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It is shown that the system theoretic concepts of reachability and observability are relevant
to the analysis of NMR experiments. Moreover, the sets of reachable states are examined
and Lie theoretic criteria are given for the reachability of the system. The question is
investigated how the set of reachable states depends on the class of input functions that are
allowed. Both one-dimensional and multi-dimensional NMR experiments are considered.

1. Introduction

In the paper [9] the following system theoretic setup was introduced to describe
one- and multi-dimensional NMR experiments (for a general introduction to NMR
experimentation see, e.g., [1]). The basic relationship between inputs u to the system,
i.e., the excitation signals or in particular the radio frequency pulses and the measured
output y, i.e., the measured induced magnetization, is described by a bilinear system

ẋ(t) =Ax(t) + u1(t)N1x(t) + u2(t)N2x(t) + b1u1(t) + b2u2(t),
(R)

y(t) = cx(t),

x(t0) = x0, where x is a state vector, A,N1,N2 are square matrices, b1 and b2 are
column vectors and c is a row vector. The state space X is an n-dimensional Euclidean
space, i.e., X = Cn, for some n > 1. In the description of the system (R) we also
assume that A has all its eigenvalues in the open left half-plane to ensure the stability
of the system, i.e., the fact the NMR system relaxes to the equilibrium state x = 0.
Moreover, we assume that N1 and N2 are skew-hermitian.

It is to be expected that assuming no relaxation is present significantly simplifies
the analysis. In this special case it is often more convenient to work with the equivalent
bilinear system [9]

ż(t) =Az(t) + u1(t)N1z(t) + u2(t)N2z(t),
(NR)

y(t) = cz(t),
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where z(t) = x(t) + veq, with veq the vector representation of the equilibrium density
matrix. The assumption that relaxation can be neglected translates to the assumption
that A is skew-hermitian. As in the description of the system (R), we also assume that
N1 and N2 are skew-hermitian.

These bilinear systems (R) and (NR) were derived from the master equation
which in the case of (R) includes a general relaxation super operator. In most of
the standard approaches to NMR which use super operator formulations, relaxation
is ignored, especially during the application of inputs. In our approach, however, a
relaxation term is always included in the bilinear system (NR). In addition, note that in
contrast to other approaches of describing NMR experimentation no assumptions such
as the hard pulse approximation are made concerning the class of input functions that
are considered. The classes of input functions that will be considered are discussed
later.

One of the purposes of this paper is to illustrate that basic notions of systems
and control theory such as the reachable states of the system (R) or (NR) are of
fundamental importance in the description of NMR experiments. For the system (R),
given an initial state x0 = 0 at time t0, a state x1 is called reachable (from x0) if there
exists an input u(t), t > t0, such u(t1) = x1 for some t1 > t0. Note that what we
call reachability here is often also referred to as controllability. For a one-dimensional
pulse experiment it is shown in section 2 that the reachable states from 0 of the bilinear
system (R) completely characterize all possible spectra. To characterize all possible
spectra of a two-dimensional experiment of a particular system an associated bilinear
system has to be introduced whose state space is the space of square matrices. All two-
dimensional spectra are then determined by the set of reachable states of the bilinear
system (R) and the associated system.

It should be pointed out that in an earlier paper [10] a similar characterization
problem was considered. The set up in that paper was, however, different in that we
also incorporated into the treatment what we called addition schemes that include phase
cycling. The inclusion of these addition schemes had as a result that quite different
mathematical techniques could be used to those being discussed here. In this paper
we will mainly use techniques from differential geometry to analyze the problems at
hand.

We then consider the problem of deciding whether or not all states in the state
space or particular subsets such as a sphere of appropriate radius can be reached.
Explicit criteria are given that make use of Lie theoretic methods that were developed
in nonlinear systems and control theory [5,6].

We also address the question of how a chosen class of input functions determines
the set of reachable states. Generally speaking, it is clear that the set of states that can
be reached will depend on the set of inputs that can be applied to the system. Here we
will examine this question for three classes of inputs. One of the classes is the set of
piecewise constant inputs, another class is that of all admissible inputs, which includes
piecewise constant ones. An input is called admissible if existence and uniqueness are
guaranteed for the corresponding initial value problem. A third class contains infinitely
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often differentiable input functions. We examine the relationship between the sets of
states that are reachable given the different classes of inputs. Moreover, we are going
to give sufficient criteria when these various sets of reachable states coincide.

Recently Lie theoretic methods have been introduced to give precise answers
to the question as to when a quantum control system is reachable [12]. In quantum
computation such methods are also of relevance. For example, Lyod [8] discusses how
generically any two gates are universal for quantum computation. In [11] it is shown
that the notion of universality is the same as that of the reachability of an associated
quantum control system. To the best of our knowledge the work in this paper is the
first time that Lie theoretic methods have been systematically examined for their use
in NMR spectroscopy.

We do not address here the problem of how to devise an input that will drive the
current state of the NMR system to a desired new one. This so-called path planning
problem requires completely different methods. One approach to the path planning
problem is given in a series of publications (e.g., [2,13]). There unitary transformations
are designed that are meant to move the system from a first state to a second state. The
question that is, however, left unanswered is whether this transformation can indeed
be realized by propagators, i.e., whether or not the second state is reachable (see [2]
for a discussion of this topic). It might also be worthwhile noting that the approach
taken there does not allow for the incorporation of relaxation.

In the final section we will show how the system theoretic notion of observability
is an important concept in the description of NMR experiments.

2. Reachability and NMR experiments

As a means of introduction to this section we will first consider the case of one-
dimensional experiments. It was shown in [9] that the free induction decay (FID) of
a typical one-dimensional NMR pulse experiment is given by

s(t) = ce(t−tm)Ax0, t > tm,

where x0 is the state of the system at time tm, the time when the measurements start.
The obtained spectrum (ignoring sampling effects, etc.), i.e., the Fourier transform of
the FID is then given by

G(ω) := c(2πiωI −A)−1x0, ω ∈ R.

It is therefore clear that the only influence that an experimenter has on the outcome of
the experiment is through the vector x0. It should be emphasized that here we do not
take into consideration phase cycling, etc.

We are therefore interested in the set of all states that the system can attain.
But this is what is known as the reachability or controllability problem in linear and
nonlinear system theory (see, e.g., [6]). Before proceeding we need to review the
definition of reachability. In order to do this we need to be concerned with the class
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of input functions. In this paper three classes of input functions will be considered:
(i) Admissible inputs: these inputs satisfy the conditions of Caratheodory’s theorem
for existence and uniqueness of solutions to the corresponding initial value problem.
Let us denote this class by the symbol Uad; (ii) Piecewise constant inputs: these are
inputs which are concatenations of constant inputs. These will be denoted by Upc;
(iii) Smooth inputs: these are inputs which are C∞, i.e., infinitely often continuously
differentiable functions of time. These will be denoted by U∞. Note that the latter
two classes are contained in the first class and that the second is dense (see [3] for
details of the topology) in the first. In section 3 consequences of the choice of the
class of input functions will be further discussed.

Our definition of reachability will be based on the largest class of inputs for
which a solution for the system can be obtained. A state x2 of the system is said to
be reachable from the state x1 if there exists an admissible input u, i.e., u ∈ Uad

with

u(t) =

(
u1(t)
u2(t)

)
, t1 6 t 6 t2,

such that if the system is in state x1 at time t1, the input u will drive the system to
state x2 for some time t2. The set of all states which are reachable from the state x1 by
an admissibile input is denoted by Rad(x1). Similarly, we denote by Rpc(x1) (R∞(x1))
the set of states that are reachable from x1 by piecewise constant (smooth) inputs. We
will often drop the superscript and write R(x1) for Rad(x1). In the study of NMR
systems it is usually assumed (although not always satisfied in practice) that the system
is in equilibrium, i.e., in state 0, when the experiment is started. We are therefore par-
ticularly interested in R(0). It should also be pointed out that the notions of reachable
state and reachability are often also referred to as controllable state and controllabil-
ity.

We can describe the set of all possible one-dimensional NMR spectra (within our
framework and without phase cycling) by{

c(2πiωI −A)−1x | x ∈ R(0)
}
.

In the above discussion we considered admissible input functions or excitation
signals. In practice, excitation signals are in many situations radio frequency pulses.
With a suitable coordinate transformation they can often be translated to constant
inputs (see, e.g., [1,9]). This is, however, not central to our current study. We are
interested in constant or piecewise constant inputs since they are of importance from
a theoretical point of view since the bilinear system of equations has an analytical
solution in the case of constant/piecewise constant inputs. In many situations there
is no loss of generality in restricting the inputs to piecewise constant ones for the
purposes of calculating the reachable sets. A precise statement appears in the next
section.
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If a constant input (
u1(t)
u2(t)

)
=

(
u1

u2

)
is applied to the bilinear system for t0 > t > t0 + ∆t, it was shown in [9] that the
solution to the bilinear system is given by

x(t) = e∆tApx(t0) +
(
e∆tAp − I

)
A−1
p bp

for t0 > t > t0 + ∆t, where Ap := A + u1N1 + u2N2 and bp := b1u1 + b2u2. Here,
as in the remainder of the paper, we assume that Ap is invertible whenever we write
A−1
p .

If a system is in state x(t0) at time t0 when the “pulse” input is started, the pulse
will move the system to the state

x(t0 + ∆t) = Px(t0) + z

at time t0 + ∆t, where P = e∆tAp and z = (e∆tAp − I)A−1
p bp. Note that this represen-

tation also includes the case in which no pulse has been applied. In this case, z = 0
and P = e∆tA. This solution is more complicated than the “usual” unitary evolution
since relaxation is specifically included here.

This “affine” structure implies that the effect of a sequence of k pulses is to move
an initial state x(t0) to the state

Tx(t0) + e1,

where T = PkPk−1 · · ·P1 and

e1 = PkPk−1 · · ·P2z1 + PkPk−1 · · ·P3z2 + · · ·+ Pkzk−1 + zk,

with Pj = e∆jtAp and zj = (e∆jtAp − I)A−1
p bp, j = 1, . . . , k.

The three blocks of pulses that often characterize a two-dimensional experiment
are therefore determined by three matrices T1, T2 and T3 and three vectors e1, e2 and
e3. Here the notation is such that the pair (T1, e1) describes the preparation block of
pulses, (T2, e2) stands for any possible pulses in the middle of the evolution period
and (T3, e3) describes the pulses during the mixing period. In this paper we will only
consider the case where T2 = I and e2 = 0, i.e., the case when no pulses are applied
in the center of the evolution period. Moreover, we shall assume that before each scan
the system is in equilibrium, i.e., x0 = 0. Note that any pulse within a block of pulses
during which no input signal is applied is formally also considered to be a pulse with
zero level input. Hence [9] the free induction decay of such a system is given by

s(t1, t2) = cet2AT3et1Ae1 + cet2Ae3, t1, t2 > 0.

In the above expression as usual t1 stands for the measured time and t2 for the length
of the evolution period. The spectrum of a two-dimensional experiment is given by

G(ω1,ω2) = c(2πiω1I −A)−1T3(2πiω2I −A)−1e1 + δ0(ω1)e3,
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ω1,ω2 ∈ R. The term δ0(ω1)e3 arises from the term cet2A in the time domain data.
Note that since it is independent of t1, it in fact shows up as a constant in the t1
time direction. In any practical situation this term would be removed before Fourier
transforming the data, since it is common practice to remove a constant level in a
signal before the Fourier transform is carried out. We can therefore assume that the
spectrum is given by

G(ω1,ω2) = c(2πiω1I −A)−1T3(2πiω2I −A)−1e1,

ω1,ω2 ∈ R. As pointed out above, the matrix T3 which determines the pattern of cross
peaks in the spectrum is given by T3 = Pk · · ·P1 for some k > 1, where

Pj = e(tj−tj−1)(A+uj1N1+uj2N2)

for 0 < t0 < t1 < · · · < tk, and uj1,uj2 ∈ R, j = 1, . . . , k. It is important to note that
T3 and e1 are independent of each other. We denote by RT the set of all matrices T3

as defined above.
A key observation for our derivation is that RT can be seen to be the set of

reachable states from the identity matrix of the system

U̇ = AU + u1N1U + u2N2U , (MR)

driven by piecewise constant inputs. The state space here is the space of square
matrices Cn×n, i.e., U (t) ∈ Cn×n for t > t0. The matrices A, N1 and N2 are defined
as in the case of the system (R), i.e., A is a square matrix whose only constraint is
the stability assumption that all its eigenvalues are in the open left half-plane. The
matrices N1 and N2 are assumed to be skew-hermitian.

We will also investigate the situation in which we assume that relaxation is
negligible. In this case we consider the system

U̇ = AU + u1N1U + u2N2U , (NMR)

in which again the matrices N1 and N2 are assumed to be skew-hermitian as in the
system (MR). But in this case we now assume that the A matrix is skew-hermitian. In
the next section we will analyze the systems (MR) and (NMR) in order to investigate
the set RT of matrices T3 which determine the cross-peak patterns of two-dimensional
spectra.

3. Properties of the set of reachable states

In this section we are going to consider properties of the set of reachable states of
the systems that were introduced in the previous sections. In fact, we will use results
from the theory of nonlinear systems (see, e.g., [6]) to deduce the characterizations
that are of importance to us.

In order to fix the terminology, we will first review some basic facts concerning
nonlinear systems. This is then followed by a detailed discussion of the specific
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systems that are of importance here. The main feature of the states reachable from a
given point x is that they belong to the orbit of the family of vector fields generated
by the nonlinear system which passes through the point x. To describe what is meant
by an orbit, we consider a general nonlinear system of the form

ẋ = f (x) +
m∑
i=1

uigi(x),

where the state x is an element of a differentiable manifold M and f and gi are
smooth vector fields on M . Now consider the Lie algebra generated by f and the gi.
Call this Lie algebra L. Consider the subspace, at each point z ∈ M , of the tangent
space at z given by ∆(z) = {V (z); V ∈ L}. Then the collection of tangent spaces
∆(z), z ∈M , forms an involutive distribution. If f and gi are real-analytic (which is
certainly the case for the applications considered in this paper), then through each point
x there passes a unique connected (immersed) submanifold O(x) which integrates this
involutive distribution, i.e., for every y ∈ O(x), the tangent space at y is ∆(y). This
submanifold O(x) is called either the maximal integral manifold through x or the slice
through x or the orbit of the nonlinear system through x. We shall adopt this last
terminology.

Before going on to an analysis of the sets of reachable states for the systems that
are considered in this paper we will quote results that explain the role of the different
classes of inputs on the set of reachable states. Since piecewise constant controls are
attractive from many standpoints (especially for the application at hand) and these are
dense in Uad, a reasonable question is whether every state that is reachable from x
via an admissible control is also reachable from x via a piecewise constant or smooth
control. It turns out that this is nearly so (see [3,4,6]). Of course, if it took T units of
time to reach a state y from x via a certain admissible control, it is not necessary that
it also only takes exactly T units of time to reach y from x via a piecewise constant
or smooth control.

Theorem 1. Consider the systems (R), (NR), (MR) and (MNR).

1. Assume that x is in the interior (relative to the topology of O(x)) of the reachable
set Rad(x) due to admissible inputs. Then

(a) Rad(x) is open in O(x);

(b) every state which is in Rad(x) is also reachable from x via a piecewise constant
input, i.e.,

Rad(x) = Rpc(x).

2. Let y be reachable by piecewise constant inputs from x and assume that y is in the
interior of the set of reachable states from x, i.e., assume that y ∈ int(Rpc(x)), then
y can also be reached from x by smooth inputs, i.e., y ∈ R∞(x).
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Proof. Note that the systems (R), (NR), (MR) and (NMR) are real-analytic.
(1) See corollary 4.4 in [3].
(2) See [4] and [6]. �

In our effort to obtain properties of the state of reachable states we are first going
to consider the most general system description, i.e., the bilinear system (R) which
describes the NMR dynamics including relaxation. The first main fact about reachable
sets is part 2 of the following theorem (see, e.g., [6]) which shows that the set of
reachable states from a point x is not merely a subset of the orbit through x but a
“large” subset, since R(x) contains a non-empty open subset of the orbit.

Theorem 2. Consider the system (R). Let x ∈ Cn, then:

1. Rad(x) (and, hence, Rpc(x) and R∞(x)) is contained in the immersed submanifold
O(x) of Cn. Here O(x) is the orbit of the system through x.

2. There exists a non-empty open subset A of O(x) (in the topology of O(x)) which
is contained in Rpc(x), i.e., A ⊆ Rpc(x) ⊆ Rad(x).

3. Rpc(x) = Rad(x) = R∞(x) = Cn if dim(∆(x)) = 2n, where ∆ is the involutive
distribution generated by Az, N1z and N2z for z ∈ Cn.

Proof. (1), (2) See [6].
(3) By assumption A is invertible. Therefore Rad(x) = Cn by theorem 11 in [6,

p. 184]. Hence Rad(x) is open and, hence, theorem 1 implies the equality of the
reachable sets with different input spaces. �

From physical considerations it is unlikely that the conditions of part 3 of the
theorem are satisfied in a typical situation, since one would expect the set of reachable
states to be bounded. It is not known (to us) whether the appropriate statement is still
true in the event that the distribution has lower dimension, i.e., whether the reachable
set through x0 equals the orbit through x0.

Significantly more can be said for the system (NR), i.e., the bilinear system which
describes the NMR dynamics assuming no relaxation is present.

Theorem 3. Consider the system (NR). Let x ∈ Cn, x 6= 0. Then:

1. O(x) = R(x) = Rad(x) = Rpc(x) = R∞(x), i.e., the set of states reachable from
x equals the orbit O(x) of the system (NR) through x. In particular, R(x) has the
structure of an immersed submanifold of Cn.

2. Let S‖x‖ be the sphere in Cn of radius ‖x‖. Let ∆ be the involutive distribution
generated by Az, N1z and N2z, z ∈ Cn. If dim∆(x) = n−1, then R(x) = O(x) =
S‖x‖.

Proof. (1) Since A, N1 and N2 are skew-hermitian this result follows from the
discussion on the controllability of nonlinear systems on Lie groups in [6] which
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guarantees that the set of reachable states from x equals the orbit through x. The
equality of the various sets of reachable states then follow from theorem 1.

(2) The assumptions on the system matrices imply that O(x) in part 1 is a sub-
set of S‖x‖. The additional assumption on the dimension of ∆(x) implies that O(x)
equals S‖x‖. �

Here, as in other parts of this paper, we also formulate the results for initial states
which are not constrained to have unit length. This is of course no restriction and may
be useful since in some parts of the NMR literature it is not assumed that the density
matrix is normalised.

We now address the problem of characterizing the set RT of the matrices T3

which determine the cross peak patterns in a two-dimensional experiment. As pointed
out in section 2, this problem is related to the problem of the characterization of the
set of reachable states of the system (MR).

Theorem 4. Consider the system (MR). Then:

1. RT = Rpc(I), where Rpc(I) is the set of reachable states with piecewise constant
inputs of the system (MR) from the identity matrix I .

2. Rad(I) and, hence, RT = Rpc(I) is contained in the immersed submanifold O(I)
of Cn×n. Here O(I) is the orbit of the system (MR) through the identity matrix I .

3. The interior int(RT ) of RT is non-empty. If I ∈ int(RT ), then

RT = Rad(I) = Rpc(I) = R∞(I).

4. There exists an open subset A of O(I) (open in the orbit topology of O(I)) which
is contained in RT .

Proof. (1) See section 2.
(2)–(4) These statements and proofs are analogous to those in theorems 2 and 1. �

As before, if it is assumed that relaxation can be neglected, stronger results can
be obtained also in the characterization of the set RT . Denote by U (n) the subset
of Cn×n of n × n unitary matrices. It is easily verified that if the initial condition
of this system is a unitary matrix then the state of the system will evolve in U (n).
The analysis of the system (MNR) is very similar to the analysis that was carried out
in [12].

Theorem 5. Consider the system (MNR). Then:

1.

RT = Rad(I) = Rpc(I) = R∞(I) = O(I).

In particular, RT has the structure of an immersed submanifold of U (n).
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2. Suppose that the unique connected Lie group G having the Lie algebra L generated
by the matrices A, N1 and N2 is compact; then

RT = R(I) = O(I) = G.

In particular, if the dimension of L is n2, then

RT = R(I) = O(I) = G = U (n).

Proof. (1) Since A, N1 and N2 are skew-hermitian, this follows from the discussion
on the controllability of nonlinear systems on Lie groups in [6] in conjunction with
theorem 1.

(2) The first part is the content of a theorem in [7]. The second part follows from
the fact that the dimension of the vector space of n × n (complex) skew-hermitian
matrices is n2. Hence, dimensional arguments imply that the Lie algebra generated by
the matrices A, N1 and N2 equals the Lie algebra of n× n skew-hermitian matrices.
Therefore G has to be U (n). �

Recall that it is possible to check whether the Lie group G is compact by checking
whether the Killing form of the Lie algebra L is negative definite. Alternatively, if
one knew in advance that G is closed, then G would be automatically compact.

Corollary 1. Consider system (NR) and the corresponding system (MNR). Let x ∈
Cn, x 6= 0. Let G be as in the theorem. If RT = G and G acts transitively on S‖x‖,
in particular, if G = U (n), then the set of reachable states R(x) of the system (NR)
from x is S‖x‖.

The proof of this corollary is based on an important observation, which gives a
second interpretation of the system (MNR). Explaining this point is not only of rele-
vance for an understanding of the proof of the corollary but may also lead to a further
clarification of the nature of the set RT of the matrices T3 that determine the cross-
peak patterns of a two-dimensional NMR spectrum. In fact, the system (MNR) also
describes the evolution of the infinitesimal generator corresponding to the system (NR)
that describes the dynamics of the NMR system. If the reachable set RMNR(I) of the
system (MNR) from the identity matrix equals some group G, then the reachable set
RNR(x0) of the system (NR) from the state x0 in the sphere S equals the orbit of the
group G through x0, i.e., RNR(x0) = {gx0 | g ∈ G}. Of course, except for some
special cases a simple description of the orbit is not possible. Nevertheless, this rep-
resents an improvement over the general situation. In the event that the group G turns
out to be a group acting transitively on S, then we can assert that for any x0 ∈ S the
reachable set from x0 is all of S, i.e., RNR(x0) = S. A complete list of the classical
matrix Lie groups which act transitively on the sphere is known and of course includes
U (n) and SU (n).
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4. Observability of NMR systems

Note that in general the pair (A, c) is not observable, i.e., there exist nonzero
vectors x such that cetAx = 0 for t > 0. Lack of observability implies that different
states in R(0) can give rise to the same spectrum. Let ker(O) be the kernel of the
observability map, where for x ∈ X, Ox := (cetAx)t>0, i.e., ker(O) is the subspace
of X of all unobservable states. Denote by PO the orthogonal projection of X onto
the orthogonal complement of ker(O) in X. Then for each x ∈ X and, in particular,
for each x ∈ R(0),

c(2πiωI −A)−1x = c(2πiωI −A)−1POx.

In particular, we therefore have that the one-dimensional spectra are parametrized by
POR(0).

In the case of two-dimensional systems, the experimenter can influence the re-
sulting spectrum by “choosing” T3 and e1. The set of attainable spectra in the setup
considered here is therefore given by{

c(2πiω1I −A)−1T3(2πiω2I −A)−1e1 | T3 ∈ RT (0), e1 ∈ R(0)
}
.

But as in the one-dimensional case we need to consider the possibility that the system
pair (A, c) is not observable. As above, let PO be the orthogonal projection onto the
orthogonal complement of the unobservable subspace of (A, c).

Dually, we need to consider the possibility that the pair (A, e1) is not reachable.
In fact, the experimenter may want to design e1 such that (A1, e1) is not reachable in
order to suppress parts of the spectrum of A. We need to recall further system theoretic
notions. We use definitions that are suitable for our context. A vector x is said to be
orthogonal to the reachable subspace of the pair (A, e1) if x(sI −A)−1e1 = 0 for all
s ∈ C. Let PU ,e1 be the orthogonal projection of Cn onto the orthogonal complement
of the reachable subspace of (A, e1) and let Pe1 | = I − PU ,e1 . Then the set of all
possible spectra is given by{

c(2πiω1I −A)−1POT3Pe1(2πiω2I −A)−1e1 | T3 ∈ RT , e1 ∈ R(0)
}
.

Hence two-dimensional spectra are parametrized by POT3Pe1 for T3 ∈ RT and e1 ∈
R(0).

We should point out that higher-dimensional spectra can be characterized in an
analogous fashion.
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