required for live-cell samples. Alternatively, one

may wish to promote long off times required for densely packed samples. Furthermore, precise

estimates of photo-switching rates has the potential to advance data processing methods used in
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Figure 10: Rate predictions and associated 95% bootstrap confidence sets are shown for rates (in
order from left to right) λ011, λ0102 , λ011 and λ021, plotted against increasing laser intensity (see
Table 5 in Appendix B for exact values). Intervals in blue correspond to those from exponential
fitting and those in red correspond to those gained from the PSHMM. Point estimates from
each of the 27 datasets are given by the diamond (PSHMM) or square (exponential).

single molecule localization microscopy imaging, enabling more accurate image reconstruction

and aiding proper quantitative analysis. For this purpose, we have presented a method for

characterizing the photo-switching kinetics of fluorophores from a sequence of images.

For the most general continuous time photo-switching model, we have carefully defined the

observation process and linked it to the hidden continuous time photo-switching behavior that

we wish to infer upon. From this, we have formulated a hidden Markov model to link the

observations to the continuous time photo-switching model. Importantly, images being formed

by exposing the camera over a non-zero time interval violates the traditional assumption placed

on HMMs that the emission and transition probabilities are decoupled. To tackle this, we have

introduced transmission matrices that capture all the dependencies present in the model and

provided a detailed scheme for computing them for any continuous time photo-switching model.

A modification of the forward-backward algorithm tailored for these coupled HMMs has been

presented and numerical maximization of the computed likelihood was performed to generate

accurate estimates of the true photo-switching rates. Through a detailed simulation study, these

were compared to estimates from an existing exponential fitting method. We found that our

proposed method of parameter estimation is highly robust to a range of simulated experimental

parameters including low signal-to-noise ratios and fast frame rates, frequently outperforming

estimates from exponential fitting. Finally, we found that by using the BIC, it is possible to

perform accurate model selection from a range of model proposals, thus providing a powerful

new tool for chemists wishing to infer the number of quantum states a particular fluorophore

can exist in. The model selection and estimation method presented in this paper was then

applied to real data collected from the study of Lin et al. (2015). We provide strong evidence

of a relationship between laser intensity and photo-switching rates and support the hypothesis
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that Alexa Fluor 647 has three off-states in addition to a photo-bleached state.

While this paper focuses on single molecule localization microscopy, the type of kinetic

models discussed in this paper are unlikely to be unique to photo-switching fluorophores and

super-resolution applications. Certainly, stochastic processes in which the observed signal de-

pends on both the current and past states of a hidden process are likely to be a general feature

of digital, discretized measurements of stochastic signals. This is particularly true in image

processing where images are inevitably formed by exposing the camera’s sensor over a non-zero

length time window. The coupling between the emission and transition probabilities of the

HMM is a direct consequence of this exposure time, and therefore it is likely that the presented

methodology for dealing with this will find use in imaging applications that are beyond the scope

of this paper.

Further theoretical discussions and a comprehensive simulations and methods section, can

be found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS

The supplementary materials supporting this paper contain detailed proofs and derivations re-

garding our method, discussions on its implementation and a section on further simulation

studies, including exact details on the image analysis.

CODE AND DATA

MATLAB code and imaging data sets (also attached separately) used for the algorithms pre-

sented in this paper, can be found at github.com/eakcohen/photoswitching.
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A APPENDIX: ALGORITHM TO COMPUTE

TRANSMISSION MATRICES

Algorithm 1 presents the computation of transmission matrices B
(0)
∆ and B

(1)
∆ as defined in (3)

(with full derivations found in the Supplementary Materials Section S2), suitable for any m ≥ 0.

Here, we denote 0n and 1n to be the n× 1 vectors of zeros and ones respectively and In to be

the n× n identity matrix. We denote (M)(i1:i2),(j1:j2) to be the matrix filled with rows i1 to i2

and columns j1 to j2 of any matrix M , and (M)i1,j1 to be the (i1, j1)th entry of M . We use

the � notation to denote the Hadamard (element wise) product between two matrices.

Algorithm 1 Compute transmission matrices B
(0)
∆ and B

(1)
∆

GS,R0 = 0m+20
>
m+2

GS = (G)(1:m+2),(1:m+2)
a

µ = (G)(1:m+2),m+3

σ1 = −(G)m+2,m+2

σ = −diag((G)(1:m+1),(1:m+1))
for i = 1 : m+ 1 do

(GS,R0)i,m+2 = (GS)i,m+2

end for

GS,R̄0 = GS −GS,R0

A =

[
A1 02(m+2)0

>
2(m+2)

02(m+2)0
>
2(m+2) A2

]
, where A1 =

[
−G>

S,R̄0 Im+2

0m+20
>
m+2 −G>

S,R̄0

]
and A2 =[

GS,R̄0 Im+2

0m+20
>
m+2 0m+20

>
m+2

]
Q0

∆(0) = eGS,R̄0∆

Q̄0
∆(0) = ((eA∆)(i1:i2),(i2+1,i3))µ, with i1 = 2m+ 5, i2 = 3(m+ 2) and i3 = 4(m+ 2)

Ξ0
∆(0) =

[
1m+11

>
m+1 c1m+1

]>
, Ξ1

∆(0) = 1m+21
>
m+1 − Ξ0

∆(0) where c = 1−e−σ1δ

1−e−σ1∆

Ξ̄0
∆(0) =

[
1>m+1 c

]>
, Ξ̄1

∆(0) = 1m+2 − Ξ̄0
∆(0)

B
(0)
∆ =

[
(Q0

∆(0))(1:m+2),(1:m+1) � Ξ0
∆(0) 0m+2 Q̄0

∆(0)� Ξ̄0
∆(0)

0>m+1 0 1

]
B

(1)
∆ =

[
(Q0

∆(0))(1:m+2),(1:m+1) � Ξ1
∆(0) [0>m+1 e−σ1∆]> Q̄0

∆(0)� Ξ̄1
∆(0)

0>m+1 0 0

]
aTo avoid numerical overflow in the computation of inverse Laplace transforms, one can (for some small

tolerance ε > 0), replace all such (G)p,p with (G)q,q, when |(G)p,p − (G)q,q| < ε; p 6= q = 1, . . . ,m+ 2.
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k = 1
while B

(0)
∆ and B

(1)
∆ have not converged do

Compute inverse Laplace transform matrices

Q0
∆(k) = L−1

s [(sIm+2 −GS,R̄0)−1
(
GS,R0(sIm+2 −GS,R̄0)−1

)k
](∆)

Q̄0
∆(k) =

(∫ ∆
0 Q0

s(k)ds
)
µ

for i = 1 : m+ 1, j = 1 : m+ 1 do
(Ξ0

∆(k))i,j , (Ξ̄
0
∆(k))i = FΥ(δ,k,σ1)

FΥ(∆,k,σ1)

where FΥ(u, k, σ1) = P(Υ ≤ u) and Υ ∼ Erlang(k, σ1)

(Ξ1
∆(k))i,j = 1− (Ξ0

∆(k))i,j
(Ξ̄1

∆(k))i = 1− (Ξ̄0
∆(k))i

(Ξ0
∆(k))m+2,j , (Ξ̄

0
∆(k))m+2 = FΥ(δ,k+1,σ1)

FΥ(∆,k+1,σ1)

(Ξ1
∆(k))m+2,j = 1− (Ξ0

∆(k))m+2,j

(Ξ̄1
∆(k))m+2 = 1− (Ξ̄0

∆(k))m+2

end for

B
(0)
∆ = B

(0)
∆ +

[
(Q0

∆(k))(1:m+2),(1:m+1) � Ξ0
∆(k) 0m+2 Q̄0

∆(k)� Ξ̄0
∆(k)

0>m+1 0 0

]
B

(1)
∆ = B

(1)
∆ +

[
(Q0

∆(k))(1:m+2),(1:m+1) � Ξ1
∆(k) 0m+1 Q̄0

∆(k)� Ξ̄1
∆(k)

0>m+1 0 0

]
for i = 1 : m+ 2 do

Find all k ∈ C0i−1

k where k =
(
k0 k1 . . . km

)>
where

C0i−1

k :=
{
k : k>1m+1 = k, ki−1 > 0, k0 ≥ . . . ≥ ki−1 − 1 ≥ . . . ≥ km − 1

}
and

C0m+1

k = C0
k

For all k compute inverse Laplace transforms q1
0i−11(k,∆); q1

0m+11(k,∆) ≡ q1
11(k,∆)

ξ1
0i−11(0,k,∆) = FΦ(∆|k,σ)−FΦ(∆−δ|k,σ)

FΦ(∆|k,σ) where FΦ(φ|k,σ) = P(Φ ≤ φ)

and Φ =
∑m

p=0Wp, Wp
indep∼ Erlang(kp, σ0p)

ξ1
0m+11(0,k,∆) ≡ ξ1

01(0,k,∆)

(B
(0)
∆ )i,m+2 = (B

(0)
∆ )i,m+2 +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)ξ1

0i−11(0,k,∆)

(B
(1)
∆ )i,m+2 = (B

(1)
∆ )i,m+2 +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)(1− ξ1

0i−11(0,k,∆))

end for
k = k + 1

end while
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B APPENDIX: RATE ESTIMATES

PSHMM PSHMM PSHMM Exp Exp Exp
Study NF θ Mean RMSE (×10−2) 95% S.I. Mean RMSE (×10−2) 95% S.I.

1 16800 0.3162 0.3192 0.9687 (0.3045, 0.3412) 0.2876 3.2931 (0.2571, 0.3186)
0.3162 0.3155 0.7613 (0.3017, 0.3348) 0.3094 0.8897 (0.2987, 0.3222)
0.0105 0.0110 0.2126 (0.0080, 0.0173) 0.0110 0.1051 (0.0096, 0.0131)

2 11151 0.3162 0.3152 0.6622 (0.2986, 0.3271) 0.3044 1.4688 (0.2893, 0.3197)
1 1.0026 1.9096 (0.9602, 1.0403) 0.9474 5.9482 (0.8919, 0.9946)

0.0333 0.0343 0.3470 (0.0285, 0.0418) 0.0347 0.3332 (0.0300, 0.0428)

3 9364 0.3162 0.3126 0.6751 (0.3019, 0.3220) 0.2994 1.9028 (0.2791, 0.3157)
3.1622 3.1638 6.5551 (3.0491, 3.2826) 2.4506 77.8492 (1.7789, 2.9151)
0.1054 0.1060 1.0206 (0.0893, 0.1283) 0.0889 2.1181 (0.0627, 0.1173)

4 8799 0.3162 0.3037 1.3963 (0.2910, 0.3136) 0.2840 3.3483 (0.2669, 0.2997)
10 9.9579 23.0254 (9.5186, 10.4158) 3.1910 690.8696 (1.5220, 5.9107)

0.3333 0.3471 3.7917 (0.2934, 0.4186) 0.1233 21.4912 (0.0610, 0.2450)

5 10962 1 0.9979 1.8580 (0.9607, 1.0381) 0.8963 12.4336 (0.7390, 1.0060)
0.3162 0.3163 0.7184 (0.3017, 0.3317) 0.3029 1.4713 (0.2907, 0.3161)
0.0105 0.0107 0.0993 (0.0091, 0.0128) 0.0112 0.1096 (0.0097, 0.0129)

6 5312 1 0.9962 1.8118 (0.9602, 1.0311) 0.9464 6.4432 (0.8729, 1.0142)
1 1.0006 1.7552 (0.9623, 1.0355) 0.9340 6.8768 (0.8891, 0.9654)

0.0333 0.0338 0.2904 (0.0274, 0.0403) 0.0347 0.2772 (0.0296, 0.0403)

7 3526 1 0.9850 2.3208 (0.9492, 1.0165) 0.9468 5.7823 (0.9107, 0.9900)
3.1622 3.1656 7.3336 (3.0095, 3.3030) 2.7115 46.1604 (2.4988, 2.8888)
0.1054 0.1062 1.0589 (0.0839, 0.1274) 0.1013 0.9895 (0.0844, 0.1206)

8 2961 1 0.9670 3.9061 (0.9331, 1.0025) 0.9053 9.7545 (0.8524, 0.9451)
10 9.9362 27.2081 (9.4582, 10.4740) 5.0187 504.3446 (3.6585, 6.5223)

0.3333 0.3500 3.9408 (0.2808, 0.4209) 0.2002 13.7743 (0.1440, 0.2689)

9 9116 3.1622 3.1546 6.8802 (3.0410, 3.2910) 2.3068 95.1931 (1.6353, 3.0432)
0.3162 0.3145 1.5272 (0.2844, 0.3382) 0.2793 3.7425 (0.2694, 0.2901)
0.0105 0.0107 0.1129 (0.0089, 0.0133) 0.0113 0.1253 (0.0095, 0.0136)

10 3466 3.1622 3.1275 7.4660 (3.0121, 3.2771) 2.8271 37.7579 (2.4890, 3.0580)
1 1.0042 4.0430 (0.9027, 1.0673) 0.8711 13.0043 (0.8354, 0.9021)

0.0333 0.0338 0.3699 (0.0265, 0.0417) 0.0350 0.3610 (0.0287, 0.0415)

11 1680 3.1622 3.1101 9.4936 (2.9827, 3.3063) 2.9176 25.6336 (2.7468, 3.0751)
3.1622 3.1774 9.1226 (2.9934, 3.3673) 2.5950 56.9611 (2.4846, 2.6953)
0.1054 0.1073 1.2117 (0.0875, 0.1309) 0.1050 0.9772 (0.0892, 0.1254)

12 1115 3.1622 3.0275 14.7255 (2.9162, 3.1519) 2.7851 38.1889 (2.6624, 2.9165)
10 9.9922 24.8620 (9.5353, 10.4764) 6.3522 365.9653 (5.7218, 6.9261)

0.3333 0.3485 3.9202 (0.2874, 0.4364) 0.2721 6.7863 (0.2229, 0.3310)

13 8532 10 9.9308 25.6393 (9.4711, 10.4659) 5.3340 506.7013 (1.9767, 8.5991)
0.3162 0.3163 4.4235 (0.2421, 0.3674) 0.2169 9.9483 (0.2059, 0.2253)
0.0105 0.0106 0.0893 (0.0089, 0.0122) 0.0111 0.0982 (0.0096, 0.0125)

14 2882 10 9.8578 29.5173 (9.4399, 10.3920) 7.7536 241.8453 (5.5293, 8.7067)
1 1.0264 10.5309 (0.7836, 1.1608) 0.6768 32.3653 (0.6447, 0.7073)

0.0333 0.0342 0.3583 (0.0277, 0.0415) 0.0355 0.3731 (0.0299, 0.0421)

15 1096 10 9.7339 38.3953 (9.2222, 10.3385) 8.1863 184.8409 (7.3752, 8.6577)
3.1622 3.2110 20.7343 (2.4524, 3.4669) 2.0539 110.9651 (1.9708, 2.1564)
0.1054 0.1095 1.2225 (0.0897, 0.1335) 0.1090 1.0413 (0.0941, 0.1322)

16 531 10 9.4992 55.7165 (9.1001, 9.9554) 7.9281 207.9020 (7.5456, 8.2175)
10 9.9053 54.4724 (9.0157, 10.8772) 5.6321 436.9608 (5.4028, 5.8869)

0.3333 0.3400 4.5056 (0.2617, 0.4282) 0.3044 4.0626 (0.2602, 0.3643)

Table 2: Rate predictions of θ = (λ01 λ10 µ1)> under model M0
{1} when ∆ = 1

30s, δ, α > 0

(unknown) and NE = 100 from both the PSHMM and exponential fitting (Exp) methods are
presented along with means, root mean squared errors (RMSE) and 95% simulated intervals
(S.I.). From both methods, log− log scatterplots of the photo-switching rates λ01 and λ10 are
shown in Figure 7.
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PSHMM PSHMM PSHMM Exp Exp Exp
Study NF θ Mean RMSE (×10−2) 95% S.I. Mean RMSE (×10−2) 95% S.I.

17 11151 0.15 0.1519 1.6908 (0.1192, 0.1945) 0.1463 1.6566 (0.1132, 0.1874)
0.3 0.3006 0.8477 (0.2837, 0.3178) 0.2979 0.8373 (0.2818, 0.3144)
0.1 0.1004 0.4251 (0.0928, 0.1090) 0.1017 0.4528 (0.0950, 0.1106)
0.8 0.7995 1.2760 (0.7750, 0.8240) 0.7606 4.1190 (0.7372, 0.7867)
0.01 0.0100 0.1531 (0.0073, 0.0136) 0.0196 0.9666 (0.0182, 0.0215)

18 9364 0.35 0.3553 5.4361 (0.2385, 0.4322) 0.3278 5.3241 (0.2401, 0.4294)
1 1.0031 3.6825 (0.9445, 1.0740) 0.9514 5.8263 (0.9002, 1.0113)
0.3 0.2984 2.0116 (0.2599, 0.3440) 0.2918 2.1192 (0.2535, 0.3342)
2.3 2.2974 5.0064 (2.2068, 2.3942) 2.0382 26.4788 (1.9520, 2.1115)
0.1 0.1020 0.9824 (0.0863, 0.1223) 0.0950 1.0272 (0.0808, 0.1140)

19 7000 2 2.0333 18.1393 (1.7516, 2.4518) 2.1563 21.2523 (1.8902, 2.4979)
10 9.7821 54.4940 (8.5534, 10.5310) 6.9389 306.6856 (6.5918, 7.3413)
0.7 0.7109 4.8848 (0.6364, 0.8341) 0.6687 4.8472 (0.6024, 0.7629)
10 10.0021 63.6158 (9.2232, 11.6534) 4.9697 503.1383 (4.7549, 5.1729)

0.333 0.3380 7.2873 (0.2035, 0.5619) 0.2651 7.2969 (0.2237, 0.3168)

Table 3: Rate predictions of θ = (λ001 λ01 λ011 λ10 µ1)> under model M1
{1} when ∆ = 1

30s,

δ = 1
100s, α = 0 and NE = 100 from both the PSHMM and exponential fitting (Exp) methods

are shown along with means, root mean squared errors (RMSE) and 95% simulated intervals
(S.I.).

PSHMM PSHMM PSHMM Exp Exp Exp
Study NF θ Mean RMSE (×10−2) 95% S.I. Mean RMSE (×10−2) 95% S.I.

20 7000 2 2.0322 3.1417 (1.7498, 2.3711) 2.0535 2.1195 (1.7933, 2.3121)
10 9.8470 13.4172 (9.2041, 10.4857) 7.0420 878.8248 (6.6792, 7.4758)
0.2 0.2088 0.1033 (0.1605, 0.2744) 0.1762 0.1075 (0.1289, 0.2128)
0.7 0.6878 0.3748 (0.5866, 0.8288) 0.6635 0.3458 (0.5703, 0.7536)
0.01 0.0094 0.0005 (0.0056, 0.0135) 0.0149 0.0196 (0.0128, 0.0176)
10 9.6319 35.5731 (8.7265, 10.5304) 4.9131 2588.85 (4.6687, 5.1636)

0.333 0.3243 0.3224 (0.2379, 0.4494) 0.3206 0.1163 (0.2616, 0.3844)

Table 4: Rate predictions of θ = (λ001 λ01 λ0102 λ011 λ021 λ10 µ1)> under model M2
{1}

when ∆ = 1
30s, δ = 1

100s, α = 0 and NE = 100 from both the PSHMM and exponential
fitting (Exp) methods are shown along with means, root mean squared errors (RMSE) and 95%
simulated intervals (S.I.).

Dataset Laser intensity ∆−1 NE NF Dataset Laser intensity ∆−1 NE NF Dataset Laser intensity ∆−1 NE NF

1 1.0 200 275 49796 10 16 200 292 39703 19 62 800 443 29107
2 1.9 200 259 49533 11 16 800 305 29074 20 62 800 425 29551
3 3.9 200 335 49815 12 16 800 290 29145 21 62 800 425 29426
4 3.9 200 393 39758 13 31 800 617 29059 22 62 800 398 28989
5 7.8 200 340 39721 14 31 800 534 29778 23 97 800 454 29191
6 7.8 800 244 29418 15 31 800 515 29179 24 97 800 440 29198
7 7.8 800 230 29257 16 31 800 493 29400 25 97 800 436 29270
8 7.8 800 230 29438 17 31 800 456 29071 26 97 800 422 29295
9 16 800 437 29467 18 62 800 554 29327 27 97 800 414 29218

Table 5: A description of the Alexa Fluor 647 datasets with reference to the laser intensities in
kW/cm2 and frames sampled per second (or ∆−1) measured in s−1 used to characterize each
of the 27 experiments. The NF ×NE size of each dataset is also included.
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