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S7 A detailed methods section on simulating and analyzing image data. This followed by

an analysis of further simulations studies, in the case of a single dark state. Plots and

comparisons with the exponential fitting method are provided.



S1 Non-Markovianity of the observation process.

In this section, we will prove that the observation process {Yn} as defined by equation (2) in

the main text does not exhibit the Markov property (of any order). We will show that this is

true for all observations generated by the set of processes {X(t)} defined by the number of

multiple off states m ∈ Z≥0 and paths to the absorption state 2, as is depicted in Figure 4 of

the main text. This property provides the crucial basis of the PSHMM inference (see Section 3

of the main text) we have presented and conducted in this paper.

Theorem 1. Consider the set of processes {X(t) : t ∈ R≥0} defined from all models Mm
A ,

where m, the number of multiple dark states, takes any value in Z≥0 and A is any subset

of S̄X := SX \ {2} = {0, 01, . . . , 0m, 1}, denoting the set of states the absorption state 2 is

accessible from.

Then fixing ∆ > 0 and any δ ∈ [0,∆), the process {Yn : n ∈ Z≥0} generated by {X(t) :

t ∈ R≥0} as defined in (2) of the main text from all models Mm
A , is not a Markov Chain of any

order.

Proof. For all m ∈ Z≥0, any λ =
(
λ01 λ001 λ011 λ0102 . . . λ0m1 λ10

)>
∈ R2m+2

>0 and

any µ =
(
µ0 . . . µ0m µ1

)>
∈ Rm+2

≥0 (as characterized by the model Mm
A ), we define for

i, j ∈ SX and n ∈ N

b
(1)
ij,∆ = P(X(n∆) = j, Yn = 1|X((n− 1)∆) = i) (1)

b̄
(1)
i,∆ = P(Yn = 1|X((n− 1)∆) = i).

We consider Eln to be the event that l ∈ SY = {0, 1} is observed in the nth frame, i.e. that

Eln = {Yn = l}, and that F jn is the event that X takes the value j at time n∆, i.e. that

F jn = {X(n∆) = j}.

Fixing n ∈ N, we will show that the quantity S(n), describing the probability of observing a

1 in the nth frame given observations of 1s in all previous n− 1 frames is dependent on the full

history of the process {Yn} from time n = 0. Using the notation defined above, we have that

S(n) = P(E1
n| ∩n−1

i=0 E
1
i ), with S(0) = P(E1

0). To obtain S(n), we condition on the events F kn

where k ∈ S̄X , since starting a frame in the absorption state 2 would result in no observation
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of the fluorophore. Using the Markov property of {X(t)} and Bayes’ theorem, we obtain that

S(n) =
∑
k∈S̄X

P(E1
n|F kn )P(F kn | ∩n−1

i=0 E
1
i )

=

(
1∏n−1

i=0 S(i)

)∑
k∈S̄X

b̄
(1)
k,∆

∑
j∈S̄X

b
(1)
jk,∆P(F jn−1 ∩ (∩n−2

i=0 E
1
i ))

 .
In the above, we can further compute that for all k ∈ S̄X

P(F kn ∩ (∩n−1
i=0 E

1
i )) = P(F kn ∩ E1

n−1| ∩n−2
i=0 E

1
i )P(∩n−2

i=0 E
1
i )

=

∑
j∈S̄X

b
(1)
jk,∆P(F jn−1| ∩

n−2
i=0 E

1
i )

P(∩n−2
i=0 E

1
i ). (2)

By letting νX be the initial probability mass function for {X(t)} whereby (νX)i = P(X(0) = i)

(i ∈ SX), and considering iterating the conditional probabilities in (2) backwards in time, we

obtain the relationship

S(n) =

∑
j b̄

(1)
j,∆

∑
kn−1

b
(1)
kn−1j,∆

∑
kn−2

. . .
∑

k1

(∏n−1
i=2 b

(1)
kn−ikn−i+1,∆

)∑
k0
b
(1)
k0k1,∆

(νX)k0∑
j b̄

(1)
j,∆

∑
kn−2

b
(1)
kn−2j,∆

∑
kn−3

. . .
∑

k1

(∏n−1
i=3 b

(1)
kn−ikn−i+1,∆

)∑
k0
b
(1)
k0k1,∆

(νX)k0

,

which depends on the full history of the process {Yn} from t = 0, since for all m and 0 ≤ δ < ∆,

we clearly have that 0 < b̄
(1)
0p,∆

< 1 for all p = 0, . . . ,m and 0 < b
(1)
ij,∆ < 1, for all i, j ∈ S̄X .

S2 Derivation of transmission probabilities.

In this section, we will derive the forms of the transmission probabilities that are used as entries

of the emission matrices {B(l)
∆ }1l=0 needed in the computation of the PSHMM likelihood. Here,

we note from the main text that for observations l = 0, 1

B
(l)
∆ =



b
(l)
00,∆ b

(l)
001,∆

. . . b
(l)
00m,∆

b
(l)
01,∆ b

(l)
02,∆

b
(l)
010,∆ b

(l)
0101,∆

. . . b
(l)
010m,∆

b
(l)
011,∆ b

(l)
012,∆

...
...

...
...

. . .
...

b
(l)
0m0,∆ b

(l)
0m01,∆

. . . b
(l)
0m0m,∆

b
(l)
0m1,∆ b

(l)
0m2,∆

b
(l)
10,∆ b

(l)
101,∆

. . . b
(l)
10m,∆

b
(l)
11,∆ b

(l)
12,∆

0 0 0 0 . . . b
(l)
22,∆


, (3)
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where

b
(l)
ij,∆ : = P(Yn = l,X((n+ 1)∆) = j|X(n∆) = i)

= P(Y0 = l,X(∆) = j|X(0) = i) i, j ∈ SX , l ∈ SY , (4)

b
(l)
22,∆ = 1{0}(l).

We will firstly provide an extensive overview outlining all the necessary mathematical tools,

namely the use of Laplace transforms and the distributions of state holding times, that are

needed to compute these matrices for all m ∈ Z≥0.

In particular, when {Yn} is recorded over exposure times ∆ for each frame, we will consider

deriving the following transmission probability function in (4), holding for any i, j ∈ SX =

{0, 01, . . . , 0m, 1, 2} and l ∈ SY = {0, 1}. By further describing how the state of X(∆), will

change the structure of these computations, we will then delve into its technicalities on a case

by case basis. In doing so, a derivation to Algorithm 1 (provided in Section S3) that computes

the elements of matrices in (3) will be provided. Finally, we will consider specifically deriving the

form of transmission probabilities when m = 0, an experimentally useful and mathematically

complete exercise.

On the notation we will use in this chapter, we will make extensive use of the following:

Firstly, SX = {0, 01, . . . , 0m, 1, 2} is maintained to be the state space of the process {X(t)}

and S̄X := SX \ {2} the state space of the process without the absorption state 2. We let 0n

and 1n denote the (n × 1) column vectors of zeros and ones, respectively, and In to be the

n×n identity matrix, holding for any n ∈ N. To introduce sub-matrices of matrices, we denote

(M)(i1:i2),(j1:j2) to be the matrix filled with rows i1 to i2 and columns j1 to j2 of any matrix

M , and (M)i1,j1 to be the (i1, j1)th entry of M .

Secondly, we will continually refer to i ∈ S̄X as the state of X(0), j ∈ SX as the state of

X(∆) and l ∈ SY as the state of Y0, unless stated otherwise.

S2.1 Overview.

In the following, we will describe key mathematical concepts, with particular reference to mul-

tivariate counting processes and the idea of labeling sets that are needed to compute (4).

In the most general setting when m ∈ Z≥0, we compute (4) by conditioning on the number

of transitions made by {X(t)} between states in a labeling set R before time ∆. Here, R
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considers transitions from state p to state q and denotes a set of ordered index pairs (p, q) with

p, q ∈ SX , (see Minin and Suchard (2007)). For example, labeling all transitions from state 0

would imply that R is equal to the set {(0, 01), (0, 1), (0, 2)}.

We define {NR(t) : t ∈ R≥0} to be the (univariate) counting process, which counts the

number of transitions in the labeling set R that have occurred by {X(t)} before time t. This

process has state space Z≥0.

We further define {NRn(t) : t ∈ R≥0} to be the random vector comprised of the n ∈ N

univariate counting processes NRn(t) = [NR1(t) NR2(t) . . . NRn(t)]>, so that NRn(t) is

a multivariate counting process. Here Rn := {R1,R2, . . . ,Rn} is the set of n labeling sets

R1,R2, . . . ,Rn. This process has state space Zn≥0.

For some n ∈ N, let Rij
n denote the set of labeling sets needed to compute b

(l)
ij (discussion

on choosing Rij
n will follow). We define the probabilities

qij(k,∆) = P(NRij
n

(∆) = k, X(∆) = j|X(0) = i)

ξij(l,k,∆) = P(Y0 = j|NRij
n

(∆) = k, X(0) = i,X(∆) = j),

and write (by conditioning n times) the transmission probabilities in the form

b
(l)
ij,∆ =

∑
k∈Zn≥0

qij(k,∆)ξij(l,k,∆). (5)

Although we are free to choose any Rij
n , poor choices may lead to intractability of the above

probabilities. We will thus now describe a method as to how one can choose Rij
n for effective

computation of (5).

The first term qij(k,∆) over any Rij
n can be computed using Laplace transforms. However,

identifying which Rij
n is needed to compute (5) requires attention to ξij(l,k,∆). When l = 1,

this term describes the probability of observing a fluorophore given the number of transitions

made in Rij
n . An observation of a fluorophore (as defined in (2) of the main text) is dependent

on the total time spent in the On state 1 and as such we endeavor to characterize this time

using the transitions that have occurred within the interval [0,∆).

Figures S1a - S1d show four possible paths of {X(t)} within this time interval. Firstly,

Figures S1a and S1b highlight two paths when X(∆) 6= 1. In Figure S1a when X(0) 6= 1, each

of the three time pieces in state 1 are exponentially independently and identically distributed
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(a) A path of {X(t)} when i, j 6= 1.
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(b) A path of {X(t)} when i = 1 and j 6= 1.
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(c) A path of {X(t)} when i 6= 1 and l = 1.
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(d) A path of {X(t)} when i, l = 1.

Figure S1: Figures S1a and S1b consider two possible paths of {X(t)} when j 6= 1 and show
that all individual time pieces in state 1 (blue) are distinctly exponentially distributed. Figures
S1c and S1d consider two paths of {X(t)} when j = 1 and show that all but the last individual
time pieces in state 1 (blue) are exponential. The final time piece suffers from right-censoring.

(iid) (with scale parameter σ1), and thus the total time spent in this state is characterized by an

Erlang(3, σ1) density (truncated over the interval [0,∆)). This is also true for the path shown

in Figure S1b when X(0) = 1, since the memoryless property ensures that the first time piece

still remains exponential. It is easy to see that this property will hold for any i, j ∈ SX with

j 6= 1. Computing b
(l)
ij,∆ in this case would thus require knowledge of the number of time pieces

in the On state, or equivalently, of the number of transitions made to state 1. This can be

done by considering the sole (n = 1) labeling set R0 = {(0, 1), (01, 1), . . . , (0m, 1)} and setting

Rij
1 = R0, for all i ∈ S̄X , j ∈ SX \ {1}. In this case, which from herein we will refer to as Case

j 6= 1, we condition on the univariate counting process {NR0(t)} and write (5) as

b
(l)
ij,∆ =

∑
k∈Z≥0

qij(k,∆)ξij(l, k,∆). (6)

Figures S1c and S1d highlight two paths when X(∆) = 1. In Figure S1c when X(0) 6=

1, there are three time pieces in the On state, the first two of which are iid exponentially
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distributed. However, since X(∆) = 1, the final time piece, suffers from right-censoring. This

is owed to the fact that {X(t)} will still remain in the On state for an unknown time after

the observation has ceased at time t = ∆. This is also true for the path shown in Figure

S1d when X(0) = 1, whereby exploiting the lack of memory property ensures that although

the first three time pieces are iid exponential, the final piece is not. In both cases, the total

time spent in the On state cannot be determined using its holding times. Nevertheless, since

X(∆) = 1 (absorption has almost surely not occurred), we can consider the holding times in

each of the dark states 00, . . . , 0m. Using similar arguments to before, the holding time in each

dark state 0p (p = 0, . . . ,m) is exponentially distributed (with scale parameter σ0p), and the

sum of all times spent in state 0p is characterized by a truncated Erlang(kp, σ0p) density, with

kp ∈ Z≥0 denoting the number of transitions made from state 0p, i.e. the number of 0p → 1

and 0p → 0p+1 (for all p 6= m) transitions over the interval [0,∆). Subtracting the sum of all

times spent in any dark state (characterized by the truncated sum of m + 1 independent but

non-identical Erlang(kp, σ0p) densities) from ∆, recovers the total time spent in the On state,

as depicted in Figure S2.

The utilization of m + 1 Erlang densities in this setting thus invokes conditioning on a

multivariate (n = m + 1) counting process Ri1
m+1. We can determine kp by considering the

labeling sets R1
p = {(0p, 1), (0p, 0p+1)} for p = 0, . . . ,m − 1 and R1

m = {(0m, 0m+1)}. By

defining the vector

k =
(
k0 k1 . . . km−1

)>
, (7)

we thus consider conditioning on {NRi1
m+1

(t) = k}, using R1
m+1 := {R1

0,R1
1, . . . ,R1

m}, where

we set Ri1
m+1 = R1

m+1 for each i ∈ S̄X .

This case, which we refer to as Case j = 1 allows (5) to be written as

b
(l)
i1,∆ =

∑
k∈Zm+1

≥0

qi1(k,∆)ξi1(l,k,∆). (8)

We will now formally discuss the mathematical framework needed to compute qij(k,∆) and

ξij(l,k,∆) in both cases j 6= 1 and j = 1.

S2.2 Case j 6= 1.

For the j 6= 1 case, we will derive the forms of qij(k,∆) using Laplace transforms and ξij(l, k,∆)

using the distributions of state holding times as outlined in Section S2.1.
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X(t)

t0

01

02

03

1
2

∆

Figure S2: Highlighted holding times in each dark state: 0 (red), 01 (orange), 02 (brown) and
03 (purple) from a possible path when X(∆) = 1 and m = 3. All individual time pieces in each
dark state are distinctly exponentially distributed. Subtracting the sum of all these (highlighted)
time pieces from ∆ gives the total time spent in state 1.

S2.2.1 Computation of qij(k,∆).

In this section, we will consider using Laplace transforms to derive the form of

qij(k,∆) = P(NR0(∆) = k,X(∆) = j|X(0) = i),

utilizing the labeling set R0 = {(0, 1), (01, 1), . . . , (0m, 1)}. Using the infinitesimal definition of

a Markov Process, for small h > 0 so that limh↓0
o(h)
h = 0, we have for any t ≥ 0 and i ∈ S̄X

qi0(k, t+ h) = (1− σ0h)qi0(k, t) + λ10qi1(k, t)h+ o(h)

qi0p(k, t+ h) = (1− σ0ph)qi0p(k, t) + λ0p−10pqi0p−1(k, t)h+ o(h) p = 1 . . .m

qi1(k, t+ h) = (1− σ1h)qi1(k, t) +
m∑
p=0

λ0p1qi0p(k − 1, t)h+ o(h)

qi2(k, t+ h) = qi2(k, t) +
m∑
p=0

µ0pqi0p(k, t)h+ µ1qi1(k, t)h+ o(h). (9)

The above equations can be succinctly written in matrix form. Specifically, we consider Qt(k)

to denote the (m+ 2)× (m+ 2) matrix such that for any t ≥ 0,

Qt(k) =


q00(k, t) q001(k, t) . . . q01(k, t)

q010(k, t) q0101(k, t) . . . q011(k, t)

. . .
...

. . . . . .

q10(k, t) q101(k, t) . . . q11(k, t)

 . (10)
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Moreover, we define the end-absorbed state vector as Q̄t(k) =
(
q02(k, t) . . . q12(k, t)

)>
. It

is clear from (9) that

Q̄t(k) =

(∫ t

0
Qs(k)ds

)
µ, (11)

with µ =
(
µ0 . . . µ0m µ1

)>
≡ (G)(1:m+2),m+3 as the (m+ 2) vector of absorbing rates.

Recovering Q̄t(k) will therefore require an expression for Qt(k).

Lemma 1. Let {X(t) : t ∈ R≥0} be an irreducible Markov Chain over a state space SX with

cardinality n and let its generator G be such that its (i, j)th entry is λij . Letting Qt(k) denote

the matrix with (i, j)th entry qij(k, t) = P(NR(t) = k,X(t) = j|X(0) = i), which counts

transitions in the some labeling set R in the time interval [0, t), the Laplace transformed matrix

(for all k ∈ Z≥0) Fs(k) =
∫∞

0 e−stQt(k)dt takes the form

Fs(k) = (sIn −GR̄)−1
(
GR(sIn −GR̄)−1

)k
. (12)

Here GR ∈ Rn×n is the matrix with (i, j)th entry λij1R((i, j)) and GR̄ = G−GR.

Proof. See Minin and Suchard (2007).

A matrix differential equation for Qt(k) and its Laplace transformed matrix Fs(k) =∫∞
0 e−stQt(k)dt can be obtained by leveraging the result from Minin and Suchard (2007) given

in Lemma 1. In particular, the result on Fs(k) in (12) requires {X(t)} to be irreducible on its

state space. Although this is not true for our process, it is not difficult to see that {X(t)} is

irreducible on S̄X . Therefore, in order to use (12), we can use the sub-Markovian generator of

{X(t)}: GS ≡ (G)(1:m+2),(1:m+2) which is an (m+ 2)× (m+ 2) matrix gained by deleting the

(m+ 3)th row and column from the generator G in (1) from the main text 1. We define GS,R0

to be the (m + 2) × (m + 2) matrix filled with the transition rates only in the labeling set of

interest R0. GS,R0 thus has (i, j)th entry

(GS,R0)i,j :=

λ0i−11 for i = 1, . . . ,m+ 1, j = m+ 2

0 otherwise.

1To avoid division by zero, in the case where σp = σq for some or all p 6= q ∈ S̄X , we must replace all such
σp with σq in the diagonal entries of G.
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Letting GS,R̄0 = GS −GS,R0 , we use Lemma 1 to obtain that for any k ∈ Z≥0,

Fs(k) = (sIm+2 −GS,R̄0)−1
(
GS,R0(sIm+2 −GS,R̄0)−1

)k
. (13)

Recovering Qt(k) now follows from the inverse Laplace transform Qt(k) = L−1
s [Fs(k)](t).

Minin and Suchard (2007) explains that a sufficient condition for obtaining a closed form expres-

sion is that GS,R0 and GS commute. Nonetheless, the non-commutative properties of GS,R0

and GS , coupled with the difficulties in attempting to gain Qt(k) by brute-force, leave its form

to be obtained computationally. Obtaining qij(k,∆) for all k ≥ 1 thus requires evaluating the

computational form Q∆(k).

Remark 1. When k = 0, Q∆(0) = eGS,R̄0∆. To compute, Q̄∆(0), we note from Van Loan

(1978) that Q̄∆(0) =
(∫ ∆

0 eGS,R̄0sds
)
µ = (eA∆)(i1:i2),(i2+1,i3)µ with i1 = 2m+5, i2 = 3(m+

2), i3 = 4(m + 2); A =

 A1 02(m+2)0
>
2(m+2)

02(m+2)0
>
2(m+2) A2

, A1 =

 −G>
S,R̄ Im+2

0m+20
>
m+2 −G>

S,R̄


and A2 =

 GS,R̄ Im+2

0m+20
>
m+2 0m+20

>
m+2

.
S2.2.2 Computation of ξij(l, k,∆).

In this section, we will relate {X(t)} to a renewal sequence. This allows us to characterize the

distribution of waiting times for computation of ξij(l, k,∆). This construction, which we define

as the photo-switching alternating renewal process (PSARP) is described in Definition 1.

Definition 1. Let U = (U1, U2, . . .) denote the successive lengths of time {X(t)} is in the On

state 1 and let D = (D1, D2, . . .) denote the successive lengths of time that the process is not

in state 1 before absorption. We define the photo-switching alternating renewal process

(PSARP) as being characterized by the sequence of iid random vectors Γ, where

Γ =

((U0, D0), (U1, D1), . . .) if X(0) = 1

((D0, U0), (D1, U1), . . .) if X(0) /∈ {1, 2}.

A “renewal” can thus be thought of as returns to the On state if X(0) = 1 or to a dark state if

X(0) /∈ {1, 2}. In particular, for n ∈ Z≥0, defining Rn = Un +Dn, describes a renewal process

with inter-arrival times R0, R1, . . ..
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For full characterization, we need to consider the distributions of {Un} and {Dn}. Clearly

each Un
iid∼ exp(σ1). To deal with {Dn}, we let {Jn : n ∈ Z≥0} be a discrete valued stochastic

process on the state space SJ = {0, 1, . . . ,m}, which counts the number of jumps between

dark states (0p → 0p+1 p = 0, . . .m− 1) during the nth renewal. We have that

D0|J0
d
=


∑J0

s=0D
s
0 if X(0) = 1∑J0

s=pD
s
0 if X(0) = 0p p = 0, . . . ,m,

and for all n ≥ 1 that Dn|Jn
d
=
∑Jn

s=0D
s
n. Here, each Ds

n
iid∼ exp(σ0s) and

d
= denotes

equivalence in distribution.

Once Y0 has been recorded, {X(t)} continues after time ∆ without observation. Section

S2.1 explains that while the time taken between the final jump made by {X(t) : t ∈ [0,∆)} (or

from 0 if no transitions have occurred) and its next transition is not necessarily exponentially

distributed, the first time piece U0 or Dp
0 (as defined in Definition 1) for some p = 0, . . . ,m,

remains exponential. If X(0) /∈ {1, 2}, X(∆) 6= 1 and NR0(∆) = k, then there are exactly k

time pieces in this state (U0, U1, . . . Uk−1). By construction, these k pieces are iid exponentially

distributed and their sum has an Erlang distribution with the shape and rate parametrization

Υ(k) =
∑k−1

i=0 Ui ∼ Erlang(k, σ1). Similarly, if X(0) = 1, X(∆) 6= 1 and N0(∆) = k, then

there are k + 1 exponential time pieces in the On state (U0, U1, . . . , Uk−1, Uk) and the total

time spent in state 1 is governed by Υ(k + 1). Since Y0 = 0 if and only if the total time spent

in the On state within the interval [0,∆) is less than or equal to δ, for k ∈ N, i ∈ S̄X and

j 6= 1 we have

ξij(0, k,∆) = P(Υ(k + 1{1}(i)) ≤ δ|Υ(k + 1{1}(i)) ≤ ∆)

=
1−

∑k+1{1}(i)−1

m=0
(σ1δ)m

m! e−σ1δ

1−
∑k+1{1}(i)−1

m=0
(σ1∆)m

m! e−σ1∆
(14)

ξ1j(0, 0,∆) =
1− e−σ1δ

1− e−σ1∆
(15)

ξij(1, k,∆) = 1− ξij(0, k,∆). (16)

For computational purposes 2, we form (analogously to Q∆(k)) the (m+ 2)× (m+ 1) matrix

2The matrix representations Q∆(k) and Ξl∆(k) are used in Algorithm 1 in Section S3 for computing trans-
mission matrices in the form (3).
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Ξl∆(k) with elements gained from (14)-(16). For i, j ∈ S̄X , j 6= 1 and l ∈ SY we define

Ξl∆(k) =


ξ00(l, k,∆) ξ001(l, k,∆) . . . ξ00m(l, k,∆)

ξ010(l, k,∆) ξ0101(l, k,∆) . . . ξ010m(l, k,∆)

. . .
...

. . . . . .

ξ10(l, k,∆) ξ101(l, k,∆) . . . ξ10m(l, k,∆)

 , (17)

and Ξ̄l
∆(k) to be the (m+ 2) end state vector

Ξ̄l
∆(k) =

(
ξ02(l, k,∆) . . . ξ12(l, k,∆)

)>
. (18)

S2.3 Case j = 1.

Using the same mathematical tools as in the case j 6= 1 (Section S2.2), we derive the forms

of qi1(k,∆) using Laplace transforms and ξi1(l,k,∆) using state holding time distributions.

Before doing so, we will describe an alternative method needed to compute b
(l)
i1,∆.

S2.3.1 Equivalent definition.

For computational feasibility, we will in this section seek an alternative method for computing

the sum in (8).

Using the form of k in (7), we let k ∈ Z>0 be equal to k>1m+1: the total number of

transitions made from the dark states within the interval [0,∆). When X(0) = i, we consider

the set of feasible transitions made by {X(t)}. In particular, on the state space S̄X , an On-Dark

cycle of the form 1 → 0 → 01 → · · · → 0p for some p = 0, . . . ,m is regenerated every time

a dark state transitions back to the On state. When i = 0p for some p, this cyclic structure

implies that kp ≥ kp+1 ≥ · · · ≥ km since any subsequent dark state to 0p can make at most,

the number of transitions made by its preceding state. Using similar arguments, we also have

that k0 ≥ k1 ≥ · · · ≥ kp−1 ≥ kp − 1. When i = 0p, the set of feasible transitions which we

denote as Cik, is of the form

Cik = {k ∈ Zm+1
≥0 : k>1m+1 = k, kp > 0, k0 ≥ . . . ≥ kp−1 ≥ kp − 1 ≥ . . . ≥ km − 1},

and when i = 1, it is easy to see that C1
k ≡ C0

k .

When X(∆) = 1, we thus endeavor to compute the following form of the transmission

11



probabilities

b
(l)
i1,∆ =

∞∑
k=0

∑
k∈Cik

qi1(k,∆)ξi1(l,k,∆). (19)

S2.3.2 Computation of qi1(k,∆).

In this section, in an analogous fashion to the computation of qij(k,∆), we will invoke the use

of Laplace transforms to derive qi1(k,∆), whereby for k ∈ Zm+1
≥0

qi1(k,∆) = P(NR1
m+1

(∆) = k, X(∆) = 1|X(0) = i),

and transitions are counted in R1
m+1 = {R1

0,R1
1, . . . ,R1

m} where for p = 0, . . . ,m− 1, R1
p =

{(0p, 1), (0p, 0p+1)} and R1
m = {(0m, 1)}.

Using the infinitesimal definition of a Markov process, we have for any t ≥ 0 and i ∈ S̄X

qi0(k, t+ h) = (1− σ0h)qi0(k, t) + λ10qi1(k, t)h+ o(h)

qi0p(k, t+ h) = (1− σ0ph)qi0p(k, t) + λ0p−10pqi0p−1(k− epm+1, t)h+ o(h) p = 1 . . .m.

qi1(k, t+ h) = (1− σ1h)qi1(k, t) +

m∑
p=0

λ0p1qi0p(k− ep+1
m+1, t)h+ o(h),

whereby epn denotes the pth canonical (standard) basis vector of Rn. For s > 0, sending h ↓ 0

and taking Laplace transforms reveals that

(s+ σ0)fi0(k, s) = λ10fi1(k, s) (20)

(s+ σ0p)fi0p(k, s) = λ0p−10pfi0p−1(k− epm+1, s) p = 1 . . .m, (21)

(s+ σ1)fi1(k, s) =

m∑
p=0

λ0p1fi0p(k− ep+1
m+1, s), (22)

with Lt[qij(k, t)](s) =: fij(k, s) =
∫∞

0 e−stqij(k, t)dt.

For k ∈ Zm+1
≥0 , this yields the recursion 3

fi1(k, s) =
λ10

s+ σ1

m∑
p=0

λ0p1
∏p−1
q=0 λ0q0q+1∏p

q=0(s+ σ0q)
fi1

(
k−

p∑
r=0

er+1
m+1, s

)
, (23)

3To avoid division by zero, when σp = σq for any p 6= q, σp must be replaced with σq in the Laplace
transforms.
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where fi1(k, s) = 0 for any k /∈ Cik.

Remark 2. Using equations (20) - (22), we can obtain the initializations: fi1(0m+1, s) =
1{1}(i)

s+σ1
,

f0p1(ep+1
m+1, s) =

λ0p1

(s+σ0p )(s+σ1) for p = 1, . . . ,m and f11(e1
m+1, s) = λ10λ01

(s+σ0)(s+σ1)2 .

The inverse Laplace transform of (23), and its initializations to recover qi1(k, t) and thus

qi1(k,∆) are left as a computational exercise.

Remark 3. When k = 0, k can only be the vector 0m+1 and hence qi1(0m+1,∆) = 0 for all

i 6= 1; it is however easily seen that q11(0m+1,∆) = e−σ1∆.

S2.3.3 Computation of ξi1(l,k,∆).

Following on from the analysis presented in Sections S2.1 and S2.2.2, we will in this section

endeavor to compute ξi1(l,k,∆). In particular, by using the exponential time pieces in the dark

states 0 . . . , 0m, we can recover the total time spent in state 1 by subtracting the total time

spent in the dark states from ∆.

If X(0) = i for some i ∈ S̄X , X(∆) = 1 and NRi1
m+1

(∆) = k as defined in (7), we study

the number of transitions k0, . . . , km from each dark state 00, . . . , 0m. There are exactly kp

exponential time pieces in each dark state 0p for p = 0, . . . ,m with a total time υip(kp) charac-

terized by an Erlang distribution. For any p, we therefore have (using the PSARP construction

in Definition 1) that υip(kp) =
∑kp

s=0D
p
s ∼ Erlang(kp, σ0p).

By defining the event Ai := {Y0 = 0|NRi1
m+1

(∆) = k, X(0) = i,X(∆) = 1}, we equiva-

lently have

Ai =


m∑
p=0

υip(kp) ≥ ∆− δ
∣∣∣∣ m∑
p=0

υip(kp) ≤ ∆

 ,

so that ξi1(0,k,∆) = P(Ai).

By further defining σ =
(
σ0 σ01 . . . σ0m

)>
, we let Φ(k,σ) denote the sum of m+1

independent Erlang distributions, each with shape parameter kp and rate parameter σ0p for

p = 0, . . .m. For each i, we have
∑m

p=0 υ
i
p(kp) ∼ Φ(k,σ). If FΦ(φ|k,σ) denote its cumulative

13



distribution function 4, we have for k ∈ Z>0, i ∈ S̄X and k ∈ Cik

ξi1(1,k,∆) =
FΦ(∆− δ|k,σ)

FΦ(∆|k,σ)
(24)

ξi1(0,k,∆) = 1− ξi1(1,k,∆) (25)

ξ11(1,0,∆) = 1. (26)

S2.4 Transmission probabilities.

In this section, we will use all derived forms of qij(k,∆), qi1(k,∆), ξij(l, k,∆) and ξi1(l,k,∆)

to obtain b
(l)
ij,∆. We will describe how these probabilities in their matrix representations can be

used to gain transmissions in the form of (3).

When i ∈ S̄X , j 6= 1 and l ∈ SY we can compute the inverse Laplace transform of (13)

to obtain Q0
∆(k), and therefore Q̄0

∆(k) from (11). Furthermore using (14)-(16) as entries in

matrices Ξl∆(k) and Ξ̄l
∆(k) (for l ∈ SY ) as defined in (17) and (18) enables the computation

of transmission probabilities (6). Moreover, we use (24)-(26) with inverse Laplace transforms

qi1(k,∆) from (23) in the computation of (8).

For full matrix representation, we define for k ∈ Z≥0

B
(0)
∆ (k) =

(Q0
∆(k))(1:m+2),(1:m+1) � Ξ0

∆(k) v0
∆(k) Q̄0

∆(k)� Ξ̄0
∆(k)

0>m+1 0 1{0}(k)


B

(1)
∆ (k) =

(Q0
∆(k))(1:m+2),(1:m+1) � Ξ1

∆(k) v1
∆(k) Q̄0

∆(k)� Ξ̄1
∆(k)

0>m+1 0 0

 ,
with � denoting the Hadamard product and where vl∆(k) for l ∈ SY are the two (m + 2)

vectors such that

vl∆(k) =
(∑

k∈C0
k
q01(k,∆)ξ01(l,k,∆) . . .

∑
k∈C0m

k
q0m1(k,∆)ξ0m1(l,k,∆)

∑
k∈C0

k
q11(k,∆)ξ01(l,k,∆)

)>
.

Then considering the transmission matrix representation in (3), we have that each

B
(l)
∆ =

∞∑
k=0

B
(l)
∆ (k).

In practice, as is described in Algorithm 1 of Section S3, the above sum, for small rates and ∆,

4FΦ(·|·, ·) can be computed in a recursive fashion using the algorithm presented in Moschopoulos (1985).
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will converge extremely quickly. At least in this practical application, computations for k ≥ 3

are unlikely to be needed.

S2.5 Study: Exact solution when there is a single dark state.

In this section, we look to find an exact solution of the transmission probabilities in the event

of there being a single dark state 0; in this case m = 0.

With no multiple dark states, the counting process which we must consider conditioning

on uses the sole labeling set {(0, 1)}, and is therefore univariate. Using the same notation

as that from Section S2.1, this labeling set is R := R1
1 = R0 = {(0, 1)}. We therefore

consider {N(t) : t ∈ R≥0} := {NR1
1
(t)} = {NR0(t)} to denote the number of jumps made

by the process {X(t)}, counting the number of transitions in R. We can thus calculate the

transmission probabilities by conditioning on N(∆), so that

b
(l)
ij,∆ =

∞∑
k=0

ξij(l, k,∆)qij(l,∆), (27)

with qij(k,∆) = P(N(∆) = k,X(∆) = j|X(0) = i) and ξij(l, k,∆) = P(Y0 = l|N(∆) =

k,X(0) = i,X(∆) = j).

The matrix representation of the transmission matrices B
(0)
∆ and B

(1)
∆ as in (3) holds by

setting B
(l)
∆ =

∑∞
k=0Q∆(k) � Ξl∆(k) for each l ∈ SY , where for all k ∈ Z≥0, we define the

3× 3 matrices Q∆(k) and Ξl∆(k) as

Q∆(k) =


q00(k,∆) q01(k,∆) q02(k,∆)

q10(k,∆) q11(k,∆) q12(k,∆)

0 0 1{0}(k)

 (28)

Ξl∆(k) =


ξ00(l, k,∆) ξ01(l, k,∆) ξ02(l, k,∆)

ξ10(l, k,∆) ξ11(l, k,∆) ξ12(l, k,∆)

0 0 1{0}(k + j)

 . (29)

S2.5.1 Computation of Q∆(k).

Similarly to the general case, we use Laplace transforms to calculate Q∆(k) for k ∈ Z≥0. Firstly,

using the same methodology as in Sections S2.2.1 and S2.3.2, for any t ≥ 0, it is easy to obtain
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the following system of differential equations

q′i0(k, t) = −σ0qi0(k, t) + λ10qi1(k, t)

q′i1(k, t) = −σ1qi1(k, t) + λ01qi0(k − 1, t)

q′i2(k, t) = µ0qi0(k, t) + µ1qi1(k, t).

Taking Laplace transforms of both sides of the above equations, yields for i, j ∈ SX and k ∈ N

fij(k, s) =
λk01λ

k+i−j
10

(s+ σ1)k+i(s+ σ0)k+1−j

fij(0, s) =
(1− j)λi−j10

(σ1 − σ0)i−j(s+ σ0)
+

iλi−j10

(σ0 − σ1)i−j(s+ σ1)
σ0 6= σ1

fij(0, s) =
λi−j10

(s+ σ1)(i−j)+1
1≥0(i− j) σ0 = σ1.

Making use of the fact that for n ∈ Z≥0 and some a ∈ R, L−1
s

[
1

(s+a)n+1

]
(t) = tne−at

n! , we

obtain that

qij(0, t) =
(1− j)λi−j10

(σ1 − σ0)i−j
e−σ0t +

iλi−j10

(σ0 − σ1)i−j
e−σ1t σ0 6= σ1 (30)

qij(0, t) =
λi−j10 ti−je−σ1t

(i− j)!
1≥0(i− j) σ0 = σ1. (31)

When k ∈ N and σ0 = σ1 it is easily seen that qij(k, t) = L−1
s [fij(k, s)](t) takes the form

qij(k, t) =
λk01λ

k+i−j
10 t2k+i−je−σ1t

(2k + i− j)!
. (32)

When σ0 6= σ1, to find qij(k, t) we split the expressions for fij(k, s) into partial fractions

using the method of derivatives in the same manner as in Minin and Suchard (2007). In

particular, we write fij(k, s) as

fij(k, s) =

k+1−j∑
p=1

(ij)A
0
k:(k−p+1−j)

(s+ σ0)p
+

k+i∑
p=1

(ij)A
1
k:(k−p+i)

(s+ σ1)p
,
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where

(ij)A
0
k:p =

1

p!

dp

dsp

{
(s+ σ0)k+1−jfij(k, s)

} ∣∣∣∣
s=−σ0

=

(
k + p+ i− 1

p

)
(−1)pλk01λ

k+i−j
10

(σ1 − σ0)k+p+i

(ij)A
1
k:p =

1

p!

dp

dsp

{
(s+ σ1)kfij(k, s)

} ∣∣∣∣
s=−σ1

=

(
k + p− j

p

)
(−1)pλk01λ

k+i−j
10

(σ0 − σ1)k+p+1−j .

We are thus able to obtain the following closed form expressions

qij(k, t) =

k+1−j∑
p=1

(ij)A
0
k:(k−p+1−j)

(p− 1)!
tp−1e−σ0t +

k+i∑
p=1

(ij)A
1
k:(k−p+i)

(p− 1)!
tp−1e−σ1t. (33)

We now consider two cases to compute qi2(k, t) =
∑1

p=0 µp
∫ t

0 qip(k, s)ds. Firstly, when σ0 =

σ1, we have that

qi2(0, t) =

1∑
p1=0

µp1λ
i−p1
10 1≥0(i− p1)

σi−p1+1
1

∞∑
p2=i−p1+1

(σ1t)
p2e−σ1t

p2!

qi2(k, t) =
1∑

p1=0

µp1λ
k
01λ

k+i−p1
10

σ2k+i−p1+1
1

∞∑
p2=2k+i−p1+1

(σ1t)
p2e−σ1t

p2!
. (34)

Secondly, when σ0 6= σ1, we have

qi2(0, t) =
µ0λ

i
10

(µ0 + λ01)(σ1 − σ0)i
(1− e−σ0t) +

i

σ1

[
µ0λ10

(σ0 − σ1)
+ µ1

]
(1− e−σ1t)

qi2(k, t) =

1∑
p1=0

µp1

1∑
p2=0

k+1−p2(1−p1)∑
p3=1

(ip2)A
p1

k:(k−p3+ip1+(1−p2)(1−p1))

σp3
p1

∞∑
m=p3

(σp1t)
m

m!
e−σp1 t.

(35)

Setting t = ∆ in all equations (30)-(35) yields all entries of Q∆(k) as in (28), for k ∈ Z≥0.

S2.5.2 Computation of Ξl∆(k).

Using the same methodology as presented in Sections S2.2.2 and S2.3.3, we will demonstrate

computation of Ξl∆(k). In particular, since m = 0 we have for s ∈ N that Rs = Us + Ds is a
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PSARP (see Definition 1) with inter-arrival times R = (R1, R2, . . .). Here, Us
iid∼ exp(σ1) and

Ds
iid∼ exp(σ0).

Similarly to the general case, if X(0) = 0, X(∆) ∈ {0, 2} and N(∆) = k, then there are

no censored observations from the On state so that for k ∈ N, i, j ∈ SX with i 6= 2 and j 6= 1

ξij(0, k,∆) =
1−

∑k+i−1
m=0

(σ1δ)m

m! e−σ1δ

1−
∑k+i−1

m=0
(σ1∆)m

m! e−σ1∆
(36)

ξ00(0, 0,∆) = 1 (37)

ξ10(0, 0,∆) =
1− e−σ1δ

1− e−σ1∆
. (38)

If X(0) ∈ {0, 1}, X(∆) = 1 and N(∆) = k with k ∈ N, there are exactly k time pieces in

the dark state 0 (D1, D2, . . . , Dk). These k pieces form iid exponential random variables and

their sum υ(k) also has an Erlang distribution υ(k) =
∑k

i=1Di ∼ Erlang(k, σ0). Now since the

random event

{Y0 = 0|N(∆) = k,X(0) ∈ {0, 1}, X(∆) = 1} = {υ(k) ≥ ∆− δ|υ(k) ≤ ∆},

we have for k ∈ N

ξi1(1, k,∆) =
1−

∑k−1
m=0

(σ0(∆−δ))m
m! e−σ0(∆−δ)

1−
∑k−1

m=0
(σ0∆)m

m! e−σ0∆
(39)

ξ11(1, 0,∆) = 1. (40)

We may fill the matrices Ξ0
∆(k) and Ξ1

∆(k) in (29) by using (36)-(40) and the fact that for

i, j ∈ S̄X , ξij(1, k,∆) = 1− ξij(0, k,∆).

S3 Algorithm to compute transmission matrices.

Algorithm 1 presents the method for computing transmission matrices B
(0)
∆ and B

(1)
∆ as detailed

in Section S2, suitable for any m ≥ 0. Here, we denote 0n and 1n to be the n × 1 vectors of

zeros and ones respectively and In to be the n× n identity matrix. We denote (M)(i1:i2),(j1:j2)

to be the matrix filled with rows i1 to i2 and columns j1 to j2 of any matrix M , and (M)i1,j1

to be the (i1, j1)th entry of M . We use the � notation to denote the Hadamard (element wise)

product between two matrices.
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Algorithm 1 Compute transmission matrices B
(0)
∆ and B

(1)
∆

GS,R0 = 0m+20
>
m+2

GS = (G)(1:m+2),(1:m+2)
a

µ = (G)(1:m+2),m+3

σ1 = −(G)m+2,m+2

σ = −diag((G)(1:m+1),(1:m+1))
for i = 1 : m+ 1 do

(GS,R0)i,m+2 = (GS)i,m+2

end for

GS,R̄0 = GS −GS,R0

A =

[
A1 02(m+2)0

>
2(m+2)

02(m+2)0
>
2(m+2) A2

]
, where A1 =

[
−G>

S,R̄0 Im+2

0m+20
>
m+2 −G>

S,R̄0

]
and A2 =[

GS,R̄0 Im+2

0m+20
>
m+2 0m+20

>
m+2

]
Q0

∆(0) = eGS,R̄0∆

Q̄0
∆(0) = ((eA∆)(i1:i2),(i2+1,i3))µ, with i1 = 2m+ 5, i2 = 3(m+ 2) and i3 = 4(m+ 2)

Ξ0
∆(0) =

[
1m+11

>
m+1 c1m+1

]>
, Ξ1

∆(0) = 1m+21
>
m+1 − Ξ0

∆(0) where c = 1−e−σ1δ

1−e−σ1∆

Ξ̄0
∆(0) =

[
1>m+1 c

]>
, Ξ̄1

∆(0) = 1m+2 − Ξ̄0
∆(0)

B
(0)
∆ =

[
(Q0

∆(0))(1:m+2),(1:m+1) � Ξ0
∆(0) 0m+2 Q̄0

∆(0)� Ξ̄0
∆(0)

0>m+1 0 1

]
B

(1)
∆ =

[
(Q0

∆(0))(1:m+2),(1:m+1) � Ξ1
∆(0) [0>m+1 e−σ1∆]> Q̄0

∆(0)� Ξ̄1
∆(0)

0>m+1 0 0

]
aTo avoid numerical overflow in the computation of inverse Laplace transforms, one can (for some small

tolerance ε > 0), replace all such (G)p,p with (G)q,q, when |(G)p,p − (G)q,q| < ε; p 6= q = 1, . . . ,m+ 2.
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k = 1
while B

(0)
∆ and B

(1)
∆ have not converged do

Compute inverse Laplace transform matrices

Q0
∆(k) = L−1

s [(sIm+2 −GS,R̄0)−1
(
GS,R0(sIm+2 −GS,R̄0)−1

)k
](∆)

Q̄0
∆(k) =

(∫ ∆
0 Q0

s(k)ds
)
µ

for i = 1 : m+ 1, j = 1 : m+ 1 do
(Ξ0

∆(k))i,j , (Ξ̄
0
∆(k))i = FΥ(δ,k,σ1)

FΥ(∆,k,σ1)

where FΥ(u, k, σ1) = P(Υ ≤ u) and Υ ∼ Erlang(k, σ1)

(Ξ1
∆(k))i,j = 1− (Ξ0

∆(k))i,j
(Ξ̄1

∆(k))i = 1− (Ξ̄0
∆(k))i

(Ξ0
∆(k))m+2,j , (Ξ̄

0
∆(k))m+2 = FΥ(δ,k+1,σ1)

FΥ(∆,k+1,σ1)

(Ξ1
∆(k))m+2,j = 1− (Ξ0

∆(k))m+2,j

(Ξ̄1
∆(k))m+2 = 1− (Ξ̄0

∆(k))m+2

end for

B
(0)
∆ = B

(0)
∆ +

[
(Q0

∆(k))(1:m+2),(1:m+1) � Ξ0
∆(k) 0m+2 Q̄0

∆(k)� Ξ̄0
∆(k)

0>m+1 0 0

]
B

(1)
∆ = B

(1)
∆ +

[
(Q0

∆(k))(1:m+2),(1:m+1) � Ξ1
∆(k) 0m+1 Q̄0

∆(k)� Ξ̄1
∆(k)

0>m+1 0 0

]
for i = 1 : m+ 2 do

Find all k ∈ C0i−1

k where k =
(
k0 k1 . . . km

)>
where

C0i−1

k :=
{
k : k>1m+1 = k, ki−1 > 0, k0 ≥ . . . ≥ ki−1 − 1 ≥ . . . ≥ km − 1

}
and

C0m+1

k = C0
k

For all k compute inverse Laplace transforms q1
0i−11(k,∆); q1

0m+11(k,∆) ≡ q1
11(k,∆)

ξ1
0i−11(0,k,∆) = FΦ(∆|k,σ)−FΦ(∆−δ|k,σ)

FΦ(∆|k,σ) where FΦ(φ|k,σ) = P(Φ ≤ φ)

and Φ =
∑m

p=0Wp, Wp
indep∼ Erlang(kp, σ0p)

ξ1
0m+11(0,k,∆) ≡ ξ1

01(0,k,∆)

(B
(0)
∆ )i,m+2 = (B

(0)
∆ )i,m+2 +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)ξ1

0i−11(0,k,∆)

(B
(1)
∆ )i,m+2 = (B

(1)
∆ )i,m+2 +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)(1− ξ1

0i−11(0,k,∆))

end for
k = k + 1

end while
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S4 Discussion on the quality of the PSHMM rate estimates.

In this section, we discuss the quality of the PSHMM rate estimates. Identifiability of model

parameters will be thoroughly investigated via analyses of the observed Fisher information matri-

ces, correlation structures and contour plots of the log-likelihood surface as the noise parameter

δ increases from 0 to ∆. Furthermore, fundamental statistical properties of the PSHMM-ML

estimator such as asymptotic consistency will be shown through the convergence of mean-square

errors in further simulation studies. A discussion of these properties for when m increases, will

also be provided.

The results presented have been collected from nine further simulation studies that were

conducted exclusively for this section. In particular, we investigate the effects of slow, medium

and fast switching parameters on the three models M0
{1},M

1
{1} and M2

{1}. The nine studies,

which will be referenced to throughout this section, were driven by their parameter set-ups

as is presented in Table S1. All studies were executed with ω (false positive rate) equal to

zero. Unless stated otherwise, the values shown of m, θ,∆−1, NF and NE in this table are the

simulation parameters used for each study. Any change made in one or more of these values in

the subsequent analyses, will be clearly highlighted.

Parameter m λ001 λ01 λ0102 λ011 λ021 λ10 µ1 ∆−1 NE NF

Study

1 (SLOW) 0 0.3162 1 0.0333 30 100 104

2 (MEDIUM) 0 1 3.162 0.1054 30 100 104

3 (FAST) 0 3.162 10 0.333 30 100 104

4 (SLOW) 1 0.15 0.3 0.1 0.8 0.01 30 100 104

5 (MEDIUM) 1 0.35 1 0.3 2.3 0.1 30 100 104

6 (FAST) 1 2 10 0.7 10 0.333 30 100 104

7 (SLOW) 2 0.15 0.3 0.05 0.1 0.001 0.8 0.05 30 100 104

8 (MEDIUM) 2 0.8 4 0.1 0.4 0.005 8 0.1 30 100 104

9 (FAST) 2 2 10 0.2 0.7 0.01 10 0.333 30 100 104

Table S1: Global parameter values for the stimulation studies conducted in this section. All
studies have been conducted with the model format of Mm

{1} for m = 0, 1, 2.
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S4.1 Identification of model parameters.

In order to analyze the properties of the PSHMM model and its advancement in characterizing

fluorophore photo-switching behavior, it is necessary to understand the reliability of the param-

eter estimates. This is especially highlighted for the main application of the PSHMM estimator,

since datasets that are likely to be corrupted by noise may cause certain unknown parameters

to be unidentifiable in the corresponding analysis. Furthermore, while a set of parameters may

be strictly identifiable, correlations between their estimates may be such as to make numerical

estimation troublesome (Jacquez and Greif, 1985).

It is well understood that highly noisy data can make parameter estimation and identifica-

tion more difficult. In the PSHMM, the noise comes in the form of δ ∈ [0,∆), the time that a

fluorophore needs to be in the On state for it to be detected. This primarily results from a noise

floor that the fluorophore signal needs to penetrate. As δ → ∆, the sparsity of the observation

vector y increases. In this scenario, we would assume parameter estimation/identification prob-

lems due to lack of high quality informative data on the hidden process {X(t)}. Furthermore,

the accretion of data does not necessarily result in better estimation of parameters. Therefore,

to understand the effects of parameter δ in estimation, we varied the ratio δ/∆ for all nine

simulation parameters shown in Table S1.

S4.1.1 Local identifiability.

As stated in the main text, identifiability analysis is typically carried out by analyzing the Fisher

Information matrix (e.g. Colquhoun et al., 2003). Here, a non-singular Fisher information

matrix (all eigenvalues are strictly positive) implies local identifiability, whereas a singular Fisher

information matrix (at least one eigenvalue equal to zero) implies there does not exist a unique

maximum to the likelihood function (typically due to a flat ridge) and the model is locally

unidentifiable (Little et al., 2010). Since the true Fisher Information matrix I(θ) cannot be

computed for our problem, we initially test singularity of the observed Fisher information or

Hessian matrix J (θ̂) = −∇∇>`(θ)|θ=θ̂ evaluated at the maximum likelihood estimate θ̂ of θ

(Colquhoun et al., 2003), which is computed using the method of finite differences. In particular,

singular observed Fisher Information matrices would indicate unidentifiable parameters within

the model. We adopt the threshold of Viallefont et al. (1998) which states that if the smallest

eigenvalue ξmin of J (θ̂) is larger than p ·ξmax ·1×10−9, where p is the dimension of θ and ξmax

is the largest eigenvalue, then it can be considered to be non-zero and hence J (θ̂) non-singular.
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500 independent datasets were generated for various values of δ for each study 1−9 as described

in Table S1. In all cases the Hessian matrices were determined to be non-singular, and hence

the model formally identifiable, with the exception of 0.33% of the Hessian matrices for Study

6 (when δ ≥ 0.3), 0.073% of the Hessian matrices for Study 7, and 0.018% of the Hessian

matrices computed for Study 9. In all cases the average smallest eigenvalue was considerably

larger than the threshold. This provides compelling evidence that the PSHMM model is formally

locally identifiable for all parameter values studied.

S4.1.2 Correlations.

In order to test whether parameters are independently identifiable, we analyze the correlation

structure between estimates of the model parameters. In particular, high correlations between

particular sets of parameters may highlight dependencies not constructed by the model, indicat-

ing that these parameters are individually unidentifiable and hence troublesome for numerical

optimization procedures. As previously noted, when δ/∆→ 1, we would expect an increase in

the sparsity of the datasets, which may encourage correlation structures to transpire due to an

increased flatness of the log-likelihood function.

Correlation between parameter estimates can be analyzed two ways. The first is through

the correlation matrix as derived from the observed Fisher information matrix, namely

R(θ̂) = diag(J (θ̂)−1)−
1
2J (θ̂)−1diag(J (θ̂)−1)−

1
2 .

This matrix estimates the theoretical correlation structure between parameter estimates based

on curvature of the likelihood surface. The second way is to look at the sample correlation

matrix based on the estimates themselves.

Not only do each individually provide evidence of correlation, or lack-thereof, between pa-

rameter estimates, but if the model parameters are identifiable (plus some other mild regulatory

conditions) these two matrices should approximately align. Therefore, when the two mismatch

this is evidence that the numerical optimization procedure we deploy is struggling to properly

identify the parameters (Colquhoun et al., 2003).

Synopsis. We will show that the correlation between the parameters λ01 and δ increases

as δ/∆ → 1, and there becomes a clear mismatch between the sample correlation matrix and

that derived from the Fisher information matrix. This property is seen to be heightened as the
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photo-switching becomes faster, i.e. as the transitions between all states in the state space SX
become more rapid. When δ/∆ is low, i.e. the signal to noise ratio is high, the correlation

between λ01 and δ is low and there is strong agreement between the empirical correlation

matrices and those estimated by the Hessian matrices, indicating the unknown parameters of

the model are in practice identifiable. Contour plots will be shown to support this statement.

Secondly, we also explore the effects of changing the sampling time ∆. As ∆ → 0, we

would expect greater identification of the photo-switching parameters in {X(t)} as the ob-

served process {Yn} more closely aligns with the hidden process. For the same photo-switching

parameters, therefore, we should see better estimation of unknown parameters as ∆ decreases.

We first show that the previously highlighted correlation structures start to diminish and sec-

ondly, that estimates from selected simulation studies (especially those with faster switching

parameters) become unbiased as ∆→ 0, for all values of δ/∆.

Details. In the tables that follow: for each study, 500 datasets were simulated. The sample

correlation matrix was computed from these 500 sets of estimates and the values reported for

the correlation derived from the Hessian matrix are averaged over these 500 datasets.

Tables S2, S3 and S4 show the correlation estimates for studies 1,2 and 3 (parameters

provided in Table S1) as δ/∆ increases to 1. The correlations obtained from the Hessians and

those obtained empirically agree quite well even when δ/∆ is large. The parameters, however

which are most affected are λ01 and δ, whose correlation increases as δ/∆ increases. While this

pattern is seen for all three switching scenarios, the correlation coefficients ρ(λ01, δ) become

significantly larger as the switching moves faster; for example, the empirical correlation reaches

0.9603 when δ/∆ = 0.7, 0.8 under the fast switching scenario. With this example, larger

differences between the correlation estimates can also be seen. A change in correlation can also

be observed between λ10 and δ, and µ1 and δ, whose correlations becomes increasingly negative

as δ/∆ increases. While these correlations do not become close to −1, the correlation pattern

observed with all photo-switching parameters and δ suggest issues with model identification

with large values of δ/∆.

Tables S5-S7 show the correlation estimates for studies 4, 5 and 6, as δ/∆ increases to 1.

Again, it is observed that the values obtained from the Hessians and those obtained empirically

agree well and the parameters which are most affected are λ01 and δ, whose correlation is

highest, especially under fast switching, when δ/∆ = 0.5, 0.6. This is mimicked by the poorer

agreement between the two sets of values. On the other hand, one may observe the positive
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correlations ρ(λ001 , λ01) and ρ(λ001 , λ011) which are, under all values of δ/∆, consistently

around the 0.55 and 0.65 mark respectively for the slow switching, reducing to around 0.3−0.4

under the fast switching. These correlations are inherent to the photo-switching model, since

estimates for photo-switching parameters λ001 , λ01, λ011 are drawn from the same sequence of

zeros. These correlations inherent to the PSHMM are not affected by the noise parameter δ

and do not appear to pose issues to identifiability.

Tables S8-S13 show the correlation estimates for studies 7, 8 and 9. Under the medium and

fast switching scenarios, it is noted that the correlations have a much better agreement than

under the slow switching scenario. Most parameter pairs have seemingly low correlations with

again the greatest affected pair being between λ01 and δ, whose correlation is highest when

δ/∆ = 0.6, 0.7 for the medium switching and between 0.4 − 0.7 under fast switching. Similar

to the m = 1 case, the increased correlations between photo-switching rates from the multiple

dark states (λ001 , λ01, λ0102 , λ011, λ021), is owed to the increased number of zeros the datasets.

To look more closely at how the change in δ affects the likelihood surface between δ and

its highest correlated parameters, Figures S4 and S5 show the likelihood contour surfaces for

3 different values of δ, δ/∆ = 0.1, 0.4, 0.7, under studies 4 and 6 respectively. For clearer

comparisons, the {X(t)} data used to generate these surfaces are the same for all three values

of δ/∆. These contours show the change between λ01 and δ about their maximum likelihood

estimates with all other parameters of the model fixed at their maximum likelihood estimates.

Figure S4 highlights the smaller correlation between λ01 and δ with the contours appearing to

extend vertically. Moreover, the MLE for λ01 appears to be computed around the 0.3 (true

value) mark for all ranges of δ/∆.

This is contrasted to the faster switching scenario in Figure S5. The greater correlation and

dependence between parameters can be observed through the contours lying in diagonal direction

which becomes more extreme as δ/∆ increases. While these closed contours show definitive

maxima exist on the surfaces (it is structural unidentifiable), the confidence area as depicted by

the elliptical contours around the maximum likelihood estimates (plotted in asterisks) is seen

to increase as δ/∆ increases. The larger area and flatness highlight the difficultly in correctly

estimating/identifying these parameters. As previously stated, in the case of slow switching

(Figure S4), the estimate of λ01 is not affected too badly by an increase in noise, however, the

greater correlation does indeed affect this estimate in a faster switching scenario (Figure S5),

as is depicted by a greater bias in the estimate.
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S4.1.3 Global identifiability.

To get a handle on global identifiability we assess whether the likelihood surface has a unique

global maximum or if there are further modes the optimization method is determining to be the

maximum. For the 3 state case (m = 0), an approximation scheme is used to find a suitable

starting point for the Nelder-Mead simplex (see Section S6) and we ensure we locate the correct

mode. In the 4 and 5 state cases (m = 1 and m = 2, respectively), a stochastic search method

is deployed that trials multiple starting points. Unimodal histograms for the parameter estimates

would indicate a single global maximum, whereas a multi-modal histogram would indicate further

dominant modes being located instead. We have found a unimodal distribution for the estimates

of all parameters under all simulation studies (figures omitted) with one exception. Figure S3

shows histograms of estimates of λ0102 in Study 7 (slow switching) the 5 state (m = 2) model.

When the number of frames NF = 10, 000, it is clear that the optimization procedure is finding

two dominant modes. However, this global identifiability issue diminishes as NF increases.
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Figure S3: Rate estimates for λ0102 = 0.05 under the slow switching scenario when m = 2,
estimates show multi-modality when NF = 104 (left) and uni-modality when NF = 5× 104.
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Figure S4: Contour plots showing the log-likelihood surface of λ01 against δ when m = 1 under
study 4 (of Table S1) with other rate parameters λ001 , λ10 and µ1 fixed at their maximum
likelihood values. The left most plot shows the surface when δ

∆ = 0.1, the middle shows the

surface when δ
∆ = 0.4 and the rightmost when δ

∆ = 0.7. Maximum likelihood estimates are
shown as asterisks (black) with the true values shown as squares (red). The process {X(t)}
generating the data is the same for all three plots.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.0071 0.0054 0.0030 −0.0055 −0.0208 −0.0363 −0.0413 −0.0330 −0.0080 0.0152 0.0366
−0.0587 0.0091 −0.0624 −0.0043 0.0236 −0.0943 −0.1525 −0.1689 −0.0863 −0.0972 0.0306

ρ(λ01, µ1) 0.0014 0.0011 0.0005 −0.0015 −0.0076 −0.0154 −0.0268 −0.0355 −0.0401 −0.0373 −0.0289
−0.0179 0.0638 0.0194 −0.0436 −0.0230 −0.0239 0.0021 −0.0847 −0.1393 −0.1372 −0.0354

ρ(λ10, µ1) 0.0093 0.0076 0.0067 0.0088 0.0132 0.0165 0.0172 0.0153 0.0085 0.0051 0.0005
0.0406 −0.0090 −0.0096 0.0892 0.0388 0.0368 0.0742 0.0861 0.0569 0.0635 0.0411

ρ(λ01, δ) 0.0327 0.0440 0.0567 0.0885 0.1454 0.2108 0.3098 0.3832 0.4360 0.4386 0.4048
0.0472 0.0357 0.0202 0.1463 0.2580 0.3753 0.5584 0.6469 0.6479 0.5965 0.4922

ρ(λ10, δ) −0.2216 −0.2081 −0.2034 −0.2182 −0.2361 −0.2480 −0.2187 −0.1714 −0.0954 −0.0380 0.0014
−0.2008 −0.1640 −0.2127 −0.2624 −0.2431 −0.2636 −0.3307 −0.3591 −0.1750 −0.1876 −0.0831

ρ(µ1, δ) −0.0382 −0.0369 −0.0374 −0.0444 −0.0568 −0.0692 −0.0824 −0.08593 −0.0886 −0.0802 −0.0674
0.0076 −0.0560 −0.0573 −0.0388 −0.0365 −0.0676 −0.1150 −0.1085 −0.1485 −0.2070 −0.0671

Table S2: Simulation results from m = 0 slow switching (study 1 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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Figure S5: Contour plots showing the log-likelihood surface of λ01 against δ when m = 1 under
study 6 (of Table S1) with other rate parameters λ001 , λ10 and µ1 fixed at their maximum
likelihood values. The left most plot shows the surface when δ

∆ = 0.1, the middle shows the

surface when δ
∆ = 0.4 and the rightmost when δ

∆ = 0.7. Maximum likelihood estimates are
shown as asterisks (black) with the true values shown as squares (red). The process {X(t)}
generating the data is the same for all three plots.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.0372 0.0258 0.0149 −0.0150 −0.0541 −0.1049 −0.1763 −0.1362 −0.0367 0.0826 0.1500
−0.0030 0.0668 −0.0379 −0.0657 −0.0721 −0.0936 −0.4365 −0.5085 −0.3351 0.1128 0.1405

ρ(λ01, µ1) −0.0017 −0.0038 −0.0060 −0.0133 −0.0252 −0.0448 −0.0957 −0.1488 −0.1544 −0.1250 −0.0906
0.0230 0.0594 −0.0698 0.0478 −0.0185 −0.0449 −0.2387 −0.3571 −0.2991 −0.1341 −0.0530

ρ(λ10, µ1) 0.0180 0.0203 0.0238 0.0327 0.0430 0.0566 0.0779 0.0683 0.0399 0.0051 −0.0105
0.0362 0.0897 −0.0147 −0.0138 −0.0369 0.0824 0.1797 0.1535 0.0563 0.0003 −0.0259

ρ(λ01, δ) 0.0392 0.0698 0.0944 0.1587 0.2391 0.3353 0.5014 0.6816 0.7377 0.7199 0.6447
0.0147 0.0403 0.1103 0.0717 0.2736 0.3533 0.7927 0.9073 0.8907 0.7393 0.6183

ρ(λ10, δ) −0.2886 −0.3132 −0.3375 −0.3779 −0.4082 −0.4366 −0.4456 −0.3017 −0.1455 −0.0024 0.0667
−0.2183 −0.3704 −0.2748 −0.4224 −0.3994 −0.4762 −0.5830 −0.5811 −0.4164 −0.0146 0.0001

ρ(µ1, δ) −0.0504 −0.0582 −0.0662 −0.0834 −0.1021 −0.1255 −0.1722 −0.2071 −0.2009 −0.1661 −0.1290
−0.0541 −0.0269 0.0410 −0.0409 −0.0845 −0.1696 −0.2951 −0.3826 −0.3302 −0.1768 −0.1421

Table S3: Simulation results from m = 0 medium switching (study 2 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.1114 0.0740 0.0213 −0.0728 −0.1774 −0.2962 −0.4209 −0.5151 −0.2016 0.1049 0.2962
0.1120 0.0446 0.0515 −0.0529 −0.3221 −0.3005 −0.4783 −0.7272 −0.5883 0.0973 0.2722

ρ(λ01, µ1) 0.0004 −0.0108 −0.0239 −0.0536 −0.0962 −0.1585 −0.2457 −0.4131 −0.4409 −0.3805 −0.3079
0.0041 −0.0285 −0.0050 −0.1103 −0.1199 −0.1078 −0.2672 −0.6345 −0.6690 −0.3813 −0.2918

ρ(λ10, µ1) 0.0374 0.0714 0.0909 0.1180 0.1478 0.1866 0.2413 0.3232 0.1791 0.0268 −0.0521
−0.0232 0.0787 0.0687 0.1526 0.1492 0.2669 0.2172 0.4944 0.5065 0.0598 −0.0299

ρ(λ01, δ) 0.0549 0.1372 0.1997 0.3169 0.4464 0.5870 0.7207 0.8599 0.9173 0.9086 0.8664
0.0606 0.1019 0.1897 0.2986 0.5680 0.6007 0.7456 0.9531 0.9603 0.9186 0.8544

ρ(λ10, δ) −0.2615 −0.4980 −0.5683 −0.6140 −0.6454 −0.6736 −0.7026 −0.6837 −0.3339 −0.0428 0.1172
−0.3324 −0.5800 −0.5959 −0.5643 −0.6925 −0.6900 −0.6598 −0.8279 −0.7023 −0.0835 0.0202

ρ(µ1, δ) −0.0543 −0.1133 −0.1423 −0.1782 −0.2169 −0.2668 −0.3344 −0.4679 −0.4719 −0.4061 −0.3354
−0.0502 −0.1062 −0.1356 −0.2344 −0.2217 −0.2767 −0.2647 −0.6435 −0.7002 −0.4043 −0.3414

Table S4: Simulation results from m = 0 fast switching (study 3 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.5926 0.5915 0.5916 0.5896 0.5901 0.5898 0.5857 0.5832 0.5823 0.5828 0.5855
0.5884 0.5734 0.5523 0.5645 0.5193 0.5791 0.5347 0.5674 0.5770 0.5978 0.5820

ρ(λ001 , λ011) 0.6754 0.6761 0.6752 0.6764 0.6769 0.6798 0.6807 0.6807 0.6834 0.6828 0.6844
0.6668 0.6706 0.7146 0.6833 0.6407 0.6643 0.5911 0.6740 0.6488 0.6971 0.6636

ρ(λ01, λ011) 0.2854 0.2856 0.2845 0.2841 0.2868 0.2910 0.2928 0.2953 0.3004 0.2973 0.2958
0.2414 0.2930 0.2821 0.2798 0.2420 0.3352 0.2373 0.3489 0.2777 0.3682 0.3157

ρ(λ001 , λ10) 0.0158 0.0152 0.0145 0.0118 0.0078 0.0033 −0.0013 −0.0041 −0.0057 −0.0044 −0.0024
0.0084 −0.0103 −0.0214 0.0478 0.0254 −0.0038 0.0382 −0.0681 −0.1221 −0.0332 0.0114

ρ(λ01, λ10) 0.0275 0.0259 0.0238 0.0166 0.0046 −0.0083 −0.0193 −0.0163 −0.0098 0.0028 0.0164
−0.0013 0.0515 −0.0358 0.0359 −0.0607 −0.0905 −0.0734 −0.1606 −0.1049 0.0456 −0.0530

ρ(λ011, λ10) 0.0038 0.0032 0.0025 0.0001 −0.0037 −0.0079 −0.0111 −0.0102 −0.0077 −0.0037 0.0012
−0.0295 −0.0067 −0.0331 0.0511 0.0147 −0.0397 0.0191 −0.0667 −0.0750 −0.0068 −0.0099

ρ(λ001 , µ1) 0.0108 0.0112 0.0108 0.0113 0.0105 0.0098 0.0090 0.0082 0.0072 0.0077 0.0079
0.0321 0.0828 0.0191 0.0008 −0.0010 0.0935 0.0375 −0.0906 0.0402 0.0407 0.0007

ρ(λ01, µ1) 0.0097 0.0099 0.0096 0.0093 0.0070 0.0039 −0.0000 −0.0032 −0.0064 −0.0036 −0.0011
−0.0011 0.0755 0.0649 −0.0289 0.0220 0.1154 −0.0762 −0.0721 −0.0061 0.0963 −0.0413

ρ(λ011, µ1) 0.0326 0.0336 0.0328 0.0338 0.0325 0.0313 0.0301 0.0297 0.0283 0.0292 0.0293
0.0539 0.1016 0.0092 −0.0256 −0.0366 0.0745 0.0557 0.0025 0.0154 0.0880 0.0240

ρ(λ10, µ1) −0.0069 −0.0061 −0.0052 −0.0037 −0.0014 0.0007 0.0016 −0.0005 −0.0035 −0.0060 −0.0086
−0.0321 −0.0395 0.0123 −0.0677 −0.0500 −0.0191 −0.0013 −0.0007 0.0720 −0.0001 −0.0310

ρ(λ001 , δ) −0.0089 −0.0092 −0.0084 −0.0045 0.0049 0.0177 0.0365 0.0568 0.0773 0.0748 0.0707
−0.0515 0.0053 0.0697 0.0345 −0.0290 0.0115 0.0218 0.1857 0.0605 0.1193 0.0816

ρ(λ01, δ) −0.0115 −0.0076 −0.0011 0.0196 0.0589 0.1086 0.1792 0.2436 0.3084 0.2958 0.2733
0.0189 0.0246 0.0555 0.0912 0.1491 0.2846 0.3455 0.5210 0.3632 0.4294 0.2540

ρ(λ011, δ) −0.0013 0.0005 0.0031 0.0097 0.0225 0.0389 0.0609 0.0811 0.1017 0.0952 0.0874
−0.0417 0.0392 0.0722 −0.0074 0.0139 0.0545 0.1099 0.1687 0.0769 0.0984 0.0659

ρ(λ10, δ) −0.1354 −0.1663 −0.1876 −0.2165 −0.2343 −0.2425 −0.2265 −0.1626 −0.0920 −0.0420 0.0033
0.0256 −0.1309 −0.1557 −0.1972 −0.2832 −0.3085 −0.2948 −0.3686 −0.3085 −0.1145 −0.0364

ρ(µ1, δ) −0.0124 −0.0159 −0.0190 −0.0241 −0.0307 −0.0376 −0.0439 −0.0456 −0.0462 −0.0393 −0.0322
0.0139 −0.0036 0.0458 −0.0462 0.0043 0.0336 −0.1000 −0.0441 −0.1469 0.0150 −0.0453

Table S5: Simulation results from m = 1 slow switching (study 4 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.5729 0.5758 0.5748 0.5717 0.5663 0.5603 0.5570 0.5502 0.5493 0.5529 0.5555
0.5214 0.5593 0.5484 0.5422 0.5174 0.5094 0.4324 0.4277 0.5939 0.5298 0.4957

ρ(λ001 , λ011) 0.6802 0.6824 0.6823 0.6850 0.6839 0.6856 0.6899 0.6918 0.7003 0.7023 0.7008
0.7081 0.6599 0.6531 0.6503 0.7029 0.7018 0.6401 0.6296 0.6645 0.7089 0.6922

ρ(λ01, λ011) 0.2924 0.2947 0.2943 0.2937 0.2903 0.2917 0.3038 0.3105 0.3204 0.3199 0.3094
0.2581 0.2379 0.2772 0.2552 0.2548 0.2888 0.2839 0.2906 0.3816 0.2970 0.2636

ρ(λ001 , λ10) 0.0489 0.0475 0.0439 0.0360 0.0253 0.0100 −0.0072 −0.0157 −0.0152 −0.0069 0.0015
0.0073 0.0871 0.0330 0.0024 −0.0025 0.0689 −0.0672 −0.1155 −0.1029 −0.0185 0.0112

ρ(λ01, λ10) 0.0874 0.0823 0.0735 0.0518 0.0195 −0.0318 −0.0778 −0.0651 −0.0341 0.0167 0.0638
0.0537 0.1334 0.1303 0.0098 0.0352 −0.0818 −0.3192 −0.3792 −0.2396 −0.0334 0.0212

ρ(λ011, λ10) 0.0240 0.0229 0.0205 0.0151 0.0065 −0.0071 −0.0216 −0.0205 −0.0119 0.0019 0.0150
−0.0204 0.0454 −0.0349 0.0126 −0.0303 0.0054 −0.1004 −0.1949 −0.0769 −0.0142 0.0592

ρ(λ001 , µ1) 0.0010 0.0011 0.0011 0.0006 −0.0010 −0.0052 −0.0140 −0.0208 −0.0238 −0.0214 −0.0158
−0.0044 −0.0558 −0.0203 0.0269 −0.0651 0.0270 −0.0735 −0.0301 −0.1018 −0.0145 0.0048

ρ(λ01, µ1) 0.0015 0.0013 0.0004 −0.0028 −0.0109 −0.0300 −0.0602 −0.0828 −0.0918 −0.0807 −0.0581
0.0206 −0.0976 −0.0460 0.0222 −0.0486 −0.0313 −0.1469 −0.1258 −0.1143 −0.1881 −0.0141

ρ(λ011, µ1) 0.0004 0.0004 0.0002 −0.0006 −0.0026 −0.0076 −0.0173 −0.0242 −0.0263 −0.0235 −0.0168
−0.0289 −0.0396 0.0082 0.0505 −0.0552 0.0147 −0.0762 −0.0785 −0.1116 −0.0469 0.0222

ρ(λ10, µ1) 0.0110 0.0167 0.0211 0.0297 0.0402 0.0572 0.0710 0.0526 0.0345 0.0128 −0.0032
0.0153 −0.0353 0.0207 −0.0192 0.0741 −0.0107 0.0750 0.1038 0.0899 0.0152 0.1020

ρ(λ001 , δ) −0.0137 −0.0149 −0.0129 −0.0060 0.0069 0.0292 0.0633 0.1106 0.1342 0.1364 0.1191
0.0136 −0.0547 −0.0208 −0.0296 0.0109 −0.0215 0.0945 0.1694 0.2768 0.0965 0.0551

ρ(λ01, δ) −0.0185 −0.0117 0.0013 0.0371 0.0956 0.1903 0.3050 0.4493 0.5195 0.5192 0.4580
0.0276 −0.0156 −0.0346 0.0512 0.1403 0.3237 0.6120 0.6889 0.6827 0.5565 0.4915

ρ(λ011, δ) −0.0058 −0.0043 −0.0009 0.0078 0.0226 0.0474 0.0828 0.1281 0.1464 0.1470 0.1254
−0.0104 −0.0162 −0.0217 −0.0425 −0.0006 0.0478 0.1873 0.3027 0.2810 0.1391 0.0776

ρ(λ10, δ) −0.2139 −0.2795 −0.3157 −0.3601 −0.3925 −0.4246 −0.4181 −0.2805 −0.1610 −0.0570 0.0222
−0.0514 −0.2808 −0.2899 −0.3803 −0.3834 −0.5160 −0.5869 −0.5994 −0.4065 −0.1904 −0.0170

ρ(µ1, δ) −0.0371 −0.0518 −0.0618 −0.0793 −0.0991 −0.1296 −0.1616 −0.1713 −0.1673 −0.1464 −0.1137
0.0300 −0.0303 −0.0464 −0.0858 −0.1312 −0.1113 −0.2092 −0.2037 −0.1956 −0.2347 −0.1104

Table S6: Simulation results from m = 1 medium switching (study 5 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3405 0.3349 0.3459 0.3774 0.4155 0.4888 0.6258 0.6706 0.6555 0.6224 0.5765
0.3628 0.3507 0.4301 0.3108 0.3824 0.5229 0.8100 0.8409 0.6629 0.5735 0.6091

ρ(λ001 , λ011) 0.3386 0.3368 0.3371 0.3358 0.3261 0.3366 0.3980 0.4339 0.4531 0.4611 0.4640
0.3038 0.3429 0.3030 0.2940 0.3251 0.3622 0.4578 0.5063 0.4640 0.4623 0.4496

ρ(λ01, λ011) 0.1793 0.1758 0.1734 0.1687 0.1635 0.1793 0.2466 0.2773 0.2723 0.2553 0.2375
0.2272 0.2038 0.2124 0.0852 0.1339 0.1729 0.3222 0.3821 0.2721 0.2359 0.2230

ρ(λ001 , λ10) 0.0566 −0.0493 −0.1066 −0.1763 −0.2428 −0.3332 −0.4572 −0.4535 −0.3202 −0.1847 −0.0797
0.0602 −0.0620 −0.1243 −0.2787 −0.2494 −0.3709 −0.6973 −0.6761 −0.3627 −0.0915 −0.1371

ρ(λ01, λ10) 0.5471 0.4469 0.3567 0.1720 −0.0583 −0.2968 −0.5318 −0.5674 −0.3987 −0.1932 0.0010
0.4775 0.3501 0.2732 0.1298 −0.1502 −0.3976 −0.7826 −0.7792 −0.4798 −0.1459 −0.0967

ρ(λ011, λ10) 0.0783 0.0583 0.0426 0.0158 −0.0177 −0.0650 −0.1467 −0.1678 −0.1171 −0.0579 −0.0119
0.0802 0.0715 0.0561 −0.0467 0.0820 −0.0290 −0.2728 −0.2393 −0.1500 −0.0298 −0.0373

ρ(λ001 , µ1) −0.0112 −0.0310 −0.0462 −0.0707 −0.1018 −0.1655 −0.2615 −0.2681 −0.2104 −0.1575 −0.1178
0.0160 −0.0869 0.0047 −0.1182 −0.0918 −0.1394 −0.4245 −0.4593 −0.2448 −0.0935 −0.1078

ρ(λ01, µ1) 0.0406 0.0408 0.0282 −0.0127 −0.0801 −0.1876 −0.3309 −0.3646 −0.3174 −0.2661 −0.2224
0.0659 −0.0173 0.0020 −0.0232 −0.0253 −0.2111 −0.5190 −0.5624 −0.4151 −0.2480 −0.2524

ρ(λ011, µ1) 0.0046 0.0036 0.0011 −0.0049 −0.0152 −0.0413 −0.0927 −0.1072 −0.0872 −0.0658 −0.0515
0.0045 0.0090 0.0858 −0.0460 0.0048 −0.1148 −0.1870 −0.1522 −0.1387 −0.0166 0.0270

ρ(λ10, µ1) 0.0922 0.1494 0.1779 0.2144 0.2438 0.3051 0.3727 0.3394 0.2195 0.1180 0.0422
0.0813 0.0900 0.1089 0.2483 0.2469 0.2569 0.5041 0.5874 0.2500 0.1503 0.0054

ρ(λ001 , δ) 0.1052 0.1923 0.2366 0.2874 0.3344 0.4121 0.5496 0.5971 0.5611 0.5027 0.4321
0.0726 0.2080 0.2657 0.3300 0.3623 0.4415 0.7632 0.7753 0.5765 0.4441 0.4436

ρ(λ01, δ) −0.0966 −0.0979 −0.0471 0.0956 0.2808 0.4847 0.7125 0.8244 0.8510 0.8399 0.7972
−0.0648 −0.0544 0.0780 0.1247 0.3901 0.5974 0.9035 0.9103 0.8719 0.8292 0.8121

ρ(λ011, δ) −0.0082 −0.0042 0.0050 0.0237 0.0498 0.0939 0.1867 0.2345 0.2294 0.2082 0.1870
−0.0179 −0.0416 −0.0140 0.0748 −0.0006 0.0760 0.2925 0.3215 0.2336 0.1871 0.1832

ρ(λ10, δ) −0.4631 −0.7184 −0.7860 −0.8158 −0.7972 −0.8155 −0.8300 −0.7621 −0.5873 −0.3941 −0.1998
−0.5135 −0.7308 −0.7868 −0.8493 −0.8411 −0.8743 −0.9301 −0.9184 −0.6647 −0.3895 −0.2742

ρ(µ1, δ) −0.0964 −0.1701 −0.2031 −0.2426 −0.2726 −0.3368 −0.4184 −0.4186 −0.3587 −0.3059 −0.2603
−0.0937 −0.1357 −0.1218 −0.2575 −0.2991 −0.3191 −0.5532 −0.6135 −0.4383 −0.2904 −0.2848

Table S7: Simulation results from m = 1 fast switching (study 6 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) −0.1610 −0.1158 −0.1025 −0.1637 −0.0808 −0.1255 −0.0980 −0.0860 −0.1826 −0.1768 −0.0720
0.4636 0.3054 0.3245 0.4173 0.5135 0.3869 0.4449 0.4316 0.3913 0.4898 0.3780

ρ(λ001 , λ0102 ) 0.3396 0.3015 0.2835 0.3388 0.2714 0.3261 0.2891 0.2844 0.3623 0.3685 0.2800
−0.1316 −0.0657 −0.0279 −0.1000 −0.0148 −0.0698 −0.0362 −0.1160 −0.1319 −0.0965 −0.0631

ρ(λ01, λ0102 ) −0.7763 −0.7605 −0.7673 −0.7897 −0.7430 −0.7548 −0.7661 −0.7743 −0.8030 −0.8119 −0.7640
−0.6749 −0.5007 −0.6502 −0.6557 −0.5843 −0.6500 −0.6122 −0.6609 −0.6682 −0.6017 −0.6394

ρ(λ001 , λ011) 0.0027 0.0574 0.0735 0.0146 0.0939 0.0663 0.0995 0.1137 0.0163 0.0198 0.1254
0.5237 0.3805 0.5875 0.5831 0.2380 0.5986 0.5905 0.6323 0.5082 0.6147 0.6844

ρ(λ01, λ011) 0.7683 0.7494 0.7518 0.7716 0.7377 0.7506 0.7473 0.7553 0.7828 0.7884 0.7483
0.7166 0.8141 0.6065 0.6667 0.6780 0.6503 0.6476 0.6628 0.6814 0.6770 0.6096

ρ(λ0102 , λ011) −0.7324 −0.7136 −0.7292 −0.7438 −0.6997 −0.6879 −0.7144 −0.7195 −0.7415 −0.7529 −0.7105
−0.5998 −0.4808 −0.5624 −0.5811 −0.6077 −0.5032 −0.5283 −0.5261 −0.5840 −0.5094 −0.5109

ρ(λ001 , λ021) −0.4348 −0.3985 −0.3920 −0.4337 −0.3760 −0.4084 −0.3922 −0.3824 −0.4514 −0.4481 −0.3744
0.0908 −0.0216 −0.0453 −0.0207 −0.0235 −0.0908 −0.0088 0.0799 0.0372 0.0485 −0.0510

ρ(λ01, λ021) 0.7245 0.7024 0.7040 0.7385 0.6843 0.7144 0.7134 0.7226 0.7601 0.7738 0.7155
0.5706 0.5451 0.4805 0.4705 0.4554 0.4899 0.5016 0.5154 0.5428 0.4880 0.4971

ρ(λ0102 , λ021) −0.8287 −0.8049 −0.8244 −0.8402 −0.7972 −0.8054 −0.8246 −0.8330 −0.8537 −0.8639 −0.8268
−0.7142 −0.7098 −0.7551 −0.7281 −0.7510 −0.6973 −0.7406 −0.7352 −0.7373 −0.6680 −0.7415

ρ(λ011, λ021) 0.7449 0.7287 0.7287 0.7503 0.7140 0.7299 0.7273 0.7299 0.7556 0.7669 0.7302
0.5949 0.5811 0.5247 0.5173 0.5580 0.4431 0.5270 0.5238 0.5570 0.5020 0.4588

ρ(λ001 , λ10) 0.4647 0.4306 0.4233 0.4575 0.4072 0.4354 0.4158 0.4101 0.4715 0.4679 0.4006
−0.0491 0.0298 0.0261 −0.0113 0.0706 0.0172 0.0422 0.0175 −0.0017 −0.0025 0.1008

ρ(λ01, λ10) −0.6628 −0.6388 −0.6383 −0.6866 −0.6215 −0.6596 −0.6584 −0.6667 −0.7177 −0.7327 −0.6606
−0.5564 −0.2211 −0.5275 −0.5618 −0.4047 −0.5259 −0.5020 −0.4994 −0.5451 −0.4701 −0.4685

ρ(λ0102 , λ10) 0.7532 0.7308 0.7380 0.7723 0.7111 0.7427 0.7500 0.7631 0.8001 0.8221 0.7652
0.7268 0.7349 0.7866 0.7284 0.7298 0.6084 0.7387 0.7241 0.6935 0.7056 0.7207

ρ(λ011, λ10) −0.6547 −0.6326 −0.6310 −0.6698 −0.6124 −0.6387 −0.6380 −0.6408 −0.6875 −0.7033 −0.6450
−0.4979 −0.2404 −0.5101 −0.5017 −0.4507 −0.4887 −0.4657 −0.3815 −0.4739 −0.4260 −0.3933

ρ(λ021, λ10) −0.7887 −0.7671 −0.7734 −0.8041 −0.7503 −0.7830 −0.7865 −0.7956 −0.8318 −0.8475 −0.8000
−0.6504 −0.5952 −0.6845 −0.6518 −0.6771 −0.6168 −0.6430 −0.6223 −0.6434 −0.5618 −0.6607

ρ(λ001 , µ1) −0.4635 −0.4290 −0.4215 −0.4598 −0.4089 −0.4410 −0.4233 −0.4161 −0.4810 −0.4797 −0.4087
0.0628 −0.0465 −0.0558 −0.0237 −0.0410 −0.0343 −0.0751 0.0032 0.0164 −0.0128 −0.0537

ρ(λ01, µ1) 0.7134 0.6893 0.6901 0.7297 0.6654 0.7005 0.6989 0.7075 0.7507 0.7644 0.7011
0.6626 0.3925 0.6148 0.6245 0.5208 0.6370 0.5776 0.6132 0.6428 0.5733 0.6022

ρ(λ0102 , µ1) −0.8275 −0.8067 −0.8203 −0.8412 −0.7915 −0.8145 −0.8246 −0.8362 −0.8593 −0.8756 −0.8328
−0.8870 −0.8837 −0.8959 −0.8767 −0.8818 −0.8643 −0.8927 −0.8835 −0.8770 −0.8559 −0.8819

ρ(λ011, µ1) 0.7067 0.6868 0.6878 0.7176 0.6662 0.6896 0.6897 0.6919 0.7279 0.7405 0.6931
0.6151 0.4014 0.5766 0.5828 0.5771 0.5499 0.5319 0.5133 0.5949 0.5246 0.5236

Table S8: Simulation results from m = 2 slow switching (study 7 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits. 33



δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ021, µ1) 0.8828 0.8664 0.8782 0.8914 0.8564 0.8784 0.8845 0.8889 0.9093 0.9150 0.8896
0.7657 0.7285 0.7994 0.7742 0.7882 0.7764 0.7867 0.7827 0.7849 0.7263 0.7742

ρ(λ10, µ1) −0.7789 −0.7556 −0.7605 −0.7950 −0.7335 −0.7729 −0.7761 −0.7898 −0.8301 −0.8498 −0.7951
−0.8129 −0.8276 −0.8237 −0.8102 −0.8129 −0.7683 −0.7842 −0.7749 −0.7782 −0.7852 −0.8033

ρ(λ001 , δ) −0.0117 −0.0110 −0.0108 −0.0052 0.0048 0.0120 0.0206 0.0321 0.0477 0.0621 0.0642
−0.0587 −0.0580 0.0102 0.0161 0.0344 0.0484 0.0241 −0.0216 0.0364 0.0362 0.0294

ρ(λ01, δ) 0.0003 0.0041 0.0120 0.0306 0.0564 0.0752 0.0946 0.1178 0.1359 0.1516 0.1630
0.0039 0.0034 0.0240 0.1295 0.1571 0.1277 0.1704 0.1942 0.2498 0.2150 0.1237

ρ(λ0102 , δ) −0.0014 −0.0019 −0.0036 −0.0071 −0.0104 −0.0072 −0.0128 −0.0134 −0.0134 −0.0118 −0.0130
0.0140 −0.0551 −0.0075 0.0114 0.0020 0.0084 0.0394 −0.0730 −0.0802 −0.0697 0.0352

ρ(λ011, δ) 0.0011 0.0023 0.0059 0.0134 0.0238 0.0244 0.0338 0.0401 0.0469 0.0525 0.0551
−0.0186 −0.0120 0.0512 −0.0097 0.1336 0.0405 −0.0117 0.0456 0.1134 0.0161 0.0316

ρ(λ021, δ) 0.0047 0.0057 0.0078 0.0113 0.0138 0.0110 0.0147 0.0142 0.0121 0.0108 0.0110
0.0193 0.0371 0.0195 −0.0824 0.0192 0.0113 −0.0329 0.0613 0.1009 0.0259 −0.0146

ρ(λ10, δ) −0.0488 −0.0597 −0.0679 −0.0723 −0.0840 −0.0763 −0.0713 −0.0559 −0.0316 −0.0210 −0.0162
−0.0760 −0.1348 −0.0990 −0.1065 −0.1229 −0.0849 −0.1186 −0.1887 −0.2027 −0.0679 −0.0344

ρ(µ1, δ) −0.0030 −0.0048 −0.0043 −0.0022 −0.0096 −0.0132 −0.0096 −0.0113 −0.0109 −0.0127 −0.0153
−0.0219 0.0949 −0.0145 −0.0152 0.0317 −0.0101 −0.0325 0.0822 0.0891 0.0197 −0.0336

Table S9: Simulation results from m = 2 slow switching (study 7 of Table S1) continued:
Mean approximate correlations obtained from the Hessian matrices compared with the values
calculated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3418 0.3428 0.3604 0.3767 0.3931 0.4104 0.4493 0.5074 0.4984 0.4728 0.4644
0.3578 0.4383 0.3207 0.3759 0.3966 0.4616 0.4572 0.7093 0.5343 0.4565 0.4863

ρ(λ001 , λ0102 ) 0.2102 0.2077 0.1803 0.1570 0.1424 0.1291 0.1274 0.1185 0.1034 0.0927 0.0831
0.1448 0.1084 0.1646 0.0317 0.1551 0.0747 0.0551 0.0984 0.0732 0.0845 0.0274

ρ(λ01, λ0102 ) −0.1329 −0.1320 −0.1142 −0.1002 −0.0877 −0.0703 −0.0367 0.0025 0.0044 −0.0098 −0.0167
−0.1305 −0.0815 −0.0471 −0.1104 −0.0044 0.0860 −0.0391 0.0872 0.0595 0.0264 −0.0565

ρ(λ001 , λ011) 0.3630 0.3698 0.4039 0.4334 0.4572 0.4730 0.4971 0.5341 0.5586 0.5672 0.5791
0.4174 0.3864 0.4574 0.5145 0.4500 0.4464 0.5019 0.6346 0.5959 0.5705 0.6507

ρ(λ01, λ011) 0.3114 0.3084 0.2987 0.2885 0.2814 0.2684 0.2712 0.2913 0.2905 0.2815 0.2782
0.2614 0.2775 0.2635 0.3035 0.2272 0.2364 0.2422 0.4806 0.3408 0.2312 0.2962

ρ(λ0102 , λ011) −0.1423 −0.1352 −0.0936 −0.0594 −0.0387 −0.0274 −0.0020 0.0287 0.0519 0.0544 0.0591
−0.0358 −0.0399 −0.0072 −0.0452 0.1050 0.0116 −0.0167 0.1275 0.1244 0.1939 0.1078

ρ(λ001 , λ021) −0.2231 −0.2208 −0.1900 −0.1644 −0.1446 −0.1310 −0.1145 −0.0855 −0.0705 −0.0660 −0.0603
−0.1357 −0.1891 −0.1442 −0.0181 −0.0645 −0.0120 −0.0687 0.0151 0.0627 0.0828 −0.0005

ρ(λ01, λ021) 0.1673 0.1672 0.1515 0.1382 0.1277 0.1116 0.0955 0.0741 0.0647 0.0657 0.0657
0.1498 0.0747 0.0893 0.1506 0.0716 0.1465 0.0547 0.0630 0.1546 0.0216 0.0338

ρ(λ0102 , λ021) −0.5349 −0.5316 −0.4878 −0.4483 −0.4222 −0.4031 −0.3735 −0.3306 −0.2913 −0.2810 −0.2680
−0.4590 −0.4133 −0.3344 −0.3654 −0.2513 −0.1643 −0.1913 −0.1074 −0.0021 −0.0288 0.0257

ρ(λ011, λ021) 0.3805 0.3760 0.3486 0.3219 0.3080 0.2900 0.2792 0.2569 0.2381 0.2325 0.2247
0.2976 0.2930 0.2831 0.3103 0.2394 0.2386 0.1643 0.1985 0.1807 0.1182 0.1320

ρ(λ001 , λ10) 0.1437 0.1126 0.0845 0.0469 0.0092 −0.0437 −0.1405 −0.1785 −0.0853 −0.0070 0.0227
0.1258 0.1137 0.0199 0.0010 −0.0612 −0.0805 −0.2612 −0.5137 −0.1376 0.0150 −0.0170

ρ(λ01, λ10) 0.2225 0.1748 0.1430 0.0592 −0.0525 −0.2120 −0.4267 −0.4160 −0.1634 0.0438 0.1643
0.2128 0.2225 0.1431 0.0456 −0.1341 −0.2405 −0.5987 −0.7957 −0.2786 0.0774 0.1346

ρ(λ0102 , λ10) 0.1310 0.1186 0.0940 0.0741 0.0598 0.0450 0.0238 0.0271 0.0516 0.0674 0.0713
0.0825 0.1071 0.0554 0.0044 0.0366 0.0182 −0.0310 −0.0885 −0.0364 −0.0015 0.0547

ρ(λ011, λ10) −0.0228 −0.0215 −0.0105 −0.0110 −0.0192 −0.0373 −0.0817 −0.1139 −0.0749 −0.0329 −0.0130
−0.0055 0.0790 0.0003 0.0121 −0.0290 0.0069 −0.1295 −0.3429 −0.1393 0.0212 0.0021

ρ(λ021, λ10) −0.1744 −0.1627 −0.1390 −0.1210 −0.1089 −0.0985 −0.0920 −0.0986 −0.1032 −0.1003 −0.0947
−0.1129 −0.1435 −0.1276 −0.0343 −0.0845 −0.1230 −0.0509 −0.0557 −0.0876 −0.0911 −0.0323

ρ(λ001 , µ1) −0.2455 −0.2455 −0.2151 −0.1915 −0.1745 −0.1658 −0.1752 −0.1719 −0.1454 −0.1232 −0.1102
−0.1973 −0.1578 −0.1436 −0.0563 −0.1368 −0.1149 −0.0934 −0.2910 −0.0182 −0.1163 0.0363

ρ(λ01, µ1) 0.1665 0.1670 0.1486 0.1304 0.1088 0.0703 0.0022 −0.0672 −0.0600 −0.0274 −0.0145
0.1581 0.0993 0.1173 0.1754 0.0089 0.1282 −0.0726 −0.3225 −0.0989 −0.1461 −0.0194

ρ(λ0102 , µ1) −0.5887 −0.5900 −0.5488 −0.5129 −0.4876 −0.4676 −0.4470 −0.4131 −0.3757 −0.3664 −0.3534
−0.5547 −0.4743 −0.4429 −0.4524 −0.3355 −0.2417 −0.2201 −0.1795 −0.1525 −0.0547 0.0107

ρ(λ011, µ1) 0.3555 0.3539 0.3216 0.2923 0.2732 0.2515 0.2267 0.1864 0.1695 0.1726 0.1678
0.2864 0.2858 0.2606 0.2965 0.2075 0.2217 0.1741 −0.0343 0.0314 −0.0467 0.0264

Table S10: Simulation results from m = 2 medium switching (study 8 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ021, µ1) 0.7892 0.7931 0.7682 0.7430 0.7238 0.7036 0.6845 0.6461 0.6193 0.6136 0.6031
0.7308 0.7359 0.6911 0.6600 0.5947 0.5151 0.4457 0.2904 0.2393 0.2314 0.2140

ρ(λ10, µ1) −0.1696 −0.1516 −0.1213 −0.0932 −0.0673 −0.0352 0.0128 0.0072 −0.0516 −0.0883 −0.0981
−0.1419 −0.1207 −0.1143 0.0096 −0.0065 −0.0526 0.1267 0.2870 0.0659 0.0484 0.0283

ρ(λ001 , δ) 0.0097 0.0251 0.0392 0.0637 0.0929 0.1395 0.2312 0.3502 0.3348 0.2749 0.2391
0.0344 0.0906 0.1098 0.1030 0.1259 0.1979 0.3136 0.6346 0.3826 0.2479 0.1893

ρ(λ01, δ) −0.0247 0.0104 0.0460 0.1360 0.2580 0.4269 0.6343 0.8224 0.8432 0.7971 0.7568
0.0371 0.0456 0.0871 0.1160 0.3167 0.4716 0.7803 0.9485 0.8742 0.7884 0.7136

ρ(λ0102 , δ) −0.0009 −0.0027 0.0045 0.0112 0.0186 0.0274 0.0407 0.0517 0.0462 0.0366 0.0336
−0.0917 −0.0066 −0.0172 0.0377 0.0262 0.0610 0.0370 0.1253 0.1161 0.0567 −0.0179

ρ(λ011, δ) −0.0095 −0.0073 −0.0073 0.0006 0.0130 0.0362 0.0876 0.1690 0.1751 0.1494 0.1338
0.0148 0.0379 0.0230 0.0587 0.0403 0.0344 0.1317 0.4143 0.2533 0.1249 0.1302

ρ(λ021, δ) 0.0071 0.0150 0.0095 0.0072 0.0046 0.0043 0.0111 0.0204 0.0195 0.0168 0.0161
0.0087 0.0584 −0.0125 0.0114 0.0028 0.0583 0.0296 0.0512 0.1283 −0.0333 −0.0154

ρ(λ10, δ) −0.3872 −0.5744 −0.6153 −0.6602 −0.6947 −0.7337 −0.7813 −0.5962 −0.3004 −0.0994 0.0205
−0.2960 −0.6377 −0.6105 −0.6919 −0.7027 −0.7630 −0.8379 −0.8906 −0.4383 −0.0889 −0.0137

ρ(µ1, δ) −0.0088 −0.0105 −0.0234 −0.0378 −0.0562 −0.0808 −0.1196 −0.1437 −0.1233 −0.0956 −0.0854
0.0353 0.0577 0.0100 −0.0561 −0.0918 −0.0357 −0.1748 −0.3398 −0.1752 −0.2138 −0.1197

Table S11: Simulation results from m = 2 medium switching (study 8 of Table S1) continued:
Mean approximate correlations obtained from the Hessian matrices compared with the values
calculated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3226 0.3564 0.3883 0.4924 0.6686 0.7631 0.7393 0.6992 0.6671 0.6401 0.6163
0.3530 0.2565 0.3992 0.4931 0.8714 0.8827 0.8089 0.7678 0.7209 0.7226 0.6324

ρ(λ001 , λ0102 ) 0.1205 0.1371 0.1522 0.1932 0.2358 0.2296 0.1957 0.1732 0.1615 0.1535 0.1484
0.1615 0.1546 0.1761 0.2190 0.4098 0.4319 0.2675 0.2230 0.1780 0.2474 0.1447

ρ(λ01, λ0102 ) −0.0160 −0.0010 0.0170 0.0689 0.1544 0.1760 0.1431 0.1192 0.1055 0.0960 0.0907
0.0199 0.0016 −0.0031 0.1587 0.4162 0.3949 0.3343 0.2595 0.2576 0.2741 0.2093

ρ(λ001 , λ011) 0.3840 0.3753 0.3716 0.3504 0.3733 0.4291 0.4677 0.4892 0.5101 0.5303 0.5467
0.3631 0.3306 0.3419 0.3466 0.3618 0.5052 0.4664 0.5257 0.5900 0.5914 0.5367

ρ(λ01, λ011) 0.2566 0.2469 0.2396 0.2196 0.2317 0.2671 0.2786 0.2735 0.2705 0.2684 0.2630
0.2175 0.1456 0.1721 0.2223 0.2091 0.3397 0.2823 0.2565 0.2823 0.3085 0.2422

ρ(λ0102 , λ011) 0.1555 0.1397 0.1423 0.1310 0.1647 0.2001 0.2222 0.2270 0.2381 0.2495 0.2555
0.1101 0.1276 0.1696 0.0494 0.2502 0.4050 0.2364 0.3057 0.2715 0.3348 0.3640

ρ(λ001 , λ021) −0.1023 −0.1287 −0.1449 −0.1908 −0.1978 −0.1537 −0.1004 −0.0767 −0.0563 −0.0370 −0.0258
−0.0643 −0.2151 −0.2247 −0.2111 −0.4299 −0.3191 −0.2016 −0.1728 −0.0955 −0.1175 −0.0431

ρ(λ01, λ021) 0.0598 0.0412 0.0217 −0.0344 −0.0945 −0.0891 −0.0446 −0.0249 −0.0089 0.0057 0.0166
0.0633 −0.0582 0.0131 −0.1040 −0.4517 −0.3535 −0.2757 −0.2656 −0.1532 −0.1856 −0.1403

ρ(λ0102 , λ021) −0.1144 −0.1613 −0.1743 −0.2246 −0.2222 −0.1757 −0.1218 −0.0939 −0.0688 −0.0434 −0.0304
−0.1028 −0.1426 −0.2482 −0.2027 −0.2314 −0.0931 −0.0403 0.0285 0.0814 0.0039 0.1128

ρ(λ011, λ021) 0.1776 0.1938 0.2014 0.2144 0.1960 0.1692 0.1605 0.1530 0.1489 0.1435 0.1411
0.2054 0.1622 0.1693 0.2174 −0.0014 −0.0196 0.0495 0.0043 0.0344 −0.0082 0.0687

ρ(λ001 , λ10) −0.1279 −0.1442 −0.1935 −0.3236 −0.4959 −0.4884 −0.3454 −0.2112 −0.1089 −0.0308 0.0135
−0.1493 −0.1895 −0.2607 −0.3754 −0.7682 −0.7460 −0.4048 −0.1836 −0.0485 0.0547 0.1022

ρ(λ01, λ10) 0.4418 0.3439 0.2393 −0.0537 −0.4460 −0.5453 −0.3998 −0.2325 −0.0835 0.0564 0.1530
0.3562 0.3696 0.2138 −0.1255 −0.7916 −0.7995 −0.4417 −0.2177 −0.0264 0.1237 0.2645

ρ(λ0102 , λ10) −0.0801 −0.0752 −0.0813 −0.1086 −0.1412 −0.1003 −0.0339 0.0058 0.0311 0.0471 0.0565
−0.1580 −0.1416 −0.1723 −0.1874 −0.3643 −0.3863 −0.0279 0.0105 0.0135 0.0831 0.1246

ρ(λ011, λ10) 0.1203 0.1013 0.0866 0.0508 −0.0503 −0.1218 −0.1120 −0.0779 −0.0506 −0.0276 −0.0139
0.1284 0.1092 0.0637 0.1215 −0.1283 −0.2744 −0.0791 −0.0893 −0.0258 −0.0098 0.0145

ρ(λ021, λ10) 0.0939 0.0820 0.0865 0.1021 0.0967 0.0301 −0.0345 −0.0573 −0.0689 −0.0694 −0.0685
0.1706 0.2060 0.2060 0.1375 0.4010 0.2234 0.0684 −0.0768 0.0238 −0.0354 −0.1246

ρ(λ001 , µ1) −0.1149 −0.1340 −0.1544 −0.2243 −0.3015 −0.2857 −0.2128 −0.1656 −0.1327 −0.1052 −0.0906
−0.1227 −0.1989 −0.1324 −0.1101 −0.4881 −0.3325 0.0572 0.0196 0.1341 0.2721 0.2246

ρ(λ01, µ1) 0.0736 0.0474 0.0205 −0.0731 −0.2292 −0.2706 −0.2108 −0.1702 −0.1434 −0.1197 −0.1106
0.0433 −0.0127 0.0151 −0.0464 −0.5420 −0.4629 −0.0440 −0.0765 0.0686 0.1439 0.1185

ρ(λ0102 , µ1) −0.1442 −0.1719 −0.1791 −0.2215 −0.2377 −0.2021 −0.1534 −0.1265 −0.1071 −0.0907 −0.0828
−0.1792 −0.0526 −0.0951 0.0309 −0.1222 0.0194 0.2899 0.3101 0.3597 0.4460 0.3249

ρ(λ011, µ1) 0.0990 0.1122 0.1148 0.1252 0.0841 0.0428 0.0375 0.0398 0.0402 0.0391 0.0384
0.0734 0.1633 0.0462 0.1292 −0.0900 −0.0806 −0.1047 −0.1696 −0.1339 −0.0172 −0.1325

Table S12: Simulation results from m = 2 fast switching (study 9 of Table S1): Mean ap-
proximate correlations obtained from the Hessian matrices compared with the values calculated
directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ021, µ1) 0.3356 0.3797 0.3948 0.4513 0.4571 0.4090 0.3590 0.3293 0.3053 0.2799 0.2662
0.3900 0.3971 0.3593 0.3572 0.4253 0.1470 −0.1956 −0.2335 −0.3394 −0.4054 −0.3861

ρ(λ10, µ1) 0.1818 0.1730 0.1932 0.2468 0.3011 0.2370 0.1326 0.0710 0.0281 −0.0017 −0.0196
0.2083 0.2031 0.1800 0.2156 0.5718 0.5468 0.2826 0.3285 0.2487 0.2693 0.3157

ρ(λ001 , δ) 0.2862 0.3072 0.3486 0.4606 0.6247 0.6987 0.6506 0.5851 0.5300 0.4784 0.4323
0.3317 0.3202 0.4446 0.5140 0.8560 0.8311 0.6868 0.6312 0.5043 0.5148 0.3463

ρ(λ01, δ) −0.1171 −0.0230 0.0611 0.3069 0.6540 0.8472 0.8578 0.8361 0.8164 0.7897 0.7638
0.0380 0.0149 0.0767 0.3770 0.9100 0.9211 0.8556 0.8544 0.8037 0.7933 0.6842

ρ(λ0102 , δ) 0.1187 0.1268 0.1365 0.1683 0.2037 0.1889 0.1459 0.1197 0.1041 0.0933 0.0893
0.1516 0.2215 0.2373 0.2975 0.4224 0.4253 0.2382 0.2510 0.2036 0.1671 0.1251

ρ(λ011, δ) −0.0705 −0.0611 −0.0536 −0.0292 0.0721 0.1701 0.1878 0.1755 0.1664 0.1568 0.1447
−0.0607 −0.0930 −0.0387 −0.1213 0.1667 0.2773 0.1776 0.1937 0.1175 0.1607 0.0881

ρ(λ021, δ) −0.1494 −0.1557 −0.1653 −0.1846 −0.1743 −0.1195 −0.0639 −0.0414 −0.0227 −0.0045 0.0117
−0.1951 −0.2923 −0.3103 −0.2549 −0.4483 −0.3200 −0.2484 −0.2362 −0.1840 −0.1652 −0.0590

ρ(λ10, δ) −0.7786 −0.7828 −0.8115 −0.8588 −0.8723 −0.7580 −0.6020 −0.4491 −0.3053 −0.1681 −0.0732
−0.7288 −0.7674 −0.8005 −0.8653 −0.9448 −0.9320 −0.7030 −0.4571 −0.2589 −0.1178 0.0043

ρ(µ1, δ) −0.2283 −0.2331 −0.2570 −0.3149 −0.3713 −0.3353 −0.2602 −0.2192 −0.1924 −0.1693 −0.1622
−0.2079 −0.2474 −0.2130 −0.2348 −0.5936 −0.5430 −0.1652 −0.1521 0.0032 0.0379 −0.0300

Table S13: Simulation results from m = 2 fast switching (study 9 of Table S1) continued:
Mean approximate correlations obtained from the Hessian matrices compared with the values
calculated directly from 500 fits.
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S4.1.4 The effect of frame length.

In order to test the effect of decreasing the frame length ∆ (or increasing the frame rate) on

estimates, we simulated 500 datasets for the fast switching scenarios (studies 3, 6 and 9 in Table

S1) under the models m = 0, 1, 2. The fast switching parameters were used in this analysis due

to the fact that the correlation structures between the noise parameter δ and photo-switching

parameters was highest, as is explained in Section S4.1.2. In particular, small values of ∆

should yield a less bias within the estimates and any identifiability issues in parameters should

diminish as the hidden process {X(t)} is more closely seen. To address this issue, we show rate

estimates for three sets of imaging parameters ∆−1 = 30, 65, 100s−1 from datasets imaging

NE = 100 molecules over a period of 3 × 105 seconds. Figures S6 - S10 show box-plots of

rate results for all simulations. Under all models, it is evident that rate estimates become

unbiased as ∆ → 0, under most values of the noise fraction δ/∆. For instance, the bias in

estimates that is highlighted most strongly is when δ/∆ ≈ 0.4− 0.5, for most cases. Although

the same pattern in bias is seen across all three values of ∆, this bias is significantly seen

to decrease. This intuitively reflects the fact that ∆ → 0 implies the observed process {Yn}

provides greater information of the process {X(t)}, with the ∆, δ → 0 case trivially becoming

completely informative of the hidden process. When ∆−1 = 30s−1 for the m = 2 case for

example, bias in the parameters λ01 = λ10 = 10 even at low noise floors is observed. This bias

dissipates as the sampling time decreases, implying that there are identifiability issues for faster

switching parameters if the sampling rate ∆−1 is not large enough to capture the transitions

between On and dark states.
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Figure S6: Box-plots showing rate estimates when m = 0 under study 3 of Table S1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the red
dashed line.
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Figure S7: Box-plots showing rate estimates when m = 1 under study 4 of Table S1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the red
dashed line.
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Figure S8: Box-plots showing rate estimates when m = 1 under study 4 of Table S1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the red
dashed line.

To look more closely at how the change in ∆ affects the likelihood surface between δ and

its highest correlated parameter λ01, Figure S11 shows the likelihood contour surfaces for 3

different values of ∆, ∆−1 = 30, 65, 100s−1, under study 6, for when δ/∆ = 0.7. Again, for

clearer comparisons, the {X(t)} data used to generate these surfaces are the same for all three

values of δ/∆. These contours show the change between λ01 and δ about their maximum

likelihood estimates with all other parameters of the model fixed at their maximum likelihood

estimates. One can observe that the correlation between λ01 and δ reduces as ∆ decreases.

40



10
-4

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9/  

1.5

3.5

0
0

1

8

11

14

0
1

0.2

0.3

0
1
0

3

0.6

0.8

0
1
1

10
-4

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
-4

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure S9: Box-plots showing rate estimates when m = 2 under study 9 of Table S1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the red
dashed line.
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Figure S10: Box-plots showing rate estimates when m = 2 under study 9 of Table S1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the red
dashed line. True rates indicated by the red dashed line.
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Figure S11: Contour plots showing the log-likelihood surface of λ01 against δ/∆ when m = 1
under study 6 (of Table S1) with other rate parameters λ001 , λ10 and µ1 fixed at their maximum
likelihood values. The left most plot shows the surface when ∆−1 = 30s−1, the middle shows
the surface when ∆−1 = 65s−1 and the rightmost when ∆−1 = 100s−1. The true value for
δ/∆ is 0.7 for each study. Maximum likelihood estimates are shown as asterisks (black) with
the true values shown as squares (red). The process {X(t)} generating the data is the same
for all three plots.

42



S4.2 Consistency.

In this section, we will use the identifiability analysis from the previous section to discuss when

the PSHMM-ML estimator is consistent. Rate estimates will be computed as NE is changed.

The variance of the PSHMM estimator is shown to decrease as NE increases, whilst consistency

is shown through the convergence of mean-square errors only when δ/∆ is small and unknown

transition rates are identifiable given the sampling time ∆.

Specifically, the PSHMM estimator θ̂NF ,NE := arg maxθ∈Θ ` (Y;θ) of the true parameter

vector θ∗ of the model is consistent if it converges in probability to θ∗, i.e. that plimNF ,NE→∞

θ̂NF ,NE = θ∗. From equation (3.3) of the main text, Y =
(
y1 y2 . . . yNE

)
is the data

matrix with each column being an NF × 1 data vector from each independent imaging experi-

ment.

Consistency is difficult to show theoretically for the PSHMM estimator given the form of

the log-likelihood function in (3.3) of the main text. However, since convergence in mean

square implies convergence in probability, we can loosely show that convergence in probability

is attained by analyzing if the mean-squared errors of parameter estimates tends to zero as

NE increases. From other studies, we have found that modifying the parameter NF does not

show any significant changes in bias/variance of the rate estimates due to the inclusion of the

absorption state. In this section, we have therefore solely considered the effects of changing

NE .

Using the simulation studies 1 − 9 from the previous section (considered in Table S1), we

were also able to compute the means and mean squared errors of the estimates, the results of

which are shown for different δ/∆ in Tables S14 - S22. To compare the mean squared errors as

the sample size NE grows, we additionally show these errors under the same simulation studies

executed with NE = 1000. The mean squared errors, on the whole, are seen to decrease as

the sample size NE increases, for all switching parameters and values of δ/∆. This reduction

is highlighted more when δ/∆ is smaller, especially for faster switching rates. For example, in

Table S16, while the mean squared error for parameter λ10 reduces for larger δ/∆, it is not

seen to reduce at the same rate as other parameters which would indicate that this bias would

persist even if the sample size is increased more. This is particularly pronounced when δ/∆

is between 0.4 and 0.8. This pattern is also observed from other parameters, especially λ01

and λ001 in the faster switching scenarios. The fast reduction in MSE for parameters under

slowing switching scenarios and with lower noise δ/∆ is reflected by better model identification
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(as shown in Section S4.1) and is therefore a good indication of consistency.

To more clearly visualize the effects of an increase in NE on maximum likelihood estimation,

we show rate estimates as δ/∆ increases when NE = 100, 1000, 5000 for the fast switching

scenario (studies 3, 6 and 9). NF is fixed at 10, 000 under all simulations. Figures S12 - S16

show box-plots of rate results for all simulations. It is evident that while an asymptotic decrease

in variance is pronounced, asymptotic bias persists for larger values of δ/∆. Furthermore, strong

correlations between parameter estimates can be seen as δ/∆ increases, leading to inconsistency.

For example, the estimates for λ01 under all m = 0, 1, 2 models remain biased as NE increase,

albeit at a lower variance. This is also true for λ10 under studies 6 and 9.

From Figures S12 - S16, the pattern in bias that is captured by the majority of estimates

under NE = 100 as δ/∆ increases persists as NE increases. This is replicated by the mismatch

in correlations that indicates identifiability issues. However, for δ/∆, the estimator appears

to be asymptotically unbiased with mean squared errors converging to zero; in this case the

estimator is seen to be consistent. It should be noted that the faster rates do affect these

properties as is seen in Figure S16, whereby estimates for λ10, although obtaining a smaller

variance, remain biased for even the smallest values of δ/∆. This is related to the identifiability

analysis previously presented, as the sampling interval ∆ is too large to informatively detect and

estimate faster switching rates. As ∆ → 0, however, using the analysis from Section S4.1.4,

these faster rates should become identifiable and consistency holds.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 1.0014 0.9966 0.9912 0.9850 0.9773 0.9705 0.9683 0.9936 1.0061 1.0127 1.0079

λ̂01 MSE (100) ×10−4 0.3356 0.3902 0.4012 0.4044 0.4503 0.4779 0.5474 0.5950 0.7025 0.5211 0.4466

λ̂01 MSE (1000) ×10−4 0.0376 0.0403 0.0343 0.0718 0.0977 0.1455 0.1746 0.1862 0.0927 0.0659 0.0531

λ̂10 Mean 3.1604 3.1634 3.1610 3.1572 3.1662 3.1674 3.1578 3.1250 3.1262 3.1296 3.1454

λ̂10 MSE (100) ×10−4 3.6676 3.5676 3.8007 3.8985 4.1441 3.9991 4.0541 4.2626 3.7268 4.0394 3.7124

λ̂10 MSE (1000) ×10−4 0.4015 0.4324 0.4274 0.3815 0.4071 0.4204 0.4033 0.5648 0.6505 0.4453 0.4247
µ̂1 Mean 0.1055 0.1058 0.1073 0.1080 0.1084 0.1089 0.1092 0.1061 0.1053 0.1044 0.1042

µ̂1 MSE (100) ×10−4 0.1325 0.1211 0.1200 0.1138 0.1229 0.1206 0.1342 0.1295 0.1232 0.1016 0.1155
µ̂1 MSE (1000) ×10−4 0.0115 0.0108 0.0125 0.0105 0.0136 0.0113 0.0107 0.0130 0.0130 0.0162 0.0136

Table S14: m = 0 slow switching (study 1 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 1.0014 0.9966 0.9912 0.9850 0.9773 0.9705 0.9683 0.9936 1.0061 1.0127 1.0079

λ̂01 MSE (100) ×10−4 3.6014 3.1477 4.0102 6.3179 8.5862 12.5950 18.1615 24.8810 19.6845 10.8940 6.4757

λ̂01 MSE (1000) ×10−4 0.3129 0.4614 0.9002 2.8093 5.8887 9.4462 14.7635 16.2443 3.9079 2.1320 1.0608

λ̂10 Mean 3.1604 3.1634 3.1610 3.1572 3.1662 3.1674 3.1578 3.1250 3.1262 3.1296 3.1454

λ̂10 MSE (100) ×10−4 36.9219 42.3621 40.6597 38.6860 39.7586 44.7820 60.3105 71.4363 61.3570 50.1797 40.2596

λ̂10 MSE (1000) ×10−4 3.4391 3.6448 3.9765 3.8151 3.7223 3.9205 4.7250 7.5561 32.5732 16.5867 5.6184
µ̂1 Mean 0.1055 0.1058 0.1073 0.1080 0.1084 0.1089 0.1092 0.1061 0.1053 0.1044 0.1042

µ̂1 MSE (100) ×10−4 1.0219 0.9556 1.0623 1.3524 1.2432 1.2929 1.4148 1.2926 1.1855 1.2989 0.9957
µ̂1 MSE (1000) ×10−4 0.1093 0.1167 0.1311 0.1158 0.1848 0.1678 0.2003 0.2111 0.1536 0.1536 0.1225

Table S15: m = 0 medium switching (study 2 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 3.1587 3.1236 3.0899 3.0167 2.9548 2.8934 2.8359 2.8888 3.1553 3.2415 3.2202

λ̂01 MSE (100) ×10−3 4.2580 5.2544 9.0954 25.0617 47.3891 78.0354 114.2236 125.1663 122.2452 53.9577 29.2550

λ̂01 MSE (1000) ×10−3 0.2806 1.4529 5.2052 20.2176 44.1040 75.7929 109.6569 122.9487 16.5624 14.1061 6.1912

λ̂10 Mean 9.9869 10.0025 9.9970 10.0068 10.0000 9.9712 9.9610 9.8077 9.6313 9.7021 9.8473

λ̂10 MSE (100) ×10−3 46.0991 67.4772 67.8874 67.2548 82.5422 85.0991 75.3934 189.8646 235.7081 133.0161 74.5628

λ̂10 MSE (1000) ×10−3 4.0829 6.5112 6.2349 6.8307 9.0871 8.9417 13.7226 36.7124 243.7806 114.5101 33.4812
µ̂1 Mean 0.3336 0.3412 0.3387 0.3476 0.3549 0.3598 0.3642 0.3590 0.3337 0.3205 0.3308

µ̂1 MSE (100) ×10−3 1.0400 1.1957 1.0078 1.3647 1.8971 2.1253 2.2552 2.8067 2.2045 1.3641 1.1986
µ̂1 MSE (1000) ×10−3 0.1057 0.1187 0.1353 0.2655 0.5306 0.7058 1.0352 0.9740 0.4821 0.3477 0.1859

Table S16: m = 0 fast switching (study 3 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.1522 0.1499 0.1521 0.1491 0.1501 0.1500 0.1493 0.1505 0.1517 0.1508 0.1515

λ̂001 MSE (100) ×10−4 3.1832 3.3354 3.2151 3.1054 3.0920 3.3521 2.3554 3.1366 3.4032 3.2362 3.4182

λ̂001 MSE (1000) ×10−4 0.3359 0.3018 0.3093 0.2870 0.3105 0.3521 0.3355 0.3240 0.3449 0.3322 0.3361

λ̂01 Mean 0.3008 0.2993 0.3002 0.2985 0.2985 0.2976 0.2980 0.3000 0.3005 0.3007 0.3000

λ̂01 MSE (100) ×10−4 0.8397 0.7758 0.7117 0.8869 0.8883 0.9291 0.9691 1.0938 1.0441 1.0730 0.8439

λ̂01 MSE (1000) ×10−4 0.0960 0.0820 0.0921 0.1022 0.1356 0.2059 0.2391 0.2297 0.1271 0.1090 0.1040

λ̂011 Mean 0.1002 0.0995 0.1000 0.0994 0.0994 0.0996 0.0997 0.0999 0.1004 0.0999 0.1001

λ̂011 MSE (100) ×10−4 0.2087 0.2164 0.2058 0.2201 0.2054 0.2090 0.1745 0.1948 0.2117 0.2425 0.2098

λ̂011 MSE (1000) ×10−4 0.0197 0.0216 0.0242 0.0176 0.0221 0.0256 0.0233 0.0215 0.0191 0.0199 0.0240

λ̂10 Mean 0.7985 0.7993 0.8005 0.7996 0.8008 0.8010 0.7997 0.7991 0.7971 0.7986 0.7988

λ̂10 MSE (100) ×10−4 1.7727 1.7760 1.8119 1.7244 1.8805 1.8472 2.2378 2.0228 1.8457 1.9318 1.7723

λ̂10 MSE (1000) ×10−4 0.1852 0.1642 0.1766 0.1630 0.1801 0.1611 0.2042 0.3483 0.2588 0.2562 0.1874
µ̂1 Mean 0.0102 0.0101 0.0102 0.0101 0.0100 0.0101 0.0099 0.0101 0.0100 0.0100 0.0101

µ̂1 MSE (100) ×10−4 0.0218 0.0246 0.0201 0.0232 0.0276 0.0278 0.0224 0.0238 0.0224 0.0226 0.0237
µ̂1 MSE (1000) ×10−4 0.0022 0.0024 0.0028 0.0021 0.0024 0.0025 0.0026 0.0023 0.0028 0.0025 0.0025

Table S17: m = 1 slow switching (study 4 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.3553 0.3584 0.3544 0.3469 0.3438 0.3438 0.3408 0.3538 0.3472 0.3534 0.3495

λ̂001 MSE (100) ×10−4 25.6851 27.5699 27.2189 23.9852 27.1779 26.6249 23.8982 28.9833 27.3760 31.2609 28.7500

λ̂001 MSE (1000) ×10−4 2.8673 2.5538 2.7678 3.0469 3.0582 3.3915 3.6247 3.4359 3.5640 2.7995 3.2578

λ̂01 Mean 1.0029 1.0013 0.9947 0.9861 0.9774 0.9745 0.9734 0.9907 0.9997 1.0004 0.9999

λ̂01 MSE (100) ×10−4 11.8527 11.8486 12.4051 13.3163 16.8455 20.6807 23.6586 31.5621 27.5247 21.7894 19.0594

λ̂01 MSE (1000) ×10−4 1.3297 1.4966 1.6546 3.5872 5.9372 9.6060 13.8229 11.2374 3.0040 2.1362 2.0034

λ̂011 Mean 0.3007 0.3028 0.2999 0.2989 0.2964 0.2966 0.2950 0.2996 0.2996 0.3009 0.2988

λ̂011 MSE (100) ×10−4 3.7738 3.5633 3.6592 3.3376 3.8073 3.7841 3.5575 3.8889 4.1254 3.4619 4.0927

λ̂011 MSE (1000) ×10−4 0.4245 0.3556 0.3786 0.4918 0.5113 0.4931 0.5018 0.5469 0.5059 0.3990 0.4637

λ̂10 Mean 2.2919 2.2960 2.2995 2.3010 2.3050 2.3006 2.2971 2.2874 2.2788 2.2849 2.2908

λ̂10 MSE (100) ×10−4 24.5487 28.2653 25.7279 23.7907 27.0397 31.0944 35.0341 41.3352 33.0594 28.5781 25.8814

λ̂10 MSE (1000) ×10−4 2.4204 2.4919 2.1457 2.8788 3.2393 3.0825 3.1199 11.6558 13.9423 7.3326 3.6860
µ̂1 Mean 0.0996 0.1012 0.1007 0.1023 0.1015 0.1016 0.1020 0.1013 0.1001 0.0995 0.1001

µ̂1 MSE (100) ×10−4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
µ̂1 MSE (1000) ×10−4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S18: m = 1 medium switching (study 5 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 1.9923 1.9843 1.9661 1.9170 1.9068 1.8723 1.9401 2.0162 2.0622 2.0605 2.0236

λ̂001 MSE (100) ×10−2 1.6820 1.7604 2.1581 2.5568 2.8720 3.9995 4.7420 5.2883 4.0860 3.2989 3.6349

λ̂001 MSE (1000) ×10−2 0.1811 0.2328 0.3443 0.7816 1.2921 1.9940 1.5430 0.7706 0.8508 0.5470 0.3272

λ̂01 Mean 9.8520 9.7112 9.5725 9.3138 9.0396 8.8526 9.0706 9.4378 9.8018 9.9327 9.7973

λ̂01 MSE (100) ×10−2 13.9078 19.4594 29.9885 57.2287 103.9807 144.7740 143.2314 116.6074 57.4840 47.1627 48.6892

λ̂01 MSE (1000) ×10−2 3.0531 9.3754 20.7562 53.2153 94.8435 138.2305 136.8150 35.6913 8.4465 6.2657 6.4313

λ̂011 Mean 0.6980 0.6986 0.6929 0.6913 0.6888 0.6804 0.6880 0.6942 0.6986 0.6988 0.7000

λ̂011 MSE (100) ×10−2 0.1321 0.1175 0.1289 0.1280 0.1430 0.1735 0.1687 0.1759 0.1706 0.1695 0.1843

λ̂011 MSE (1000) ×10−2 0.0153 0.0154 0.0171 0.0207 0.0319 0.0440 0.0441 0.0201 0.0150 0.0140 0.0180

λ̂10 Mean 9.7762 9.7862 9.7305 9.7983 9.7404 9.7100 9.4153 9.2234 9.1590 9.4201 9.6822

λ̂10 MSE (100) ×10−2 15.4335 20.4386 27.7001 28.6734 30.5012 33.6122 79.2853 91.6354 77.9001 39.1059 15.6054

λ̂10 MSE (1000) ×10−2 3.1389 8.2192 7.9311 9.2028 11.4808 15.3201 38.0538 94.2513 75.0687 37.7118 12.0628
µ̂1 Mean 0.3320 0.3342 0.3365 0.3448 0.3463 0.3546 0.3426 0.3342 0.3259 0.3257 0.3328

µ̂1 MSE (100) ×10−2 0.1006 0.1155 0.1127 0.1387 0.1518 0.1884 0.1712 0.1917 0.1239 0.1180 0.1188
µ̂1 MSE (1000) ×10−2 0.0104 0.0101 0.0106 0.0190 0.0255 0.0326 0.0304 0.0279 0.0250 0.0220 0.0129

Table S19: m = 1 fast switching (study 6 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.1655 0.1708 0.1679 0.1781 0.1684 0.1575 0.1709 0.1669 0.1657 0.1675 0.1721

λ̂001 MSE (100) ×10−4 44.0687 48.1666 40.4240 56.9849 46.9907 34.6941 48.7498 40.4209 37.4097 39.4570 54.9917

λ̂001 MSE (1000) ×10−4 6.5107 4.6626 3.1803 5.7639 5.2326 4.9994 4.3972 4.3537 3.4098 4.1759 3.9254

λ̂01 Mean 0.2935 0.2979 0.2974 0.2927 0.2952 0.2915 0.2952 0.2933 0.2905 0.2920 0.2938

λ̂01 MSE (100) ×10−4 7.9565 7.2124 7.2222 7.3178 7.2362 7.5725 8.0150 6.8996 6.4214 7.3674 6.8179

λ̂01 MSE (1000) ×10−4 1.6610 2.0638 1.9069 2.1283 1.4913 1.6825 1.6591 2.0276 1.2090 1.2242 1.2403

λ̂0102 Mean 0.0541 0.0527 0.0523 0.0568 0.0525 0.0547 0.0540 0.0549 0.0577 0.0564 0.0537

λ̂0102 MSE (100) ×10−4 2.5311 2.9952 2.9581 2.3374 2.7167 2.4805 2.4671 2.3162 1.7318 1.9756 2.1198

λ̂0102 MSE (1000) ×10−4 1.1641 1.4721 1.4550 1.0681 0.8202 0.9414 0.8395 0.7101 0.6520 0.7776 0.5784

λ̂011 Mean 0.0918 0.0969 0.0966 0.0927 0.0946 0.0880 0.0948 0.0937 0.0873 0.0898 0.0941

λ̂011 MSE (100) ×10−4 11.2553 11.4354 10.3173 10.4587 10.2103 11.9950 9.3411 9.2835 9.7223 9.8362 11.2910

λ̂011 MSE (1000) ×10−4 2.4837 2.6489 3.0001 1.8920 1.5318 2.1322 2.0623 2.0265 1.5063 1.6543 1.2973

λ̂021 Mean 0.0010 0.0012 0.0012 0.0009 0.0011 0.0010 0.0010 0.0010 0.0008 0.0008 0.0010

λ̂021 MSE (100) ×10−4 0.0047 0.0079 0.0077 0.0026 0.0075 0.0041 0.0045 0.0036 0.0017 0.0017 0.0035

λ̂021 MSE (1000) ×10−4 0.0017 0.0025 0.0034 0.0014 0.0013 0.0012 0.0010 0.0012 0.0011 0.0013 0.0011

λ̂10 Mean 0.8198 0.8181 0.8135 0.8262 0.8172 0.8222 0.8161 0.8208 0.8250 0.8267 0.8200

λ̂10 MSE (100) ×10−4 28.5496 29.2364 28.3205 26.0696 30.5973 26.4407 25.8326 26.6544 20.9132 25.9590 24.5221

λ̂10 MSE (1000) ×10−4 11.0639 11.2100 11.5840 9.2298 6.7888 8.7008 6.2439 6.7714 6.0394 7.3362 5.4836
µ̂1 Mean 0.0295 0.0355 0.0353 0.0241 0.0342 0.0311 0.0325 0.0313 0.0228 0.0255 0.0326

µ̂1 MSE (100) ×10−4 18.0527 18.2972 18.0223 16.9144 17.8902 15.6854 15.8466 15.0540 13.7984 13.4112 14.6161
µ̂1 MSE (1000) ×10−4 10.1650 10.9061 10.2482 9.1750 6.0234 7.8785 6.6199 5.1603 5.1085 5.9133 4.7159

Table S20: m = 2 slow switching (study 7 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.8036 0.7956 0.7886 0.7854 0.7771 0.7741 0.7632 0.8116 0.8310 0.8319 0.8279

λ̂001 MSE (100) ×10−3 3.0144 2.8559 2.9198 2.9900 3.5072 3.4486 4.3369 5.7624 5.6709 5.2478 5.6638

λ̂001 MSE (1000) ×10−3 0.3128 0.2841 0.3111 0.6009 0.9634 1.2946 1.4308 0.9600 1.3473 1.3295 0.7073

λ̂01 Mean 3.9984 3.9547 3.9089 3.8364 3.7578 3.6906 3.6473 3.9421 4.1152 4.1213 4.0996

λ̂01 MSE (100) ×10−3 9.9119 11.3783 16.1007 36.5443 68.6703 106.2609 147.0739 144.2045 71.3273 49.7364 39.7939

λ̂01 MSE (1000) ×10−3 1.2355 3.2177 9.2571 29.9110 61.3052 101.7778 132.2323 35.7616 24.8360 19.5067 9.6962

λ̂0102 Mean 0.1002 0.1019 0.1001 0.1002 0.0998 0.0992 0.0995 0.1001 0.1029 0.1017 0.1017

λ̂0102 MSE (100) ×10−3 0.1459 0.1478 0.1169 0.1333 0.1114 0.1104 0.0982 0.0984 0.1200 0.1025 0.1032

λ̂0102 MSE (1000) ×10−3 0.0186 0.0128 0.0156 0.0168 0.0120 0.0106 0.0101 0.0163 0.0124 0.0180 0.0178

λ̂011 Mean 0.4013 0.3980 0.3966 0.3953 0.3971 0.3953 0.3893 0.3970 0.4045 0.4050 0.4049

λ̂011 MSE (100) ×10−3 0.8079 0.7637 0.7999 0.8251 0.8119 0.7423 0.8910 1.0031 1.0903 1.0056 1.0403

λ̂011 MSE (1000) ×10−3 0.0791 0.0683 0.0653 0.1070 0.1447 0.1444 0.1803 0.0983 0.1160 0.1195 0.0974

λ̂021 Mean 0.0051 0.0050 0.0052 0.0052 0.0053 0.0053 0.0052 0.0052 0.0053 0.0052 0.0053

λ̂021 MSE (100) ×10−3 0.0012 0.0011 0.0011 0.0010 0.0009 0.0009 0.0007 0.0006 0.0006 0.0005 0.0006

λ̂021 MSE (1000) ×10−3 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

λ̂10 Mean 7.9687 7.9803 7.9715 7.9827 7.9840 7.9804 7.9415 7.6940 7.6285 7.7437 7.8902

λ̂10 MSE (100) ×10−3 25.0985 36.8189 38.8441 39.8706 39.5881 46.9644 75.1187 202.7373 163.6210 86.1649 32.2554

λ̂10 MSE (1000) ×10−3 3.3643 4.0670 4.1188 4.4424 3.9562 5.9792 15.2332 195.7356 157.2629 65.2038 13.7654
µ̂1 Mean 0.1013 0.0987 0.1026 0.1073 0.1128 0.1157 0.1152 0.1093 0.1073 0.1082 0.1109

µ̂1 MSE (100) ×10−3 1.0780 0.9975 0.7788 0.7643 0.8492 0.8663 0.7543 0.4665 0.3883 0.3751 0.4219
µ̂1 MSE (1000) ×10−3 0.1209 0.1109 0.1112 0.1647 0.1523 0.2716 0.2475 0.1378 0.0711 0.0851 0.1268

Table S21: m = 2 medium switching (study 8 of Table S1): Means and Mean Squared Errors
(MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all parameter
estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 2.0359 2.0293 2.0469 2.0815 2.2804 2.5864 2.6748 2.6492 2.6063 2.5731 2.4697

λ̂001 MSE (100) ×10−2 2.4447 2.3738 3.0898 4.2635 20.8307 50.8394 55.0500 51.6242 44.0403 41.0364 28.3079

λ̂001 MSE (1000) ×10−2 0.2685 0.3666 0.5155 0.7732 2.6830 33.2383 40.8341 40.2410 35.8971 28.6887 22.1064

λ̂01 Mean 9.8536 9.7290 9.6305 9.5301 9.9097 10.9416 11.4587 11.5278 11.5300 11.5069 11.1842

λ̂01 MSE (100) ×10−2 17.2377 21.3207 26.7591 37.4432 94.3525 239.7721 312.6215 330.2248 302.7605 295.8218 186.1543

λ̂01 MSE (1000) ×10−2 2.9915 8.3804 14.5863 27.9367 26.5326 97.9595 183.0150 229.2597 239.9449 205.5458 153.9862

λ̂0102 Mean 0.2049 0.2116 0.2156 0.2253 0.2391 0.2524 0.2590 0.2631 0.2661 0.2703 0.2709

λ̂0102 MSE (100) ×10−2 0.0531 0.0780 0.0884 0.1358 0.2402 0.3600 0.4144 0.4701 0.5090 0.5766 0.5755

λ̂0102 MSE (1000) ×10−2 0.0071 0.0148 0.0225 0.0558 0.1152 0.2843 0.3347 0.3911 0.4220 0.4433 0.4663

λ̂011 Mean 0.6910 0.6854 0.6826 0.6704 0.6632 0.6737 0.6747 0.6752 0.6734 0.6721 0.6661

λ̂011 MSE (100) ×10−2 0.3199 0.3288 0.3566 0.3887 0.4659 0.4169 0.4301 0.4615 0.4717 0.5270 0.5524

λ̂011 MSE (1000) ×10−2 0.0380 0.0438 0.0698 0.1232 0.2166 0.1193 0.1187 0.1018 0.1261 0.1720 0.2028

λ̂021 Mean 0.0098 0.0091 0.0089 0.0082 0.0071 0.0064 0.0062 0.0061 0.0059 0.0059 0.0058

λ̂021 MSE (100) ×10−2 0.0003 0.0004 0.0004 0.0006 0.0010 0.0014 0.0016 0.0016 0.0017 0.0018 0.0018

λ̂021 MSE (1000) ×10−2 0.0000 0.0001 0.0001 0.0004 0.0008 0.0013 0.0015 0.0016 0.0017 0.0017 0.0018

λ̂10 Mean 9.5735 9.4538 9.4108 9.3594 8.9483 8.5021 8.5916 8.9477 9.3422 9.7067 10.0918

λ̂10 MSE (100) ×10−2 36.2423 52.0110 56.4493 65.8577 173.3694 258.4795 207.4896 116.7524 49.0383 14.6224 7.3112

λ̂10 MSE (1000) ×10−2 15.9769 31.8406 38.4982 48.2685 88.8552 281.1336 200.7809 114.7007 47.4346 9.0499 1.1104
µ̂1 Mean 0.3233 0.3205 0.3193 0.3121 0.2905 0.2688 0.2614 0.2664 0.2727 0.2801 0.2898

µ̂1 MSE (100) ×10−2 0.1398 0.1778 0.1546 0.1737 0.3280 0.5032 0.5754 0.5245 0.4283 0.3572 0.2602
µ̂1 MSE (1000) ×10−2 0.0207 0.0297 0.0368 0.0639 0.1449 0.5308 0.5420 0.4790 0.4057 0.3094 0.2209

Table S22: m = 2 fast switching (study 9 of Table S1) of Table S1): Means and Mean Squared
Errors (MSE) from datasets with NE = 100 (100) and NE = 1000 (1000) are shown for all
parameter estimates.
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Figure S12: Box-plots showing rate estimates when m = 0 under study 3 of Table S1 when
NE = 100 (left), NE = 1000 (middle) and NE = 5000 (right). True rates indicated by the red
dashed line. True rates indicated by the red dashed line.
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Figure S13: Box-plots showing rate estimates when m = 1 under study 6 of Table S1 when
NE = 100, NE = 1000 and NE = 5000 (right). True rates indicated by the red dashed line.
True rates indicated by the red dashed line.

S5 Exponential fitting estimator.

In this section, we provide details of the exponential fitting estimator of Lin et al. (2015) that

is used for comparison with the PSHMM estimator in the paper. We begin with an outline of

the original method, demonstrating how maximum likelihood rate estimates of the switching

rates under models of type Mm
∅ (m ∈ Z≥0), are obtained from the photo-switching data. We

then demonstrate how it can be extended to models of type Mm
{1} (m ∈ Z≥0) that include an

absorbing state 2.
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Figure S14: Box-plots showing rate estimates when m = 1 under study 6 of Table S1 when
NE = 100, NE = 1000 and NE = 5000 (right). True rates indicated by the red dashed line.
True rates indicated by the red dashed line.
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Figure S15: Box-plots showing rate estimates when m = 2 under study 9 of Table S1 when
NE = 100, NE = 1000 and NE = 5000 (right). True rates indicated by the red dashed line.
True rates indicated by the red dashed line.

S5.1 Original method.

Consider the irreducible Markov process {X(t) : t ∈ [0,∞)} on the state space SX =

{0, 01, . . . , 0m, 1} equipped with the generator G and initial probability mass νX as shown

in equation (2.1) of the main text. We note here that the inclusion of the absorption state 2 is

not accounted for in this method.

If this Markov chain was completely observable, one would be able to note the dwell times

(times spent) in each of the m + 2 states. In particular, if Ts denotes a random dwell time

in state s ∈ SX , then Ts ∼ exp(σs), where (following the same notation as the main text)

σ0m = λ0m1, σ1 = λ10 and when m > 0, σ0i = λ0i0i+1 + λ0i1, for i = 0, . . . ,m+ 1. Maximum

likelihood estimation of each σs is subsequently straightforward. Specifically, if N realizations
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Figure S16: Box-plots showing rate estimates when m = 2 under study 9 of Table S1 when
NE = 100, NE = 1000 and NE = 5000 (right). True rates indicated by the red dashed line.
True rates indicated by the red dashed line.

t1s, t
2
s, . . . , t

N
s from Ts are obtained, then the maximum likelihood estimator σ̂s of σs is given by

σ̂s =
N∑N
i=1 t

i
s

. (41)

Suppose now that {X(t)} is not directly observable but instead the times spent in the

Dark-On cycle φ0 = 0 → 01 → . . . 0m → 1 and the On-Dark cycle φ1 = 1 → 0 are observed.

Firstly, we note that T1 is the dwell time in an On-Dark cycle φ1. Now let random variable T̄0

be a dwell time in the Dark-On cycle φ0; that is, T̄0 is the time taken to reach state 1 from

state 0 along the path φ0. One can express T̄0 =
∑m

i=0 T0i , i.e. T̄0 is equal in distribution to

a sum of exponentially distributed random variables, with the key example that T̄0 = T0 when

m = 0.

Under the m = 2 case, Lin et al. (2015) use an ODE method to derive the probability

density function of T̄0, parametrized by the unknown rates in G. As required, this method can

easily be extended to account for different values of m ∈ Z≥0. Specifically, the density function

of T̄0 takes the form

fT̄0
(t) =

m∑
i=0

kiσ0ie
−σ0i

t t > 0. (42)

When m = 1, it can be shown k0 = 1 +
λ001

σ01−σ0
and k1 = 1 − k0. When m = 2, the mixture
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coefficients are given by

k0 = 1 +
λ001

σ01 − σ0
+
λ001λ0102(σ01 − σ02)

A

k1 =
λ001

σ0 − σ01

+
λ001λ0102(σ02 − σ0)

A

k2 =
λ001λ0102(σ0 − σ01)

A

A = σ01σ02(σ01 − σ02) + σ0σ02(σ02 − σ0) + σ0σ01(σ0 − σ01).

Readers are directed to Lin et al. (2015) for a formal derivation of this result.

Recognizing that the each row of G must sum to zero, the density in (42) enables the

unknown photo-switching parameters

θ =
(
λ001 . . . λ0m−10m λ01 . . . λ0m1

)>
to be estimated via maximization of the log-likelihood function

`(t̄10, t̄
2
0, . . . , t̄

N
0 |σ00 , ..., σ0m) =

N∑
i=0

log

(
m∑
i=0

kiσ0ie
−σ0i

t̄i0

)
, (43)

where t̄10, t̄
2
0, . . . , t̄

N
0 are N realizations from T̄0. Numerical optimization of (43), together with

maximum likelihood estimator σ̂1 = N/(
∑N

i=1 t
i
1) from equation (41) can be used to obtain the

maximium likelihood estimate θ̂ of θ.

In the context of this paper and that of Lin et al. (2015), the data does not produce

observations of random variables T1 or T̄0. Instead, one observes a discrete sequence of zeros

and ones indicating whether or not a fluorophore is detected in each time frame. Specifically,

an NF × 1 observation sequence y (from a single emitter), can be written in block vector form

y =
[
0>
n1

0
1>
n1

1
0>
n2

0
1>
n2

1
. . . 0>

nN0
1>
nN1

]>
, (44)

where 0n and 1n are the n × 1 vectors of zeros and ones respectively, ni0, n
i
1 ∈ Z≥0 and N is

such that
∑N

i=1 n
i
0 + ni1 = NF .

Using the form in (44) for each observation vector, we consider the sequences of times

t̃ij = nij∆ for j = 0, 1 and i = 1, . . . , N . These sequences of times are assumed in Lin et al.

(2015) to be the dwell times to obtain the maximum likelihood rate estimates; {t̃i1}Ni=1 is used
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to obtain σ̂1 in equation (41) and {t̃i0}Ni=1 is used to obtain θ by maximizing the log-likelihood in

equation (43). The likelihood function for dwell times T = {ti0.k, i = 1, ..., Nk, k = 1, ..., NE}

recorded from NE ≥ 1 independent emitters becomes

`(T |σ00 , ..., σ0m) =

NE∑
k=1

Nk∑
i=0

log

(
m∑
i=0

kiσ0ie
−σ0i

t̄i0,k

)
, (45)

which again can be numerically optimized, in our case using the Nelder-Mead simplex.

The key problems associated with this method are: 1. the observed dwell times can only

take a discrete set of values, however, the true dwell times are continuous random variables. 2.

observed dwell times for the On-Dark cycle φ1 may be an over estimate of the true dwell times

as short transitions to an Off state may not be detected. 3. observed dwell times for Dark-On

cycle φ0 may be an overestimate as short transitions to the On state may not be detected. 4.

the assumed distribution of the dwell time for the Dark-On cycle may be incorrect if not all dark

states on the path are reached.

S5.2 Extension to handling the absorbing state.

To gain estimates of these switching rates in the presence of the absorbing state 2, we consider

each observation sequence before death: ỹj = {yji }
oj−1
i=0 ; where oj ∈ Z≥0 denotes the last

frame a fluorophore is seen in observation sequence j = 1, . . . , NE . Photo-switching estimates

are gained by fitting to the truncated dataset Ỹ =
(
ỹ1 ỹ2 . . . ỹNE

)
.

We are able to infer upon the absorption parameter µ1 (when µj = 0 for all j 6= 1) by using

the fact that the random variable N10 denoting the number of 1 → 0 transitions observed in

a single sequence is geometrically distributed with success probability µ1

σ1
. Maximum likelihood

estimation from the entire dataset Y yields that λ̂10 = n̄10µ̂1, where n̄10 = 1
NE

∑NE
j=1 n

j
10 and

nj10 denotes the number of observed 1 → 0 transitions in sequence j. Since the exponentially

fitting method, by considering dwell time sequences from the On state, always yield a maximum

likelihood estimate for σ̂1 = λ̂10 + µ̂1, we obtain that λ̂10 = n̄10σ̂1
1+n̄10

and µ̂1 = σ̂1
1+n̄10

.

S6 Discussion on implementing the PSHMM algorithm.

In this section, we discuss the implementation of PSHMM algorithm. Key mathematical ideas to

suggest appropriate initial parameters for these optimization techniques, including a discussion
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on the multimodality of the log-likelihood surfaces will be comprehensively reviewed.

S6.1 Convergence of transmission matrices.

In most practical aspects, ∆ = O(10−2) and σi∆ < 1 for all i ∈ S̄X . With these parameter

values, convergence of the transmission matrices from Algorithm 1 (from Section S3) usually

transpires up to and including k = 2, with k ≥ 3 probabilities seldom needed in practice.

For the simulated parameters in this paper, our Matlab implementation of this Algorithm thus

approximates the matrices B
(0)
∆ and B

(1)
∆ using only k = 0, 1 and 2.

S6.2 Likelihood optimization.

The log-likelihood function in equation (3.3) of the main text is optimized with respect to θ via

the Nelder-Mead simplex to obtain maximum likelihood estimates. When m = 0, we are able

to gain starting parameters for this search using the method described below. However when

m > 0, we use deploy a stochastic search with many starting values to mitigate for multiple

modes and find the global maximum.

S6.2.1 Estimating initial rate parameters.

To numerically maximize the log-likelihood function in (5) of the main text, a starting value θ̂
∗

needs to be determined primarily due to the potential multimodality of the likelihood function

and further to reduce the computational time given the size of the parameter space Θ∗.

To do so, we consider a crude approximate estimate to start a maximum likelihood search.

In the case m = 0, we have found that optimizing the likelihood function of a first order Markov

chain {Zn : n ∈ Z∗} (used as a partial likelihood function for {Yn}) has yielded appropriate

initial estimates for λ01 and λ10 using the dataset Ỹ. The chain {Zn} is constructed by

using one-step transition probabilities from {Yn} through the setting µ0 = µ1 = δ = 0 and

νX =
(

λ10
(λ01+λ10)

λ01
(λ01+λ10)

)>
, the stationary distribution for {X(t)}.

Remark 4. We can calculate that the transition probability matrix PZ of {Zn}, whereby

(PZ)ij = P(Yn = j|Yn−1 = i) takes the form

PZ =

 e−λ01∆ 1− e−λ01∆

π0
Xe−λ01∆(1−e−λ01∆)

1−π0
Xe−λ01∆

π1
X+π0

X(1−e−λ01∆)2

1−π0
Xe−λ01∆

 , (46)
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where π0
X = λ10

(λ01+λ10) and π1
X = λ01

(λ01+λ10) .

Crude estimates for λ01 and λ10 can be obtained by optimizing the restricted likelihood

function for {Zn} using the truncated dataset Ỹ; this takes the form LZ(Ỹ;λ01, λ10) =∏NE
j=1

∏oj−1
i=0 pZ

yji y
j
i+1

. If njs1s2 denotes the number of observed transitions from state s1 to s2

(s1, s2 ∈ SY ) over oj observations in sequence j = 1, . . . , NE , then it is shown in Rajarshi

(2013) that the maximum likelihood estimators of the transition probabilities in PZ are given

by p̂Z00 =
∑NE
j=1 n

j
00∑NE

j=1 n
j
00+nj01

and p̂Z10 =
∑NE
j=1 n

j
10∑NE

j=1 n
j
10+nj11

. By rearranging the expressions for λ01 and λ10

given in (46), we obtain the crude estimates

λ̂01 = − log(p̂Z00)

∆
λ̂10 =

p̂Z10λ̂01

(1− eλ̂01∆)(e−λ̂01∆ − p̂Z10)
. (47)

Moreover, gaining initial estimates of the death rates µ̂0 and µ̂1 (when at least one rate is

non-zero) can be done by considering approximate bleached times: tj = oj∆ for j = 1 . . . NE .

These times can be used to fit the absorption time distribution (see Buchholz et al. (2014))

fτ (τ |λ01, λ10, µ0, µ1) = ( 1− (νX)1 (νX)1 )eTτt, with (νX)i = P(X(0) = i) when i ∈ SX
and

T =

 −(λ01 + µ0) λ01

λ10 −(λ10 + µ1)

 , t =

 µ0

µ1

 .

Estimates are gained from maximizing the log-likelihood

`(µ0, µ1|τ, λ̂01, λ̂10) =

NE∑
j=1

log(fτ (tj |λ̂01, λ̂10, µ0, µ1)),

where λ̂01 and λ̂10 are the crude estimates gained from (47). In the case that m > 0, we may

choose to set µ̂0i = µ̂0 for all i = 1, . . . ,m where the model permits absorption from other

such dark states.

The noise parameters δ and α are started close to zero, as in general these will be small. Fur-

thermore, if the initial mass νX is unknown then one can initialize with (νX)1 = 1
NE

∑NE
j=1 y0

j

and (νX)0 = 1− (νX)1. When m > 0, we set (νX)i = 0 for all i /∈ {0, 1}.

We have found that initial values λ̂10, µ̂0 and µ̂1 gained from the above analysis are generally

superior to estimates gained from exponential fitting for all m ≥ 0. However, in the presence

of multiple dark states, exponential fitting is used to obtain initial estimates for all other rate

parameters as is required for the PSHMM likelihood optimization.
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S7 Simulation methods and further results.

In this section we provide the methods for the simulation studies presented in Section 4 of

the main paper, specifically Figure 7 and Table 2 (of Appendix A). We then present further

simulation studies that explore the effects of varying the frame length ∆, threshold (proportional

to δ), number of frames NF and absorption parameter µ1.

S7.1 Imaging simulation.

Simulated images of a fluorophore are produced from a sequence of continuous time state

transitions realized from model M0
{1}, discretized to give a sequence of fractional On times

q0, ..., qNF−1 for each frame. All other state information (dark-state / bleached-state identity)

is discarded. Let λp be the expected number of photons emitted per second by a fluorophore

in the On state, then the expected number of photons emitted by the fluorophore in frame i is

qi∆λp.

To replicate the microscope point spread function, photon positions are assumed to be

distributed according to a 2D Gaussian distribution with standard deviation σ = 135 nm centered

at the stationary position of the fluorophore s ∈ R2. The photon positions are binned into a

grid of Npix 100×100nm pixels {Ck ⊂ R2; k = 1, ..., Npix} representing the EMCCD camera.

The expected number of photons from the fluorophore in pixel k for frame i is

µi,k = qi∆λp

∫
Ck

N (x; s, σ2I2)dx

where N (·;µ,Σ) denotes the probability density function of the Gaussian distribution with mean

µ and covariance matrix Σ. A constant mean background photon count of 5 is added to the

expected photon count in every pixel.

A Poisson-Gamma-Normal noise model is used to simulate the EMCCD readouts. This

model is adapted from Hirsch et al. (2013) and constant parameter values used are typical of

commercial EMCCD cameras. The expected photon count per pixel (µi,k+5) is converted to an

expected electron count per pixel µei,k by multiplying it by the EMCCD quantum efficiency, 0.9,

and adding a spurious electron dark current of 0.005e− s−1, i.e. µei,k = 0.9(µi,k + 5) + 0.005.

The electron count ei,k for pixel k in frame i is sampled from a Poisson(µei,k) distribution. The

electron count after EMCCD gain εi,k, is then sampled from a Gamma(ei,k, β) distribution,

with β equal to the EMCCD gain, set to 250 in this simulation (typical experimental ranges
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are 100–300). Gaussian distributed EMCCD read noise ri,k ∼ N(0, σ2
rn), σrn = 6, is added to

εi,k to give the final electron count for pixel k in frame i. This is divided by an analogue to

digital conversion sensitivity of 3.2 to give the digital camera count. As in an EMCCD camera,

a base offset of 100 digital camera counts is added to prevent clipping of negative numbers on

digitization and the final count is discretized and truncated to the range [0, 65535].

S7.2 Image analysis and trace idealization.

To generate idealized traces, photon count vs time traces were extracted from image sequences

and thresholded as follows. The position of molecules in the Alexa Fluor 647 image data were

as previously determined by Lin et al. (2015) and the position of molecules used in simulated

data were known. The position of each molecule was used to extract 5×5 pixel regions from

the raw data centered (without interpolation) on the molecule to produce a sequence of ‘trace

images’. The background intensity of each frame of the trace images was calculated as the

mean of the 16 boundary pixels and subtracted from the trace images. The photon number for

each frame of the trace images was calculated by correcting for the photon conversion factor

of the camera and subsequently integrating the convolution of the trace image with a 5×5

pixel Gaussian kernel. A hard threshold was applied to the photon number per frame trace at

multiples of the standard deviation of the background, σBG.

S7.3 Global parameter set for simulations.

The global parameter set used in all simulation studies, unless being varied as part of the study,

are as follows:

Parameter Value

Threshold 5σBG
Expected number of photons per frame length (∆λp) 500
∆ 1/30 s
λ01 0.3162 s−1

λ10 3.1623 s−1

µ10 0.1 s−1

NF 9872 frames

For the Alexa Fluor 647 data, a fixed threshold of 2σBG was applied.
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S7.4 Further results.

We analyze simulated image traces based on a range of different scenarios. All datasets have

NE = 100 with known initial probability νX =
(

0 1 0
)>

and unknown false positive rate

α > 0. In Section 4 of the main paper, we explored the effect of different photo-switching rates

(λ01, λ10). Here, we consider varying the frame length ∆ (Figure S17), threshold (proportional

to δ) (Figure S18), number of frames NF (Figure S19) and absorption parameter µ1 (Figure

S20).

Our PSHMM method is seen to perform extremely well across all different switching and

sampling scenarios, especially in comparison to the exponential fitting method which incurs a

consistent bias. It is worth noting that we see an increase in bias of the PSHMM estimator

for low frame rates and high threshold values. This is expected as its ability to detect multiple

transitions within a frame is diminished. Furthermore, it is indicated that the PSHMM estimator

also exhibits a much lower variance than that from the exponential fitting, a property which

also decreases with larger NE (data not shown). Figure S20 finally highlights a reduction in

bias with µ1, due to a greater number of transitions between hidden states.
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Figure S17: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both exponential
fitting (black) and PSHMM fitting (red) are plotted against log(∆). True rates given by the
blue line.
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Figure S18: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both exponential
fitting (black) and PSHMM fitting (red) are plotted against log(threshold). NF = 9872 for all
simulations. True rates given by the blue line.
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Figure S19: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both exponential
fitting (black) and PSHMM fitting (red) are plotted against NF . True rates given by the blue
line.
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Figure S20: Boxplots showing quantiles from estimates of λ01, λ10 and varying µ1 from both
exponential fitting (black) and PSHMM fitting (red) are plotted against log10(µ1). True rates
given by the blue lines.
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