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Supplementary Note 1: Introduction to mathematical framework

The work presented in this paper, including the algorithmic resolution limit, the probabilistic resolution

and the adjusted K2α-function, is derived through applying spatial statistical theory to imaging. In this

supplementary material, we discuss this approach and formulate the mathematical framework.

We begin in Supplementary Note 2 with a review of key concepts and definitions relating to spatial

point processes and patterns that will be needed to develop the mathematical framework. The paper

focuses on fluorescence microscopy imaging, which we here consider to be the attempted recovery of an

underlying spatial point pattern for the true locations of fluorophores. In Supplementary Note 3, we consider

a mathematical formulation of the imaging process with regards to recovering the spatial point pattern.

From this, we are able to reason about image resolution and define the algorithmic resolution limit, the

core concept of our paper, in Supplementary Note 5. Quantifying the effect this resolution limit has on the

recovery of a spatial point pattern is explored in Supplementary Note 6, where we derive the probability

that an event/object (in this case, a photon-emitting fluorophore) is affected by algorithmic resolution,

which we term the probabilistic resolution. In Supplementary Note 7, we apply these ideas to quantify the

effect of algorithmic resolution in single molecule localization microscopy. This in turn allows us to define

both a probabilistic resolution and what we term the super-resolution limit. We consider in Supplementary

Note 8 a number of different scenarios in which we apply these resolution measures, one of which is a

∗Correspondence should be addressed to E.A.K.C. (e.cohen@imperial.ac.uk).
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tubulin data set in which we demonstrate how probabilistic resolution and the super-resolution limit can

be computed.

Key to the core ideas of this paper is the ability to estimate the algorithmic resolution limit for a

particular algorithm of interest from an estimate of a pair correlation function. In Supplementary Note 9,

we give details for an estimator that performs this task and discuss its statistical properties.

The definition of the algorithmic resolution limit presented here does not depend on the density of the

events/objects being analyzed. In Supplementary Note 10, we explore what effect event density and signal

to noise ratio has on the algorithmic resolution limit. As predicted, we demonstrate with three different

algorithms that the algorithmic resolution limit appears constant across a range of densities. However, a

breakdown in this behavior is noticeable at high densities for some algorithms.

It will be shown that limited algorithmic resolution fundamentally changes the properties of the spatial

point pattern. The altered, observed point pattern is then typically analysed with standard statistical

techniques, the most common of which is Ripley’s K-function. In Supplementary Note 11 we propose an

adaptation of Ripley’s K-function, the K2α-function, which accounts for unwanted artefacts introduced by

limited algorithmic resolution. Further discussions and mathematical proofs are contained in the Appendices

in Supplementary Note 12.

Supplementary Note 2: Spatial point processes

In this section we provide some key definitions used for characterizing spatial point processes and spatial

point patterns. While it is sometimes unavoidable, we refrain as much as possible from the formal measure

theoretic approach. Those interested in this treatment are directed to Cressie (1993), from where much of

this theory is taken.

A spatial point process is a stochastic mechanism that generates a random collection of points Φ =

{s1, s2, ...}, termed events, each belonging to X, a locally compact subset of Rd (typically d = 2 or 3).

The set of events Φ is called a spatial point pattern, and can alternatively be represented through a locally

finite counting measure ξ on X where ξ(B) is the number of events within a set B ⊆ Rd. Formally, B ∈ B

where B is a Borel σ-algebra on X.

Formally, let (Ω,F ,P) be a probability space, let Ξ be a collection of locally finite counting measures

on X and let N be the smallest σ-algebra generated from sets of the form {ξ ∈ Ξ : ξ(B) = n}, for all

B ∈ B and all n ∈ {0, 1, 2, ...}. A spatial point process N , defined on X, is a measurable mapping from

(Ω,F) to (Ξ,N ). A spatial point process N is therefore a random counting measure. It is typical to use

notation N(B) to be the random non-negative integer stating the number of events within a set B ∈ B.

For example, N(ds) indicates the random number of events in an infinitesimal ball ds centred at s. We

2



will restrict ourselves to orderly processes where the number of events in ds can only be 0 or 1.

A spatial point process can be characterized by its moment measures. The kth moment measure for a

collection of k sets B1, ..., Bk ∈ B is

µ(k)(B1 ×B2 × · · · ×Bk) = E{N(B1)N(B2) · · ·N(Bk)}. (1)

From this we can define the first and second-order intensity functions.

Definition 1 (First-order intensity). The first-order intensity, more commonly known as the intensity, of a

spatial point process N at a point s ∈ X is

λ(s) = lim
ν(ds)↓0

E{N(ds)}
ν(ds)

= lim
ν(ds)↓0

µ(ds)

ν(ds)
, (2)

where ν(·) is the Lebesgue measure.

We interpret the first-order intensity as being the expected density of events per unit volume generated

by the process at a particular s ∈ X. Equivalently, we have the relationship λ(s)ν(ds) = P(N(ds) = 1).

Definition 2 (Second-order intensity). The second-order intensity of a spatial point process N at points

s,u ∈ X is

γ(s,u) = lim
ν(ds)ν(du)↓0

E{N(ds)N(du)}
ν(ds)ν(du)

= lim
ν(ds)ν(du)↓0

µ(2)(ds× du)

ν(ds)ν(du)
(3)

The second-order intensity provides a route into looking at correlations in the process across a distance.

For such purposes, the auto-covariance is given as c(s,u) = γ(s,u) − λ(s)λ(u) and the auto-correlation

c(s,u)/λ(s)λ(u). A related measure to characterize second-order interactions in a point process is the pair

correlation function.

Definition 3 (Pair correlation function). The pair correlation function of a spatial point process N at

points s,u ∈ X is

g(s,u) =
γ(s,u)

λ(s)λ(u)
. (4)

Two important notions that arise from these definitions are that of stationarity and isotropy.

Definition 4 (Second order stationarity and Isotropy). A point process is second-order stationary (from

here-on referred to as stationary) if γ(s,u) = γ(s− u) and isotropic if γ(s,u) = γ(‖s− u‖).

For a stationary and isotropic process, γ(·) and g(·) simply become functions of r ∈ R, the Euclidean

distance between two points.

It is essential to define the Poisson process. Many definitions exist, we choose the following for its

simplicity.
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CSR Clustered Inhibited

Supplementary Figure 1. Example realizations or a completely spatially random, clustered and inhibited
point pattern.

Definition 5 (Poisson Process). Spatial point process N , defined on X ⊆ Rd, is Poisson if the following

hold:

1. For everyB ∈ B, the number of events is Poisson distributed with expected value µ(B) =
∫
B λ(s)dν(s),

i.e.

P(N(B) = n) =
µ(B)n

n!
exp(−µ(B)). (5)

2. For any collection B1, ..., Bn of disjoint sets from B, N(B1), ..., N(Bn) are independent random

variables.

Poisson processes for which λ(s) is constant on X are called homogeneous and are both stationary

and isotropic. Poisson processes possess the important memoryless property. That is to say, all events are

independent of each other and there is no correlation across space. For this reason, homogeneous Poisson

processes (HPP) are commonly termed completely spatially random (CSR). In general, the deviations from

complete spatial randomness come in two forms. In clustered patterns, events lie closer to each other than

one would expect for CSR data. For inhibited patterns, events lie further away from each other than one

would expect for CSR data. Example realizations of CSR, clustered and inhibited patterns are shown in

Supplementary Figure 1. These ideas can be rigorously formulated by reasoning about spatial correlation

structure within the data.

Ripley’s K-function is used extensively across the sciences, including microscopy (Lagache et al., 2013;

Rossy et al., 2014), as a method for analyzing spatial point patterns, primarily to detect and characterize

clustering behavior. Its widespread use lies in its interpretability and the ease at which it can be estimated

with robust, well studied estimators.

Definition 6 (Ripley’s K-function). For a stationary and isotropic process, with pair correlation function
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g(s,u) = g(r), Ripley’s K-function is defined as

K(r) ≡
∫ r

0
2πr′g(r′)dr′

= λ−1E{number of events within distance r of an arbitrary event}. (6)

The pair correlation function and Ripley’s K-function are used to characterize the notion of spatial

randomness, clustering and regularity. Complete spatial randomness has the property that g(r) = 1 for all

r > 0, and consequently K(r) = πr2. If g(r) > 1 for some r then that indicates we are more likely to

see an event at a distance r from an arbitrary event than under complete spatial randomness. If g(r′) > 1

for all r′ ∈ (0, r] then K(r) > πr2. Such second-order behavior gives rise to clusters. Alternatively, if

g(r) < 1 then events are less likely to be found at a distance r from one another than you would expect

under complete spatial randomness, and if g(r′) < 1 for all r′ ∈ (0, r] then K(r) < πr2. It is processes of

this type that are called inhibited (or regular).

It is common to define L(r) =
√
K(r)/π which linearises the behavior of the K-function such that

L(r) = r for an HPP, is greater than r for a clustered process and less than r for a regular process. Further

to this, it is common to compute and analyze the L(r) − r function which is equal to zero for an HPP,

greater than zero for a clustered process, and less than zero for a regular process.

We further introduce another important summary property of a point process, the nearest neighbor

distribution function.

Definition 7 (Nearest neighbor distribution function). For a stationary process, let D denote the distance

from an arbitrary event to the nearest other event. The nearest neighbor distribution (NND) function is

defined as

G(r) ≡ P(D ≤ r). (7)

Letting b(s, r) ⊂ X denote a ball of radius r centred at s, an equivalent expression for the NDD

function is G(r) = 1 − P(N(b(s, r)) = 1|N(ds) = 1), where P(N(b(s, r)) = 1|N(ds) = 1) can be read

as the probability that apart from the event at s there are no further events in b(s, r). For a stationary

process, this does not depend on the location s. For an HPP we have G(r) = 1− exp(−λπr2).

In what follows, it will become necessary to consider Cox processes, sometimes referred to as doubly

stochastic processes.

Definition 8 (Cox process). Point process N is a Cox process driven by a random intensity function Λ(s)

if, conditioning on Λ(s) = λ(s), N is an inhomogeneous Poisson process with intensity λ(s).

To understand the Cox process, it can be useful to consider that a realization firstly involves a realization
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λ(s) of the random intensity function Λ(s), and then a realization of a Poisson process with intensity λ(s).

The first and second-order properties of a Cox process are intrinsically linked to the first and second order

properties of the random intensity Λ(s), with a Cox process N being second-order stationary (as defined

in Definition 4) if and only if E{Λ(s)} is constant for all s ∈ X and E{Λ(s)Λ(u)} depends only on s−u.

Cox processes represent a broad class of spatial point processes, including certain types of cluster process

and fibre driven Cox processes (Illian et al., 2008, p. 383); point processes where events a generated

on randomly placed fibres (curves). These ideas and their use in this setting will be discussed further in

Supplementary Note 8.

Supplementary Note 3: Imaging point processes

We consider imaging a collection of objects whose positions we model as a spatial point pattern. The

key philosophy of the presented work is treating the imaging procedure as the attempted recovery of this

spatial point pattern and we judge an imaging system by how well it performs this recovery. In this section

we consider what effect the imaging procedure, which in its most general form includes an optical system

and a sequence of one or more image processing algorithms, has on the point pattern we are attempting

to image. The fundamental property which we wish to consider is that of resolution - i.e. how well does

the imaging procedure deal with objects (events) that are close to one another. In doing so we begin with

defining the object point process, the imaging operator and the image point process. We refer the reader

to Supplementary Figure 2 which illustrates this definition.

Definition 9 (Object point process/pattern, imaging operator and image point process/pattern). The

object point process NO that maps a probability space (Ω,F) to (ΞO,NO) is the unobserved spatial point

process for the objects being imaged. The associated unobserved object point pattern is represented by

event set ΦO. The imaging operator I is a mapping from (ΞO,NO) to some space (ΞI ,NI). The image

spatial point process NI is the combined mapping I ◦NO from (Ω,F) to (ΞI ,NI). The observed image

point pattern is represented by event set ΦI .

We will call I a stationary and isoptropic imaging operator if it preserves stationarity and isotropy, i.e.

NI is stationary and isotropic if NO is stationary and isotropic. For the purposes of this paper, we will

assume all imaging operators are stationary and isotropic.

We propose that resolution is a property of an imaging operator and consider two possible criteria that

can be used as a metric for it. We begin by examining an idealized imaging operator in which there exists

a hard detection resolution limit such that within it two events are not individually resolved, and outside

they are resolved. We then consider a more applicable resolution limit, termed the algorithmic resolution

limit.

6



IMAGING 
ALGORITHMS

Φ"

RAW IMAGE IMAGE 
EVENTS
Φ#

OBJECT
EVENTS

$"

$#

Supplementary Figure 2. Schematic illustrating the stages in realizing a image pattern. Point process NO

gives rise to a point pattern ΦO. These light emitting molecules produce a raw image which is processed
through a series of segmentation and localization algorithms. The collection of locations output by the
system is the image point pattern ΦI . The collection of steps that give rise to the image pattern can be
considered to be the image process NI .

Supplementary Note 4: Detection resolution limit

We consider the following idealized imaging operator which we denote Iδ.

1. If two events from NO are within a distance δ > 0 of each other we observe just one of the events.

2. The event we observe is that which is most “prominent”. (Prominence could, for example, be the

intensity of the imaged event).

A mathematical formulation of this point process is as follows.

Model 1 (Imaging operator Iδ). Let NO be a point process,

1. each event s ∈ ΦO generated by the process NO is also assigned a random mark Z(s) with distribution

function F (·) (which acts as its prominence/intensity),

2. an event s is removed if there exists another event u from NO with ||s− u|| < δ and Z(s) < Z(u).

This process was originally formulated in Matérn (1960) for the case of NO being an HPP and marks

Z ∼ Uniform(0, 1), and is known as the Matérn II process. It was shown in Stoyan and Stoyan (1985) that

the process is invariant to the choice of distribution function F , so generalizes to this application.

When NO is an HPP with intensity λO, the intensity of the remaining process NIδ is given in Diggle

(1983) as

λIδ =
1− exp(−λOπδ

2)

πδ2
, (8)
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and the second-order intensity of NIδ is

γIδ(r) =


0 r < δ

2Uδ(r){1−exp(λOπδ
2)}−2πδ2{1−exp(−λOUδ(r))}

πδ2Uδ(r){Uδ(r)−πδ2}
δ ≤ r < 2δ

λ2
Iδ

r ≥ 2δ,

(9)

where Uδ(r) = 2πδ2 − 2δ2 arccos(r/(2δ)) + 1
2r(4δ

2 − r2)1/2 is the area of the union of two circles of

diameter δ a distance r apart. This states that when NO is an HPP, and hence NO(ds) is uncorrelated

with NO(du) for all s 6= u, the imaging operator introduces correlation into the image process NIδ that

occurs over a distance of 2δ. Examples of the theoretical Ripley’s K-function and pair correlation function

for models of this type can be found in Supplementary Figure 3B.

For a general NO imaged with this idealized imaging operator Iδ, the second-order intensity γδ is

intractable. However, we can say with certainty that

γIδ(r)

 = 0 r < δ

> 0 r ≥ δ,
(10)

from which we can also say the pair correlation function gIδ(r), Ripley’s K-function KIδ(r) and NND

function GIδ(r) have the form

gIδ(r)

 = 0 r < δ

> 0 r ≥ δ,
KIδ(r)

 = 0 r < δ

> 0 r ≥ δ,
GIδ(r)

 = 0 r < δ

> 0 r ≥ δ.
(11)

In this idealized case, we call δ the detection resolution limit (DRL) and can mathematically formulate it

with the following definition.

Definition 10. The detection resolution limit (DRL) δ of an imaging system is given as

δ = sup{r : gIδ(r) = 0}

= sup{r : KIδ(r) = 0} (12)

= sup{r : GIδ(r) = 0}.

No two events in the pattern ΦIδ , generated by process NIδ , can be within a distance δ of each

other. Supplementary Figure 3 gives further details on this model, including theoretical pair correlation

and Ripley’s K-functions under different δ.
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Supplementary Figure 3. A. Illustration of the effect of resolution under a classical detection resolution model
for the imaging operator – see Supplementary Note 4. Left: each point represents an event of the object pattern ΦO

with a circle of radius δ/2 round each one. Events whose circles intersect with another circle (shown in red) will be
affected by resolution. We associate with each event a random mark Zi (we label only the marks for the events in
red). The red events form a resolution limited sub-pattern (RSLP) of size 4 – see Defintion 13. Right: the resulting
image point pattern ΦIδ in the case where Z1 < Z2 < Z3 < Z4. Irrespective of the values of the marks, events in ΦI

will always be further than δ away from any other event. B. Left: the theoretical pair correlation function and right:
the theoretical L(r)− r function for idealized detection resolution limited HPP subject to detection resolution limits
of 250nm (blue) and 500nm (red). C. Single estimate (blue) and averaged estimate (red) of Left: pair correlation
function and Right: L(r) − r function for an HPP localized with Algorithm 5. See Methods for simulation and
analysis details. D. Single estimate (blue) and averaged estimate (red) of Left: pair correlation function and Right:
L(r)− r function for an HPP localized with Algorithm 2. The black curve represents the averaged ground truth. See
the Methods for simulation and analysis details. E. Four segments of simulated images. True locations of emitters
(events in ΦO) are marked with green circles and estimated locations of emitters (events in ΦI) are marked with red
crosses. i. Two emitters well separated in space and not affected by resolution. ii. Two emitters in close enough
proximity to each other as to be affected by resolution. iii. - iv. Three emitters, each close enough to one of the
other emitters as to be affected by resolution. See Methods for details of simulations. Algorithm 1 was used as the
analysis method.
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Supplementary Note 5: Algorithmic resolution

In an experimental setting, although we sometimes see the clear presence of a DRL (for example in the

case of Algorithm 5, see Supplementary Figure 3C), it is also common to see behavior that is uncharacteristic

of this modelling assumption and where a DRL is not apparent (for example when using Algorithm 2, see

Supplementary Figure 3D). In general, therefore, the DRL is an inappropriate measure of resolution and we

seek to give a resolution limit that has physical meaning, can be readily estimated from data and effectively

characterizes the performance of the image processing algorithms used, i.e. the imaging operator. We do

this through defining the algorithmic resolution limit.

We motivate the algorithmic resolution limit by considering an idealized but more general imaging

operator than that considered in Supplementary Note 4. Let NO be a general object process generating

object point pattern ΦO. We consider the following rules for the stationary and isotropic imaging operator

Iα, resulting in image process NIα = Iα ◦NO that generates pattern ΦIα .

Model 2 (Imaging operator Iα). Let NO be a point process,

1. if an event s ∈ ΦO generated by NO has no other event within a distance α of it then s ∈ ΦIα with

probability 1,

2. if an event s ∈ ΦO generated by NO has one or more events within a distance α of it then s ∈ ΦIα

with probability p < 1.

Here, Iα is a more general class of imaging operator than Iδ. Indeed, the class of operators of type Iδ is

a subclass of operators of type Iα, where α = δ. We saw in Supplementary Note 4 that when applied to an

HPP (i.e. a completely spatially random process that has no correlation across distance), NO introduces

correlation into the image process NIδ that ranges over a distance of 2δ. Building on this, we now have

the following result for operators of type Iα as defined in Model 2.

Proposition 1. Let NO be an HPP and let Iα be the stationary and isotropic imaging operator stated in

Model 2. Resulting image process NIα = I ◦NO exhibits correlation over a distance of 2α, i.e. NIα(ds)

is uncorrelated with NIα(du) if and only if ‖s− u‖ ≥ 2α.

The proof to this proposition is given in Supplementary Note 12.3. In both Model 1 and Model 2, the

correlation introduced into NI by the respective imaging operator acts over twice the distance at which

resolution has an effect (δ and α, respectively). This correlation manifests itself in the pair correlation

function. For an HPP NO, the pair correlation function is a constant 1 for all r > 0 (indicating zero

correlation for all r > 0), however, for NI it will have a deviation from this constant 1 over the interval

(0, 2α) (indicating positive or negative correlation). While Iα is a specific model for the imaging operator
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and algorithms used in real life are unlikely to conform exactly to this model, we use this as justification

for our definition of the imaging operator. A more realistic, yet analytically intractable model for the

imaging operator is given consideration in Supplementary Note 12.1. It provides further justification for

the definition of the algorithmic resolution limit we now present.

To formally define the algorithmic resolution limit we introduce the radius of correlation of an imaging

operator.

Definition 11. Let ΦO be a point pattern generated by HPP NO, and let I be a stationary and isotropic

imaging operator that acts on NO to produce NI with associated pattern ΦI . The radius of correlation ρ

of I is given as:

ρ := inf
r>0
{r : NI(ds) is uncorrelated with NI(du) for all ‖s− u‖ > r}. (13)

An equivalent definition is given as

ρ := inf
r>0
{r : gI(r

′) = 1 for all r′ ∈ [r,∞)}. (14)

This distance is sometimes referred to as the range of correlation of NI (Illian et al., 2008), and given

NI is the composition mapping of I on NO, where NO is completely spatially random, we can interpret it as

being the range of correlation introduced by I into NI . We now formally define the algorithmic resolution

limit (ARL).

Definition 12. Let I be a stationary and isotropic imaging operator with radius of correlation ρ. The

algorithmic resolution limit (ARL) α of I is

α :=
ρ

2
. (15)

Through defining the ARL of an imaging operator I as half its radius of correlation, we are able to

generalize the resolution limit to imaging operators that display a wide range of characteristics and artefacts.

We briefly note that all localizations are subject to measurement error, however the ARL naturally

accounts for this. It is shown in Supplementary Note 12.2 that the general spatial structure of point

processes are unaffected by localization errors. In particular, a CSR process remains CSR under localization

error. Therefore, if an imaging operator perfectly resolves the HPP but with independent and identically

distributed (iid) errors on all localizations, its ARL is still 0. An estimation procedure for the ARL is

presented in Supplementary Note 9.
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Supplementary Note 6: Quantifying the effect of resolution

We look to quantify the effect I has on NO in producing the image process NI . To do so it be-

comes necessary to define a resolution limited sub-pattern (RLSP) - an illustration of which is given in

Supplementary Figure 4.

Definition 13 (Resolution limited sub-pattern). Let the ΦO = {s1, s2, ..., } be a point pattern generated

by process NO and let α be the ARL of a stationary and isotropic imaging operator I. A resolution limited

sub-pattern S ⊆ ΦO, |S| ≥ 2, is a subset of the object pattern ΦO such that all its members are within

distance α of at least one other member, not including itself. That is to say, for all si ∈ S there exists

sj ∈ S, si 6= sj , such that ‖si − sj‖ < α.

α
Resolved events in Φ#

Unresolved events in Φ$

Resolution limited 
sub-pattern

Supplementary Figure 4. Illustration of how a resolution limit α gives rise to resolved events, unresolved
events and resolution limited sub-patterns.

An event that belongs to an RLSP is affected by resolution due to its proximity to another event in that

same RLSP. All events that do not belong to an RLSP are not affected by resolution and are resolved by

imaging operator I. For a given α, the number of RSLPs, M(α), is a random variable that is realized with

each realization of the point pattern. For a pattern ΦO and α > 0, the corresponding RSLPs S1, ...,SM(α)

will, by construction, have properties Si ∩ Sj = ∅ for all i, j = 1, ...,M(α), i 6= j, and
⋃M(α)
i=1 Si ⊆ ΦO.

As an aside; we can draw analogies here with random geometric graphs (Penrose, 2003). Random

geometric graphs are graphical models where nodes are randomly distributed in space and an edge is

formed between two nodes if and only if the distance between those two nodes is less than a pre-defined

neighborhood distance. Under this formulation, we can consider an event of the pattern to be a node

and the resolution limit α to be the neighborhood distance. Two events are unresolvable if they are

within distance α of each other, i.e. if an edge exists between them. An RLSP, in graphical models

terminology, would therefore be a component of order greater than one. The work of Penrose (2003) looks
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at distributions for the number of components, however, the results are asymptotic and highly technical

and we elect to leave out such analysis.

6.1 The resolved and unresolved processes

Events which are further than a distance α from any other event can be completely resolved and belong

to the resolved point pattern ΦR ⊆ ΦO. We say the mechanism generating this is the resolved point process

NR. The resolved events are all those that do not belong to an RSLP, and therefore ΦR = ΦO \
⋃M(α)
i=1 Si.

Events that are within a distance α of another event are affected by resolution and form the unresolved

point pattern ΦU generated by unresolved point process NU. Pattern ΦU is comprised of all the events

in ΦO that belong to an RSLP, i.e. ΦU =
⋃M(α)
i=1 Si. It is clear that we have NO = NR + NU and

ΦO = ΦR ∪ ΦU.

For a stationary process NO with intensity function λO, the intensity λR of the resolved process NR is

given as

λR(s)ν(ds) = P(NR(ds) = 1)

= P(NR(ds) = 1|NO(ds) = 1)P(NO(ds) = 1)

= P(NO(b(s, α)) = 1|NO(ds) = 1)λOν(ds).

= (1−GO(α))λOν(ds). (16)

Recognising that λO = λR + λU, where λU is the intensity of the unresolved process NU,

λR = λO(1−GO(α)) (17)

λU = λOGO(α). (18)

Supplementary Figure 4 illustrates the notion of RLSPs and resolved and unresolved processes.

6.2 Homogeneous Poisson object process

In the situation where the object process NO is an HPP, the resolved process NR takes the form of a

well studied model of point process. This model was first proposed by Matérn (1960) and given formal

treatment in Cressie (1993); Diggle (1983). It is known commonly as Matérn’s Model I, or Matérn’s

hardcore process I. For an HPP object process NO with intensity λO, if we exclude any events that have a

neighbor within some predefined hardcore distance, then the remaining process is Matérn I. This is exactly

what we have in the case of the resolved process NR, where α is the hardcore distance. With the NDD

function of NO given as G(r) = 1− exp(−λOπr
2), from (17) and (18), the intensities λR and λU of NR
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and NU, respectively, become

λR = λO exp(−λOπα
2) (19)

λU = λO(1− exp(−λOπα
2)). (20)

The second-order intensity function of NR is given in Diggle (1983) as

γR(r) =


0 r < α

λ2
R exp(λORα(r)) α ≤ r ≤ 2α

λ2
R r > 2α,

=


0 r < α

λ2
O exp(−λOUα(r)) α ≤ r ≤ 2α

λ2
R r > 2α,

(21)

where Rα(r) = 2α2 arccos(r/(2α))− 1
2r(4α

2− r2)1/2 is the area of the intersection and Uα(r) = 2πα2−

Rα(r) is the area of the union of two circles of diameter α with centers a distance r apart.

6.3 Probabilistic resolution

We can now make statements of probability regarding whether an event from the object process NO

is affected by resolution or not. Reasoning about resolution in terms of probabilities is a useful exercise

because the effect of resolution on a point pattern ΦO is fundamentally dependent on the nature of the

point process NO. To motivate this idea, consider an inhibited point process. For example, suppose that

NO is itself a Matérn I process with hardcore distance greater than α. All events from NO will be further

than α away from each other and the entire point pattern will be perfectly resolved. In contrast, consider

a heavily clustered process where each event has a high probability of having another event within distance

α of it, then a large proportion of events will be affected by resolution and the point pattern will be poorly

resolved. It is this difference in the resolvability of a point pattern that we wish to capture with probabilistic

resolution.

To formalize this, we say an event s ∈ ΦO is affected by resolution if, for a resolution limit α, s ∈ ΦU.

Conversely, we say it is unaffected by resolution if s ∈ ΦR. We capture this with the probabilistic resolution.

Definition 14. Given a resolution limit α, the probabilistic resolution of a point process NO is the probability

of an event being unaffected by resolution,

pNO,α ≡ P(s ∈ ΦR|s ∈ ΦO). (22)

Proposition 2. The probabilistic resolution of a point process NO imaged under resolution limit α is

pNO,α = 1−GO(α). (23)
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The result of Proposition 2 is obtained directly from Supplementary Equation (17). Clearly, the prob-

ability of an event being affected by resolution is GO(α).

Supplementary Note 7: Quantifying the effect of resolution in single

molecule localization microscopy

We now demonstrate how probabilistic resolution can be used to provide a measure of resolution in

single molecule localization microscopy (SMLM). In an SMLM experiment only a sparse subset of the events

(molecules) from the object process NO are in the photon-emitting (On) state in any given frame, and

therefore the probability an event is affected by resolution (i.e. is within a distance α of another molecule

in the On state) is lower than it would be if all the molecules were on at the same time. We can use the

concept of resolution limited point patterns to rigorously quantify this probability and use Definition 14 to

provide a measure of resolution.

Idealized SMLM experiment

Consider an SMLM experiment in which the super-resolved image is formed through the capture of

nF successive frames. We represent this as a random partition {Φ1, ...,ΦnF} of ΦO, with the modelling

assumptions:

1. every molecule appears in exactly one frame,

nF⋃
i=1

Φi = ΦO,

Φi ∩ Φj = ∅, for all i, j = 1, ..., nF, i 6= j, (24)

2. the molecules are evenly divided amongst frames

P(s ∈ Φi|s ∈ ΦO) = n−1
F for all i = 1, ..., nF, (25)

3. molecules are independently divided among frames

P(s ∈ Φi|u ∈ Φj) = P(s ∈ Φi) for all s,u ∈ ΦO, i, j = 1, ..., nF. (26)

We say the spatial point pattern in each frame is q-thinned where q = n−1
F , i.e. the probability that an

event (molecule) appears in a specific frame is q. For each frame pattern Φi, under stationary and isotropic

imaging operator I with ARL α, we observe the image point pattern Φi
I . Associated with this is the
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corresponding resolved pattern Φi
R and the unresolved pattern Φi

U. The collection of resolved molecules is

ΦR =

nF⋃
i=1

Φi
R (27)

and the super-resolved image pattern is formed by taking the superimposition of resolution limited point

patterns across the nF frames, i.e.

ΦI =

nF⋃
i=1

Φi
I . (28)

Φ"

Φ#

Φ$

Φ%

Φ&#

Φ&$

Φ&%

Φ&

Supplementary Figure 5. Illustration of SMLM in which a pattern ΦO is imaged across 3 frames. Each
frame is a thinned version of ΦO that is subject to an imaging operator with resolution limit α. The
resulting super-resolved image pattern ΦI is the superimposition of individual frames.

The probabilistic resolution pNO,α,q of a super-resolved point process, now indicating its dependency

on thinning rate q, is as defined in Definition 14, i.e. P(s ∈ ΦR|s ∈ ΦO).

Proposition 3. The probabilistic resolution pNO,α,q of a super-resolved process is equal to pNq ,α = 1 −

Gq(α), where Gq(·) is the NND function for the process Nq, a classically q-thinned version of NO.

(A classically q-thinned version of NO is where each event generated by NO is independently kept with

a probability q or discarded with a probability 1− q.)

This result follows from the fact that the probability an event in ΦO is unaffected by resolution is the

probability it is unaffected by resolution in the frame it appears in, i.e. P(s ∈ ΦR|s ∈ ΦO) = P(s ∈ Φi
R|s ∈

Φi), giving pNO,α,q = pNq ,α. One corollary of this result is if one wishes to attain a minimum probabilistic
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resolution of p using an ARL of α, then one must ensure p ≤ 1−Gq(α). The maximum value of q required

to achieve this is

qmax = max
q
{q : Gq(α) ≤ 1− p}. (29)

We are able to verify the core idea behind SMLM procedures with the following result.

Proposition 4. Let NO be a spatial point process. Consider a single molecule localization microscopy

experiment with assumptions 1-3 as outlined above. As the number of frames nF → ∞ and q → 0 such

that qnF = 1, for s ∈ ΦO, P(s ∈ ΦR)→ 1.

This proposition states that as we tend the thinning of our pattern to zero while increasing the number

of frames we image across, we tend to perfect probabilistic resolution, i.e. we guarantee that no event will

be affected by resolution. The proof of this is found in Supplementary Note 12.4.

We now make use of this probabilistic reasoning about resolution to define the super-resolution limit

for a point process.

Definition 15. For a point process NO imaged across nF = q−1 frames subject to an algorithmic resolution

limit α, the super-resolution limit ςNO,α,q is the α∗ that solves

pNO,α,q = pNO,α∗ . (30)

In other words, if NO was imaged in a single frame, one would require a resolution limit of ςNO,α,q to

achieve the same probabilistic resolution as under the SMLM procedure with thinning rate q and ARL α.

Proposition 5. The probabilistic super-resolution limit is ςNO,α,q = G−1
O (Gq(α)).

This follows directly from Propositions 2 and 3 and Definition 15.

Supplementary Note 8: Computing probabilistic resolution

Probabilistic resolution and the super-resolution limit can not be estimated directly from images and

must instead be computed for specific scenarios of interest. For example, one might ask: given I want to

image a point pattern of this type, what conditions do I need to obtain a certain probabilistic resolution.

Such computations require knowledge of the NND function for the data generating process of interest.

The NND function is only analytically tractable for a very small set of idealized examples, and therefore

so is the probabilistic resolution and super-resolution limits. We begin by looking at three such examples.

We will then show how it can be estimated through simulations for more general cases.
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8.1 Homogeneous Poisson Process

For an HPP NO with intensity λO, the NND distribution function is GO(r) = 1 − exp(−λOπr
2). An

HPP imaged with ARL α therefore has a probabilistic resolution pNO,α = exp(−λOπα
2). For example, an

HPP with λ = 1 events per µm2 subject to ARL of α = 0.5µm has pNO,α = 0.456.

With regards to an SMLM experiment, for HPP NO with intensity λO, thinned process Nq is an HPP

with intensity qλO. In this circumstance, the probabilistic resolution is pNO,α,q = exp(−qλOπα
2), and

from Proposition 5 the super-resolution limit is ςNO,α,q =
√
qα. Further to this, Supplementary Equation

(29) informs us that to ensure a probabilistic resolution of at least p one requires q ≤ −(λOπα
2)−1 ln p.

For example, suppose we image an HPP with intensity λO = 50µm−2 under an algorithmic resolution

α = 0.5µm, then pNO,0.5 = 8.8165 × 10−8. Suppose we now use an SMLM imaging technique in which

we image the HPP over 2000 frames, i.e. q = 5 × 10−4, then the probabilistic resolution increases to

pNO,0.5,5×10−4 = 0.9806 and the super-resolution limit is ςNO,0.5,5×10−4 = 0.0112µm, i.e. the probability

an event is affected by resolution is the same as if NO was imaged with an ARL of 0.0112µm. Suppose

we wish to achieve a probabilistic resolution of at least 0.99, then we would require q ≤ 2.56× 10−4.

8.2 Cluster Process

We now look at the case where NO is a cluster process. The specific type of cluster process we consider

is a Thomas process. This is a process in which parent events are generated according to an HPP with

intensity κ, and each parent has a random number of offspring which is Poisson(ζ) distributed. These

offspring are randomly placed around the parent according to a circular Gaussian distribution centred at

the parent with covariance σ2I. Process NO is comprised only of the offspring events. We note that the

Thomas process is a type of stationary Cox process (Cressie, 1993, p. 663) and therefore the NND, as

defined in Definition 7 is valid here. The NND function is given by Afshang et al. (2016) as

GO(r) = 1− (1−H(r))

∫ ∞
0

exp
(
−ζ
(

1−Q1

(v0

σ
,
r

σ

)))
fV0(v0)dv0, (31)

where

H(r) = 1− exp

(
−2πκ

∫ ∞
0

(
1− exp

(
−ζ
(

1−Q1

( v
σ
,
r

σ

)))
vdv

))
, (32)

Q1(α, β) is the first-order Marcum Q-function defined as Q1(α, β) =
∫∞
β y exp(−(y2 + α2)/2)I0(αy)dy

where I0(·) is the 0th order modified Bessel function, and fV0(v0) = v0
σ2 exp(−v2

0/2σ
2). For a given

resolution limit α and process parameters κ, ζ and σ, the NDD function GO(α), and hence pNO,α, can be

computed through numerical integration.

For example, consider imaging a Thomas cluster process with a density of 10 clusters per 30µm2,
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an expected 100 events per cluster and the events in each cluster distributed with a covariance matrix

equal to σ2I2, σ = 0.05µm (a typical simulation study from Rubin-Delanchy et al. (2015); Griffié et al.

(2017) - see Supplementary Figure 6A for an example realization). For an ARL of α = 0.5µm we have

GO(α) = 1 to machine precision, which in turn gives a probabilistic resolution of pNO,0.5 = 0 to machine

precision. Suppose we now image it using an SMLM procedure with q = 1× 10−3. The q-thinned process

can now be considered a Thomas cluster process with the same cluster density but with an expected 0.1

events per cluster. This gives a probabilistic resolution of pNO,0.5,1×10−3 = 0.882 (the value of the curve at

q = 1×10−3 in Supplementary Figure 6B) and a super-resolution limit of 3.56×10−3µm. This calculation

is illustrated in Supplementary Figure 6C.

Supplementary Equation (31) can further be used to numerically compute a bound on q to attain a

certain level of probabilistic resolution. For example, suppose we wish to achieve a probabilistic resolution

of at least 0.99 we require q ≤ 7.97× 10−5.

8.3 Matérn I Hardcore Process

Suppose NO is a Matérn I hardcore process (Matérn, 1960) with hardcore distance greater than α, i.e.

no two events will be within α of each other with probability 1. This implies NND function GO(α) = 0 and

therefore a probabilistic resolution of pNO,α = 1. Under an SMLM procedure the probabilistic resolution

will continue to be 1 for any q, and therefore the super-resolution limit is 0 for all q. This equates to the

pattern being perfectly resolvable.

Now suppose the hardcore distance is less than α. An expression for the NND function is given in

Al-Hourani et al. (2016). Due to it’s complexity, we elect not to include it here. However, interested

readers should follow the same procedure used in Supplementary Note 8.2 for the Thomas cluster process

to compute quantities of interest.

8.4 Estimating the NND function and probabilistic resolution

The above examples have tractable expressions for the NND function from which the probabilistic

resolution and super-resolution limit can be calculated. Expressions for the NND function quickly becomes

intractable as we move to more complex point process models. Here, we illustrate how we can estimate

probabilistic resolution and super-resolution limits under such circumstances.

The NND function of a point process can be estimated from a realized point pattern {s1, ..., sn} on

some region of interest X ⊂ R2. To do so, we use the following estimator from (Cressie, 1993, p. 614),

there called the Ĝ3 estimator:

Ĝ(r) =

∑n
i=1 I(ri,X ≤ r, di > r)∑n

i=1 I(di > r)
, r > 0. (33)
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Here, ri,X and di denote the distance from the ith event to, respectively, the nearest event in X and

the nearest boundary of X, and I(B) is the indicator function of event B: I(B) = 1 if B is true and 0

otherwise.

The procedure for computing pNO,α,q for a point-process NO of interest for a given α and q therefore

proceeds as follows.

1. Simulate ΦO = {s1, ..., sn}.

2. Compute ĜO(α) from ΦO using Supplementary Equation (33). 1− ĜO(α) provides an estimate of

pNO,α, the probabilistic resolution without an SMLM procedure.

3. For a particular q, randomly partition the events ΦO into nF = bq−1c thinned patterns Φ1, ...,ΦnF .

4. For each Φi, i = 1, ..., nF, compute Ĝiq(α) using (33).

5. Compute the estimator for Gq(α) as

Ĝq(α) = n−1
F

nF∑
i=1

Ĝiq(α). (34)

The probabilistic resolution pNO,α,q is estimated as 1− Ĝq(α).

6. The super-resolution limit can be estimated by computing ĜO(r) over a range of r and numerically

finding Ĝ−1
O (Ĝq(α)).

We illustrate this with an example.

Example: Tubulin

We consider a tubulin localization data set. We assume in a typical imaging experiment that the position,

curvature and length of the microtubules are random and hence can be modelled as a fibre process (Stoyan

et al., 1995, Chapter 9), and that the tubulin locations are realized on the fibres according to a Poisson

process. In other words, if Si ⊂ R2 is a fibre (microtubule) and S =
⋃
i=1 Si ⊂ R2 the fibre process

(collection of microtubules), then the tubulin process is Cox with random intensity Λ(s) = ω · 1S(s),

ω > 0. Provided this fibre process is stationary (Stoyan et al., 1995, p. 282 ), the tubulin point process

will be a stationary Cox process (Stoyan et al., 1995, p. 156 ), and hence has a NND function that can be

estimated from a realization. The dataset we consider here is taken from the Single Molecule Localization

Microscopy Symposium 2013 data challenge (Sage et al., 2015) and consists of 100000 emitters over a 40µm

× 40µm region of interest, thus giving an estimated intensity of the object process of λ̂O = 62.5µm−2 (see

Supplementary Figure 6D). The structure is imaged over 2401 frames, giving q = 1/2401 ≈ 4.90 × 10−4
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Supplementary Figure 6. A. A realization of a Thomas Cluster process with an expected 10 clusters
per 30µm2 and 100 expected events per cluster spatially distributed according to a Gaussian distribution
with standard deviation 50nm (a typical simulation study from Rubin-Delanchy et al. (2015); Griffié et al.
(2017)). B. A curve showing how the probabilistic resolution of the process changes with thinning rate
q for α = 0.5µm. C. Demonstration of how the super-resolution limit can be computed from the NND
function when q = 0.001 and α = 0.5µm – see text for details. D. Tubulin data from the Single Molecule
Localization Microscopy Symposium 2013 data challenge (Sage et al., 2015). E. A curve showing how the
probabilistic resolution of the process changes with thinning rate q for α = 0.360µm. F. Demonstration of
how the super-resolution limit can be computed from the NND function when q = 1/2401 and α = 0.360µm
– see text for details.

and an average of 41.6 emitters per frame. The data set conforms to assumptions 1-3 of Supplementary

Note 7.

With an ARL of 0.360µm (the estimated ARL of Algorithm 2 - see Figure 2), the probabilistic resolution

is estimated to be pNO,0.360,4.9e−4 ≈ 0.864 (the value of the curve at q = 1/2401 in Supplementary Figure

6E). This leads to a super-resolution limit of 1.38×10−3µm, i.e. with just a single image of the entire object

pattern one would need an algorithmic resolution limit of 1.38× 10−3µm to achieve the same probabilistic

resolution as the SMLM procedure. This calculation is illustrated in Supplementary Figure 6F.

Supplementary Note 9: Estimating the algorithmic resolution limit

We acknowledge that there may be several suitable methods for estimating the ARL as defined in

Definition 12. Here, we provide one method and show that under certain attainable conditions it has

preferable statistical properties. The method we present makes use of the pair correlation function to

form an estimator for the algorithmic correlation radius ρ, defined in Definition 11. From Supplementary

Equation 15, the estimator for the ARL is then given as α̂ = ρ̂/2.
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We begin by modelling the pair correlation function for the image process as

gI(r) =

 h(r) 0 ≤ r < ρ

1 r ≥ ρ,
(35)

where there exists an 0 ≤ s < ρ such that h(r) is not a constant 1 on (s, ρ). Suppose we construct an

unbiased estimator ĝI(r) of gI(r) (see the Image Analysis section in the Methods for details) and compute

it on each element of R = {r1, ..., rm}, a finely, regularly spaced collection of proposals for ρ. We assume

ρ ∈ R, that the largest element rm is certainly larger than ρ and smallest element r1 is certainly smaller

than ρ. We further assume that ĝI(ri) = gI(ri) + εi at ri ∈ R, where ε1, ..., εm are zero mean, iid random

variables with finite variance σ2 > 0.

The estimator of ρ we provide is defined as

ρ̂ = argmin
ri∈R

T (ri) (36)

where

T (ri) = (m− i+ 1)−1(m− i)−1
m∑
j=i

(ĝI(rj)− ḡi)2 (37)

and ḡi = (m− i+ 1)−1
∑m

j=i ĝI(rj). To show that this is estimating ρ, as required, we consider E{T (ri)}.

The intuition to this is that the function T (ri) is the standard error of the pair correlation estimator

across all proposals to the right of ri, including ri itself. Therefore, moving from right to left, while gI

remains constant T will decrease in value. Once gI starts to deviate from the constant value of one,

provided it does so by a certain amount, T will start to increase in value; leaving the minimum of T to be

at the proposal closest to ρ. In practice, this means this estimator will be conservative as it will choose the

first point from the right that appears to deviate significantly from one.

To formulate this, let R = {r1, ..., rK−1, ρ, rK+1, ..., rm} be the collection of proposals indicating that

the true, unknown value of ρ is rK . For i < K we let nL,i = K−i, for K ≤ i < m we let nR,i = m−K+1,

and for i < K we let ni = nL,i+nR,K . Subscripts L and R indicate a partitioning of the proposals ri, ..., rm

that fall to the left or right of rK , respectively. With Ni = n2
i−ni, NL,i = n2

L,i−nL,i and NR,i = n2
R,i−nR,i,

the function T (ri) can be written as (Baker and Nissim, 1963)

T (ri) =


NL,i

Ni
s2

L,i +
NR,K

Ni
s2

R,K +
nL,inR,K(ḡL,i−ḡR,K)2

niNi
1 ≤ i < K

1
nR,i

s2
R,i K ≤ i < m

, (38)
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where

ḡL,i =
1

nL,i

K−1∑
j=i

ĝI(rj) 1 ≤ i < K (39)

ḡR,i =
1

nR,i

m∑
j=i

ĝI(rj) K ≤ i < m (40)

s2
L,i =

1

nL,i − 1

K−1∑
j=i

(ĝI(rj)− ḡL,i)
2 1 ≤ i < K (41)

s2
R,i =

1

nR,i − 1

m∑
j=i

(ĝI(rj)− ḡR,i)
2 K ≤ i < m. (42)

Taking the expected value, it follows that

E{T (ri)} =


NL,i

NinL,i
(σ2 + κ2

i ) +
NR,K

NinR,K
σ2 +

nL,inR,KE{(ḡL,i−ḡR,K)2}
niNi

1 ≤ i < K

1
nR,i

σ2 K ≤ i < m,
(43)

where

κL,i =
1

nL,i

K−1∑
j=i

(g(ri)− µL,i)
2 (44)

and

µL,i =
1

nL,i

K−1∑
j=i

g(ri). (45)

To demonstrate that this is a suitable estimator for the radius of correlation, we look to find a sufficient

condition for

argmin
ri∈R

E{T (ri)} = rK = ρ, (46)

i.e. the minimum of the expected value of the function is at ρ. Given E{T (ri)} < E{T (rj)} for all

K ≤ i < j < n, such a condition needs to ensure E{T (ri)} > E{T (rK)} for all 1 ≤ i < K. We begin by

considering a necessary and sufficient condition for E{T (rK−1)} > E{T (rK)}. For i = K − 1, we have

n1,i = 1 and N1 = 0, giving

NR,K

NinR,K
σ2 +

n1,inR,KE{(ḡ1,i − ḡR,K)2}
niNi

>
1

nR,K
σ2 (47)

is necessary and sufficient for E{T (rK−1)} > E{T (rK)}. In this circumstance, ḡ1,i = ĝ(rK−1) and it

follows (through manipulation) that (47) holds if and only if

(g(rK−1)− 1)2 >
nR,K + 1

nR,K
σ2. (48)
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This states that provided g deviates away from 1 by a larger amount than ((nR,K + 1)/nR,K)−1/2σ (which

is approximately equal to σ for large nR,K) then E{T (rK−1)} > E{T (rK)}, i.e. there exists a local

minimum at rK . For it to be a global minimum it is sufficient to have E{T (ri)} > E{T (rK)} for all

i < K. Further manipulation can be used to show that a sufficient condition for argmin
ri∈R

E{T (ri)} = ρ is

(nL,i − 1)nR,K

NL,i + nL,inR,K
κ2
i +

nL,in
2
R,K

n(NL,i + nL,inR,K)
(µL,i − 1)2 > σ2 for all 1 ≤ i < K. (49)

Suppose we are able, through simulation, to compute M independent and identically distributed estimates

of the pair correlation function ĝI,1(ri), ĝI,2(ri), ..., ĝI,M (ri), for all ri ∈ R, each with error of variance σ2,

then estimator ĝI(ri) =
∑M

j=1 gI,j(ri) has variance σ2/M . Therefore, provided we choose an M such that

M >

(
(nL,i − 1)nR,K

NL,i + nL,inR,K
κ2
i +

nL,in
2
R,K

n(NL,i + nL,inR,K)
(µL,i − 1)2

)−1

σ2 for all 1 ≤ i < K, (50)

we will satisfy sufficient condition (49).

9.1 Verifying it is a true change point

We propose a test to verify whether an estimate of a correlation radius, as defined in (36) and (37),

is due to a true change point in the pair correlation function. Suppose a genuine radius of correlation

ρ > 0 does exist, then with everything to the right of ρ being a constant, we should find the variance of

ĝI(rK), ..., ĝI(rm) to be smaller than the variance of ĝI(r1), ..., ĝI(rK−1). We propose an F -test to check

whether the difference in variance is statistically significant.

Let s2
L,K be the variance of ĝI(r1), ĝI(r2), ..., ĝI(rK−1) and s2

R,K be the variance of ĝI(rK), ..., ĝI(rm),

defined by (41) and (42), respectively. We look to test the null hypothesis H0 that states s2
L,K = s2

R,K .

Rejecting H0 in favour of the accepting the alternative (s2
L,K 6= s2

R,K) is equivalent to accepting there is

a genuine change point in the pair correlation function at ρ̂.

Under the null hypothesis
s2

L,K

s2
R,K

∼ FnL,K−1,nR,K−1 (51)

where FnL,K−1,nR,K−1 represents the F distribution with nL,K − 1 and nR,K − 1 degrees of freedom.

We therefore reject the null hypothesis at the p significance level when
s2L,K
s2R,K

> F pnL,K−1,nR,K−1, where

F pnL,K−1,nR,K−1 denotes the upper p · 100% of the FnL,K−1,nR,K−1 distribution.
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9.2 Bootstrapping intervals of confidence

Consider the case where we have formed ĝI(ri), ri ∈ R, by averaging M independent and identically

distributed estimators ĝI,1(ri), ..., ĝI,M (ri). We can place all estimates in the m×M matrix

G =


ĝI,1(r1) · · · ĝI,M (r1)

...
...

gI,1(rm) · · · ĝI,M (rm)

 . (52)

Using the resampling with replacement framework of Efron and Tibshirani (1993), one can create R

bootstrapped estimates ĝ∗1I (ri), ĝ
∗2
I (ri), ..., ĝ

∗R
I (ri) by creating m ×M matrices G∗1, G∗2, ..., G∗R, where

the M columns of each G∗k, k = 1, .., R are M randomly sampled (with replacement) columns of G.

Bootstrap estimate ĝ∗kI (ri) is then computed by averaging across the columns,

ĝ∗kI (ri) =

M∑
j=1

(G∗k)ij . (53)

We then implement the estimator of the radius of correlation described above on each of the R pair

correlation estimates [ĝ∗kI (r1), ..., ĝ∗kI (rm)]T , k = 1, ..., R, to produce bootstrapped estimates α̂∗1, ..., α̂∗R.

For 0.5 < p < 1, letting α̂∗(p) and α̂∗(1−p) be the 100 · pth and 100 · (1− p)th empirical percentiles from

α̂∗1, α̂∗2, . . . , α̂∗R, a percentile bootstrap interval of length 1− 2p is given by

[α̂%,lo, α̂%,up] ≈ [α̂∗(p), α̂∗(1−p)]. (54)

9.3 Example

We have applied the estimator and bootstrapping procedure presented here to Algorithms 1, 2 and

3. The vector of proposals used was R = [0.020, 0.025, 0.030, ..., 2.000]T and M = 2000 independent

estimates of the pair correlation function were computed. These were averaged together to form ĝI ,

from which α̂ is estimated. A further 10000 bootstrapped estimates were computed via the procedure in

Supplementary Note 9.2. Details on the simulations and analysis can be found in the Methods. The results

are shown in Table 1.

Further insight into issues encountered when estimating α can be found by looking at the histogram

of the bootstrapped estimates. Algorithms 1 and 2 have a neat, unimodal distribution for α̂. This can

be explained by observing that the pair correlation functions shown in Figure 2d of the main paper have

a smooth shape that, moving from the left, cleanly settles on a constant value of one. This leaves little

ambiguity as to the value of the radius of correlation, and thus the algorithmic resolution limit. However,
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Algorithm α̂ (µm) [α̂∗(10%), α̂∗(90%)]

Algorithm 1 0.3625 [0.3325,0.4325]
Algorithm 2 0.3600 [0.3550,0.5150]
Algorithm 3 0.6200 [0.3775,0.6875]

Table 1: The estimated algorithmic resolution limit and the 80% bootstrapped confidence interval for three
different algorithms at a density/intensity of λO = 1 molecule per µm2.
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Supplementary Figure 7. Histogram of the bootstrapped estimates for α̂ for the Algorithm 1, 2 and 3
at a density/intensity of λO = 1 molecule per µm2.

with Algorithm 3 we see the bootstrapped estimates of α take a multimodal distribution. This again can

be understood from the pair correlation function in Figure 2d of the main paper in which there appears to

be a interval over which the function approximately settles to one but with ambiguity over when one would

consider it to have actually occurred.

Supplementary Note 10: Further analysis

In this section we look at two further properties - molecule density and signal to noise ratio (SNR) -

and analyze the effect they have on algorithmic resolution limit.

10.1 The effect of molecule density

We note that the definitions for the radius of correlation and algorithmic resolution limit, Definitions

11 and 12, respectively, do not depend on the intensity (also referred to as the density) λO of the object

process. Supplementary Figure 8 illustrates that this is what we observe in practice by demonstrating

the pair correlation function for three different algorithms (imaging operators) has strikingly similar shape

across a wide range of intensities. In particular, by eye, the point at which it settles to a constant one

appears to be very similar for molecule densities (intensities) up to and including 1 molecule per µm2.

However, for two of the algorithms analyzed (Algorithms 1 and 2), there appears to be a break down of this
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Supplementary Figure 8. Left: The estimated pair correlation function for a range of intensities (molecule
densities) λO for Algorithms 1, 2 and 3. See Methods for details on simulations and estimating the pair
correlation functions. Right: The estimated algorithmic resolution limits (see Supplementary Note 9) for
the pair correlation functions on the left. The bottom and top of the bars indicate the 10th and 90th
percentile of the bootstrapped distribution for α̂, respectively. The red dotted line indicates the average
estimate over the range it spans.

behavior for densities greater than 1 molecule per µm2. This is, to some extent, verified by applying the

estimator for α detailed in Supplementary Note 9, the results of which are shown on the right-hand-side of

Supplementary Figure 8. This is not surprising; there will be a point at which the image becomes saturated

and the algorithm is simply unable to perform its task. Interestingly, Algorithm 3 appears to have an

approximately constant algorithmic resolution limit across all densities studied.

10.2 The effect of signal to noise ratio

We here explore the effect of SNR on the algorithmic resolution limit by changing the number of photons

emitted from each molecule, which equates to varying the signal strength. Supplementary Figure 9 shows

that above 100 photons per molecule the algorithmic resolution limit remains constant for Algorithms 1 and
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Supplementary Figure 9. Left: The estimated pair correlation function for a range of photon emission
counts (signal strengths) for Algorithms 1, 2 and 3. See Methods for details on simulations and estimating
the pair correlation functions. Right: The estimated algorithmic resolution limits (see Supplementary Note
9) for the pair correlation functions on the left. The bottom and top of the bars indicate the 10th and 90th
percentile of the bootstrapped distribution for α̂, respectively. The red dotted line indicates the average
estimate over the range it spans.

2. However for 100 photons and below there is an increase in the algorithmic resolution limit. This can be

seen in both the values of the estimated algorithmic resolution limit and the shape of the pair-correlation

function. This degradation at low SNR of the algorithms’ ability to distinguish between objects is in keeping

with the results of Ram et al. (2006) and further discussion on this is provided in the Results section of

the main text. This behavior is not noticeable with Algorithm 3, however its algorithmic resolution limit in

all cases is significantly above Rayleigh’s limit and therefore it is unsurprising that the effect predicted by

Ram et al. (2006) is undetectable.
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Supplementary Note 11: Analyzing resolution limited point patterns

The pair-correlation function g(r) (see Definition 3) and Ripley’s K-function K(r) (see Definition 6)

are the two most common functions characterizing point processes that are estimated from a realized point

pattern.

The benefit of the pair correlation function is it gives a measure of correlation at a specific distance r

of interest, however, it can be difficult to estimate, particularly from a single realization with a low number

of events. The K-function, on the other-hand, integrates rg(r) over the range [0, r], so smooths out

the localized information in the pair-correlation function. However, estimating it is straight forward and

well-studied (Illian et al., 2008; Ripley, 1981; Cressie, 1993; Lagache et al., 2013).

For analyzing resolution limited point processes, we suggest, where possible, the use of the pair-

correlation function. As Supplementary Figure 3 shows, the effects of limited resolution in the correlation

structure of the process occur over a distance of 2α, therefore g(r) should only be used for analysis on

distances greater than 2α. However, because the pair correlation function gives localized information on

the process’ correlation structure the resolution effect on 0 < r < 2α does not propagate into g for r ≥ 2α.

In contrast, due to the integration involved, the effects of limited resolution on the interval (0, 2α)

propagates into the K-function at all r, as shown in Supplementary Figure 3C and 3D. For this reason we

recommend the use of the K2α function which we define as

K2α(r) ≡ 2π

∫ r

2α
r′g(r′)dr′ = K(r)−K(2α) r > 2α. (55)

In the situation where NO is an HPP and the image point process NI under analysis has second-order

intensity of form given in Supplementary Equation (9), K2α = πr2 − 4πα2, and hence if we define

L2α(r) ≡
√

(K2α(r) + 4πα2)/π then L2α(r) = r and L2α(r)− r = 0 under CSR of NO.

The function K2α(r) can be estimated as K̂2α(r) = K̂(r)−K̂(2α), r > 2α, where K̂ is the traditional

K-function estimator of Ripley (1981)

K̂(r) =
A

n(n− 1)

n∑
i=1

n∑
j=1

wijI(0 < dij < r), (56)

where A denotes the area in the object space corresponding to the image being analyzed, wij denotes the

Ripley’s isotropic edge correction weights Ripley (1981), n denotes the total number of localizations, and
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dij denotes the distance between the ith and jth localizations. The indicator function is defined as

I(0 < dij < r) :=


1, if 0 < dij < 1

0, otherwise.

(57)

Further discussion is provided in the Methods section of the main text.

11.1 Ripley’s K-function for SMLM data

When dealing with SMLM data, it is possible to make advantage of the temporal information encoded

into the data to mitigate for the algorithmic resolution limit. Given realizations φ1
I , φ

2
I , ..., φ

nF
I of the

point patterns Φ1
I ,Φ

2
I , ...,Φ

nF
I for each of the nF frames, we know that a pair of localizations that appear

in separate frames cannot mutually interfere with each other through resolution issues. Typically, the

classical estimator for Ripley’s K-function would sequentially move through every event (localization) in

the combined realization φI =
⋃nF
i=1 φ

i
I and count how many of the other events were within a distance r

of that event (with edge-corrections if needed). The counts are then averaged over the entire dataset to

get an estimate for the expected number of events within a distance r of an arbitrary event.

When estimating Ripley’s K-function in the SMLM setting, one can use the following strategy: again,

move through every event in φI , however, when counting the number of events within a distance r, do not

include events in the same frame and only include events from the other frames. This means no two events

which may be mutually interfering with each other through resolution effects will be used together in the

estimate, allowing estimation of the K-function for all r ≥ 0.

Suppose the realized localizations in frame i are φiI = {si1, ..., simi}, i = 1, ..., nF then this estimator

can be expressed as

K̂(r) =
A

n

nF∑
i=1

1

m−mi

mi∑
j=1

nF∑
k=1
k 6=i

mk∑
j=1

w(ij)(kl)I(0 < d(ij)(kl) < r), (58)

where mi = |φiI | is the number of localizations in frame i, m is the total number of localizations across all

frames, w(ij)(kl) is the edge correction weight for the localizations sij and skl , and d(ij)(kl) is the Euclidean

distance between localizations sij and skl .
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Supplementary Note 12: Appendices

12.1 An alternative model for the imaging operator

Consider the following model for an imaging operator I.

Model 3. Let NO be a point process and let α > 0 be a distance partitioning event set ΦO into event

sets ΦR and ΦU, such that resolved events ΦR ⊆ ΦO are all the events in ΦO that have no other event

within a distance α of it and unresolved events ΦU are all events in ΦO that has one of more events within

distance α of it. Unresolved events ΦU can be further partitioned into resolution limited sub-patterns (see

Definition 13) S1, ...,SM(α) such that ΦU =
⋃M(α)
i=1 Si and Si ∩ Sj for all i 6= j, i, j = 1, ...,M(α). The

image event set ΦI is constructed as

ΦI = ΦR ∪

M(α)⋃
i=1

s̄i

 (59)

where s̄i is the mean position of RSLP Si = {si,1, si,2, ...}, i = 1, 2, ..., i.e.

s̄i =
1

|Si|

|Si|∑
j=1

si,j . (60)

Under this model, all events from NO with no other event within a distance α of it are resolved into

the image process NI . Events that have another event within a distance α of it, i.e. belong to an RSLP,

are not resolved into NI . Instead, the average position of the RSLP becomes an event in NI . This

modeling assumption appears to be a reasonable approximation to the type of behavior seen in the images

of Supplementary Figure 3E.

While the second order properties of the image process NI for HPP NO appear intractable, we are

able to simulate these processes and estimate the pair correlation function and radius of correlation using

the method presented in Section 9. In Supplementary Figure 10 is presented the estimated pair correlation

function and estimated radius of correlation under this model, demonstrating the radius of correlation ρ is

indeed estimated to be at around 2α, and thus ρ/2 is an appropriate definition of the algorithmic resolution

limit. Details can be found in the figure caption.

12.2 The effect of localization error on spatial point processes

We first show that a homogeneous Poisson process remains completely spatially random under the effect

of localization errors. To do so, we model the resulting process as being a Neyman-Scott process (Cressie,

1993, p.664) where the parents {s1, s2, ...} are the true positions of the events, and each parent si has
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Supplementary Figure 10. Estimated pair correlation function (blue) and radius of correlation (red) for
HPP NO subject to imaging operator as described in Model 3 for (left) α = 0.01 and (right) α = 0.02. For
each, 2000 independent realizations of an HPP with intensity λ = 500 per unit area were simulated. Pair
correlation functions on each simulation were estimated (see Methods for details) and averaged together
to give the plotted pair correlation estimate. The radius of correlation was estimated using the method
outlined in Section 9, giving α̂ = ρ̂/2 = 0.0105 and 0.0200, respectively.

exactly one offspring ui – the localization – that is placed a random vector εi away such that ui = si + εi.

The observed events are {u1,u2, ...}. Using the result (8.5.39) in (Cressie, 1993, p. 665), it follows that

the Ripley’s K-function has the form K(r) = πr2, implying complete spatial randomness.

To demonstrate that clustered processes remain clustered we use the example of the Thomas cluster

process – see Section 6 – that are a standard model used in microscopy (Rubin-Delanchy et al., 2015;

Griffié et al., 2017). Suppose clusters have covariance σ2
c I2, and each event is subject to independent

measurement errors of covariance σ2
ε I2, then the process remains Thomas with each cluster now having

covariance (σ2
c + σ2

ε )I2.

12.3 Proof of Proposition 1

Proposition 1. Let NO be a HPP and let Iα be the stationary and isotropic imaging operator stated

in Model 2. Resulting image process NIα exhibits correlation over a distance of 2α, i.e. NIα(ds) is

uncorrelated with NIα(du) if and only if ‖s− u‖ ≥ 2α.

Proof. Under this stationary and isotropic imaging operator, we assume there is a distance α such that

P(NI(ds) = 1|NO(ds) = 1, NO(b(s, α)) = 1) = 1 (61)

P(NI(ds) = 1|NO(ds) = 1, NO(b(s, α)) > 1) = p < 1. (62)

We wish to show that NI(ds) and NI(du) are correlated for ‖s−u‖ ≤ 2α and uncorrelated for ‖s−u‖ > 2α.

To do so, it suffices to show E{NI(ds)NI(du)} = E{NI(d(s)}E{NI(du)} if an only if ‖s− u‖ > 2α. It
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will become necessary to consider the first-order intensity of NI , which is given as

λIν(ds) = P(NI(ds) = 1) (63)

= P(NI(ds) = 1|NO(ds) = 1)P(NO(ds) = 1) (64)

= (p(1− q) + q)λOν(ds) (65)

where q = exp(−λOπα
2) is the probability that given NO(ds) = 1 there is no further event of NO within

the ball b(s, α). It follows that

E{NI(ds)}E{NI(du)} = (p(1− q) + q)2λ2
Oν(ds)ν(du). (66)

Let us consider E{NI(ds)NI(du)}.

E{NI(ds)NI(du)} = P(NI(ds) = 1, NI(du) = 1)

= P(NI(ds) = 1, NI(du) = 1|NO(ds) = 1, NO(du) = 1)λ2
Oν(ds)ν(du)

= λ2
OP(NI(ds) = 1, NI(du) = 1|NO(ds) = 1, NO(du) = 1, NO(b(s, α)) = 1, NO(b(u, α)) = 1)

× P(NO(b(s, α)) = 1, NO(b(u, α)) = 1)ν(ds)ν(du)

+ λ2
OP(NI(ds) = 1, NI(du) = 1|NO(ds) = 1, NO(du) = 1, NO(b(s, α)) > 1, NO(b(u, α)) = 1)

× P(NO(b(s, α)) > 1, NO(b(u, α)) = 1)ν(ds)ν(du)

+ λ2
OP(NI(ds) = 1, NI(du) = 1|NO(ds) = 1, NO(du) = 1, NO(b(s, α)) = 1, NO(b(u, α)) > 1)

× P(NO(b(s, α)) = 1, NO(b(u, α)) > 1)ν(ds)ν(du)

+ λ2
OP(NI(ds) = 1, NI(du) = 1|NO(ds) = 1, NO(du) = 1, NO(b(s, α)) > 1, NO(b(u, α)) > 1)

× P(NO(b(s, α)) > 1, NO(b(u, α)) > 1)ν(ds)ν(du) (67)

Through symmetry, P(NO(b(s, α)) > 1, NO(b(u, α)) = 1) = P(NO(b(s, α)) = 1, NO(b(u, α)) > 1) and

we can reduce the above to

E{NI(ds)NI(du)} = λ2
O(P(NO(b(s, α)) = 1, NO(b(u, α)) = 1)+2pP(NO(b(s, α)) = 1, NO(b(u, α)) > 1)

+ p2P(NO(b(s, α)) > 1, NO(b(u, α)) > 1))ν(ds)ν(du). (68)

Let us now consider the case when ‖s − u‖ > 2α. In this circumstance, b(s, α) ∩ b(u, α) = ∅, which

due to NO being an HPP implies NO(b(u, α)) are N(b(u, α)) independent, meaning P(NO(b(s, α)) =
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n,NO(b(u, α)) = m) = P(NO(b(s, α)) = n)P(NO(b(u, α)) = m), n,m ≥ 0. This in turn implies

E{NI(ds)NI(du)} = λ2
O(q2 + 2pq(1− q) + p2(1− q)2)ν(ds)ν(du) (69)

= λ2
O(p(1− q) + q)2ν(ds)ν(du). (70)

From Supplementary Equation (66) we conclude that ‖s − u‖ > 2α implies E{NI(ds)NI(du)} =

E{NI(ds)}E{NI(du)}. To complete the argument we consider the case when ‖s − u‖ ≤ 2α. In

this circumstance, b(s, α) ∩ b(u, α) 6= ∅ which means NO(b(u, α)) is dependent on NO(b(u, α)) and

P(NO(b(s, α)) = n,NO(b(u, α)) = m) 6= P(NO(b(s, α)) = n)P(NO(b(u, α)) = m). Due to NO being an

HPP, we have

P(NO(b(s, α)) = 1, NO(b(u, α)) = 1) = q2r (71)

P(NO(b(s, α)) = 1, NO(b(u, α)) > 1) = qr(1− q) (72)

P(NO(b(s, α)) > 1, NO(b(u, α)) > 1) = 1− qr(2− q) (73)

where r = exp(λORα(‖s − u‖)), Rα(‖s − u‖) being the area of intersection of two circles of radius α a

distance ‖s− u‖ apart. Supplementary Equation (68) therefore becomes

E{NI(ds)NI(du)} = λ2
O(q2r + 2pqr(1− q) + p2(1− qr(2− q)))ν(ds)ν(du) (74)

To show (66) and (68) are not equal we subtract one from the other, giving

E{NI(ds)NI(du)} − E{NI(ds)}E{NI(du)} = λ2
O(1− r)((p(1− q) + q)2 − p2). (75)

The right-hand side equals zero only when either (i) r = 1, or (ii) p = p(1−q)+q =⇒ pq = q =⇒ p = 1

or q = 0. Condition (i) is only satisfied when Rα(‖s−u‖) = 0 =⇒ ‖s−u‖ ≥ 2α. Condition (ii) can not

be satisfied under the assumptions of the model, completing the proof.
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12.4 Proof for Proposition 4

Proposition 4. Let NO be a spatial point process. Consider a single molecule localisation microscopy

experiment with assumptions 1-3 as outlined above. As the number of frames nF → ∞ and q → 0 such

that qnF = 1, for s ∈ ΦO, P(s ∈ ΦR)→ 1.

Proof. For a given s ∈ ΦO,

P(s ∈ ΦR) =

nF∑
i=1

P(s ∈ Φi
R|s ∈ Φi)P(s ∈ Φi)

= qnFP(s ∈ Φi
R|s ∈ Φi)

= P(s ∈ Φi
R|s ∈ Φi) (qnF = 1)

= P(Nq(b(s, α)) = 1)

=
∞∑
n=1

P(Nq(b(s, α)) = 1|NO(b(s, α)) = n)P(NO(b(s, α)) = n)

= P(NO(b(s, α)) = 1) +

∞∑
n=2

(1− q)n−1P(NO(b(s, α)) = n)

= P(NO(b(s, α)) = 1) +

∞∑
n=2

n−1∑
k=0

(−1)k

 n− 1

k

 qkP(NO(b(s, α)) = n)

=

∞∑
n=1

P(NO(b(s, α)) = n) +

∞∑
n=2

n−1∑
k=1

(−1)k

 n− 1

k

 qk P(NO(b(s, α)) = n)

= 1 +
∞∑
n=2

n−1∑
k=1

(−1)k

 n− 1

k

 qk P(NO(b(s, α)) = n) −→ 1, as q → 0. (76)
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Supplementary Figure 11. Distribution of the ground-truth locations of detected molecules relative to
the center of pixels varies between image analysis algorithms. For each of the indicated image analysis
algorithms, the offset of the ground-truth location coordinate of each molecule detected by an algorithm
from the center of the detector pixel the molecule is located within was calculated. The distributions of
these offsets for each image analysis algorithm across the width and height of a pixel are plotted here
for the image shown in Figure 2a and analyzed in Figure 2b. Since the object locations in Figure 2a are
simulated with a completely spatially random distribution, the distribution of these offsets is expected to
be uniform, as shown a. However, the Algorithm 4 (e) and Algorithm 5 (f) detect more molecules that are
closer to the center of pixels compared to those located closer to the edge of pixels unlike the other image
analysis algorithms we examined.
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Supplementary Figure 12. The resolution limit of the indicated analysis approach is illustrated here
using images of deterministic structures similar to Figure 3. Each structure consists of single molecules
positioned evenly around the edge of a ring, indicated by crosses. The x and y axes indicate the number
of molecules comprising each ring structure and its radius respectively. Localizations obtained by the
analysis approach, indicated by diamonds, corresponding to structures where all constituent molecules were
accurately identified and localized to within 10nm of the true position are shown in blue. Localizations
corresponding to structures where one or more molecules were either not identified or where the localization
deviated by more than 10nm from the true location are shown in red. The solid line indicates the estimated
algorithmic resolution limit α̂. The dashed lines show the 80% bootstrapped confidence interval for the
estimated α̂. All structures with single molecules separated by a distance larger than the algorithmic
resolution limit, i.e., to the left of the lines corresponding to α̂, are accurately recovered.
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Supplementary Figure 13. Results from applying Algorithm 6 which employs a multi-emitter analysis
approach. (a) The results shown in Figure 2d augmented with the pair-correlation plot corresponding
to Algorithm 6. The pair-correlations results for Algorithm 6 were calculated based on the localizations
obtained by analyzing the same images used in Figure 2d. (b) Magnified view of the region in a indicated by
the dashed rectangle. The dashed, vertical lines indicate the algorithmic resolution limits. (c) and (d) The
results of using Algorithm 6 to analyze the same images of deterministic structures analyzed in Figure 3.
Each structure consists of single molecules positioned evenly around the edge of a ring, indicated by crosses.
The x and y axes indicate the number of molecules comprising each ring structure and its radius respectively.
Localizations obtained by the analysis approach are indicated by diamonds. The solid line indicates the
algorithmic resolution limit α̂ estimated from the pair-correlation results shown in a. The dashed lines show
the 80% bootstrapped confidence interval for the estimated α̂ in b. Localizations obtained using Algorithm
6 corresponding to structures where all constituent molecules were accurately identified and localized to
within 10nm of the true position without any repeat detection of a particular molecule are shown in blue.
Localizations corresponding to structures where one or more molecules were either not identified, where
the localization deviated by more than 10nm from the true location, or where the number of molecules in
the structure was overestimated by the algorithm are shown in red. In c, the localizations obtained in b are
plotted again such that repeat detections of a particular molecule are ignored when determining whether a
structure was recovered by the algorithm or not. Therefore, localizations corresponding to structures were
all constituent molecules are identified at least once and localized to within 10nm of the true position are
shown in blue while localizations corresponding to all other structures are shown in red.
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Supplementary Figure 14. Results from analyzing both low and high-density super-resolution images of
tubulin acquired from a BS-C-1 cell. (a) A super-resolution reconstruction of the distribution of tubulin in
a BS-C-1 cell. The image is reconstructed using the localizations obtained by analyzing low-density super-
resolution images using Algorithm 1. The reconstruction was generated by simulating Gaussian profiles
centered at each valid localization produced by Algorithm 1 using σ = 17nm for the width of the Gaussian
PSF. The value for σ was selected by calculating the limit of the localization accuracy (Ober et al., 2004;
Ram et al., 2006) for the corresponding experimental and imaging parameters, using the average number
of photons detected from each fluorophore localized by Algorithm 1, and the average noise associated with
the signal from each fluorophore. The blue box indicates the region displayed in higher magnification in the
adjacent panel. Scalebar (yellow) = 5µm. (b) Magnified view of super-resolution reconstructions of the
region marked in a using the localizations produced by the indicated algorithms. For all three algorithms,
more localizations are obtained when analyzing the low-density images compared to the high-density images
resulting in better clarity in the reconstructions corresponding to the low-density images. Scalebar (yellow)
= 1µm.
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J. Griffié, L. Shlomovich, D. Williamson, J. Aarons M. Shannon, S. Khuon, G. Burn, L. Boelen, R. Peters,

A. Cope, E. A. K. Cohen, P. Rubin-Delanchy, and D. M. Owen. 3D Bayesian cluster analysis of super-

resolution data reveals lat recruitment to the t cell synapse. Scientific Reports, 7:4077, 2017.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical Analysis and Modelling of Spatial Point

Patterns. John Wiley & Sons, Ltd, 2008.

T. Lagache, G. Lang, N. Sauvonnet, and JC. Olivo-Marin. Analysis of the spatial organization of molecules

with robust statistics. PLOS one, 8(12):e80914, 2013.

B. Matérn. Spatial variation. Lecture Notes in Statistics, 36, 1960.

R. J. Ober, S. Ram, and E. S. Ward. Localization accuracy in single-molecule microscopy. Biophysical

Journal, 86:1185 — 1200, 2004.

M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

S. Ram, E. S. Ward, and R. J. Ober. Beyond rayleigh’s criterion: A resolution measure with application to

single-molecule microscopy. Proceedings of the National Academy of Science, 103:4457 — 4462, 2006.

B. D. Ripley. Spatial Statistics. Wiley, New York, 1981.

J. Rossy, E. A. K. Cohen, K. Gaus, and D. M. Owen. Method for co-cluster analysis in multichannel single

molecule localization data. Histochemisty and Cell Biology, 141:605 — 612, 2014.
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