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A fundamental issue in NMR spectroscopy is the estimation of
parameters such as the Larmor frequencies of nuclei, J coupling
constants, and relaxation rates. The Cramer–Rao lower bound pro-
vides a method to assess the best achievable accuracy of parame-
ter estimates resulting from an unbiased estimation procedure. We
show how the Cramer–Rao lower bound can be calculated for data
obtained from multidimensional NMR experiments. The Cramer–
Rao lower bound is compared to the variance of parameter estimates
for simulated data using a least-squares estimation procedure. It is
also shown how our results on the Cramer–Rao lower bound can be
used to analyze whether an experimental design can be improved
to provide experimental data which can result in parameter esti-
mates with higher accuracy. The concept of nonuniform averaging
in the indirect dimension is introduced and studied in connection
with nonuniform sampling of the data. C© 2002 Elsevier Science (USA)

Key Words: nuclear magnetic resonance (NMR) spectroscopy;
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1. INTRODUCTION

Many, if not most, NMR spectroscopy exeriments involve
parameter estimation problems, for example for the determina-
1 To whom correspondence should be addressed.
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tion of Larmor frequencies, J coupling constants, and relaxation
parameters. The accuracy of the estimates of the spectral param-
eters which are obtained by NMR spectroscopy is becoming an
increasingly important issue, in particular in the determination
of high resolution protein structures. In many recently devel-
oped techniques the success of the experiment depends on be-
ing able to obtain highly accurate parameter estimates (see, e.g.,
(1–3)).

A fundamental result in statistics and signal processing, typ-
ically known as the Cramer–Rao lower bound (CRLB), gives
an explicit bound on the achievable accuracy of parameter es-
timation. The important aspect is that this result is independent
of the particular estimation method that is being used, provided
that this method is unbiased, i.e., that on average it will produce
the correct value. This means for example that the bound is inde-
pendent of whether time-domain or frequency-domain methods
are applied. What does influence this bound is the underlying
quality of the data, such as the type of noise, the noise level, the
number of data points, and the sampling method.

The availability of such a bound has a number of important
applications. For example, parameter estimation algorithms can
be evaluated and compared based on how closely they approach
this bound. Moreover, experimental designs can be compared to
determine which design produces a data set with lower Cramer–
Rao lower bound and will therefore allow the parameters to be
1090-7807/02 $35.00
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estimated more accurately. These considerations have of course
been central to endeavours of all experimentalists. The Cramer–
Rao lower bound adds an analytical tool that can be used to
evaluate the various approaches.

This paper is not the first to discuss the use of the Cramer–
Rao lower bound in the context of NMR spectroscopy. In
(4) and (5) it has been used for the investigation of one-
dimensional experiments. However, to the best of our knowl-
edge, this is the first paper that derives the Cramer–Rao lower
bound for multidimensional experiments, and in particular two-
dimensional (2D) experiments. Since multidimensional NMR
experiments are notoriously time-consuming it is especially im-
portant that those experiments are planned in such a way as to
produce data that allow the parameters to be estimated most
accurately.

In the main result of the paper (Section 2 and the Appendix)
the Fisher information matrix, i.e., the inverse of the Cramer–
Rao lower bound, is calculated for a general data model of a two-
dimensional NMR data set that allows for an arbitrary number
of resonances. The data are assumed to be corrupted by additive
Gaussian noise. Aside from the presentation of this main result
our objective is to illustrate how this result can be used in the
context of two-dimensional NMR spectroscopy. To this end we
carefully investigate the Cramer–Rao lower bound for simple
example systems. Considering the significant role that the Fisher
information matrix and Cramer–Rao lower bound have played
in other areas we are confident that the potential uses of the
Cramer–Rao lower bound go well beyond the few applications
that we have space to discuss here.

In Section 3 we discuss the relation between a nonlinear least
squares estimation problem and the Cramer–Rao lower bound.
In particular we show that in the case of an example data set a
nonlinear least squares estimatation procedure can produce or
come very close to producing parameter estimates whose covari-
ance matrix equals the Cramer–Rao lower bound. This implies
that the performance of a parameter estimation algorithm can be
evaluated using the Cramer–Rao lower bound. First, the qual-
ity of an alternative algorithm can be compared to the existing
one by investigating how close the alternative algorithm comes
to achieving the same (low) covariance matrix of the parame-
ter estimates, knowing for theoretical reasons that none can be
found that improves on the Cramer–Rao lower bound. Second,
it can serve to detect convergence problems of an algorithm. A
notorious problem in the use of nonlinear estimation routines for
parameter estimation in NMR applications is that the estimates
may not converge fully to the correct estimates or that the esti-
mates may converge to an incorrect value due to local minima of
the criterion function. If the estimation procedure is initialized
with different initial conditions the estimate of the covariance
matrix of the parameter estimates can be determined. If this co-
variance estimate is significantly different from the Cramer–Rao
lower bound, it is an indication that either the algorithm is far

from optimal or that serious convergence problems exist, e.g.,
due to local minima.
T AL.

A second and possibly even more important use of the
Cramer–Rao lower bound in NMR spectroscopy lies in its use
as an analytical tool for experiment design (Section 4). The
Cramer–Rao lower bound promises to be a particularly power-
ful tool for the analysis of experimental designs for multidimen-
sional NMR experiments. The extensive experimental time that
is required makes careful design of the experiment an impor-
tant consideration. Since in many cases the purpose of an NMR
experiment is to obtain estimates of certain parameters, it is the
accuracy of these parameters that is a prime concern in the design
of an experiment. The Cramer–Rao lower bound and therefore
the best achievable covariance properties of the estimates depend
crucially on the experimental situation. The parameters that are
given by the sample and the available equipment, e.g., frequen-
cies of the resonances and interconnectivity patterns, typically
have to be assumed to be fixed. On the other hand, many other
experimental parameters such as the number of data points that
are acquired and the sampling scheme can be adjusted. Even the
signal-to-noise ratio is adjustable by either changing the con-
centration of the sample or by averaging a number of identical
scans. Limitations on material and experimental time put seri-
ous constraints on the experimental design. The problem there-
fore arises to find and evaluate various experimental designs.
The Cramer–Rao lower bound provides a powerful tool for this
purpose.

We should point out that it is not the intention of this paper
to advocate one experimental design over another. The Cramer–
Rao lower bound allows the spectroscopist to quantitatively eval-
uate the tradeoffs of the various designs from the point of view
of the expected variance of the parameter estimates. In a con-
crete situation it is easily conceivable that the spectroscopist will
take other criteria into consideration that are not reflected in the
Cramer–Rao lower bound. An experienced spectroscopist may
have a good understanding of the qualitative benefits of one ex-
perimental design over another. We believe, however, that the
availability of a powerful quantitative tool will be of value in
many practical circumstances.

As part of the discussion on experimental design we also
investigate what we believe to be the novel notion of nonuniform
averaging.

2. ANALYTICAL EXPRESSION FOR THE FISHER
INFORMATION MATRIX

In this section the Cramer–Rao lower bound is derived for 2D
NMR data sets. First, a very general data model is introduced
for two-dimensional NMR experiments. For this data model the
Fisher information matrix, i.e., the inverse of the Cramer–Rao
lower bound, is derived (see Appendix A.1 for the derivation
and Appendix A.2 for a complete listing of the result). As an
illustration, in a subsequent example these results are specialized

for a small example data set. We now specify the assumptions
on the data sets that we are considering. The data of a 2D NMR
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experiment is described as (6–8)

s(n, m) =
K∑

k=1

L∑
l=1

ckle
iφkl e(iω1k+r1k )tn+(iω2l+r2l )sm + ε(n, m)

=
K∑

k=1

L∑
l=1

ckle
r1k tn+r2l sm ei(ω1k tn+ω2l sm+φkl ) + ε(n, m)

=
K∑

k=1

L∑
l=1

ckle
r1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

+ Re(ε(n, m)) + i

(
K∑

k=1

L∑
l=1

ckle
r1k tn+r2l sm

× sin(ω1k tn + ω2l sm + φkl) + Im(ε(n, m))

)
,

with 0 ≤ t1 < t2 < · · · < tn < · · · < tN , 1 ≤ n ≤ N , and
0 ≤ s1 < s2 < · · · < sm < · · · < sM , 1 ≤ m ≤ M . Here
ckl , ω1k, ω2l , r1k, r2l , and φkl are real constants. They are re-
spectively the amplitudes, the angular frequencies, the damping
factors, and the phases. The noise component ε(n, m) is assumed
to be complex Gaussian, with zero mean. The real and imaginary
parts are assumed to have variance σ 2

m and to be independent and
uncorrelated; i.e., var(Re(ε(n, m))) = var(Im(ε(n, m))) = σ 2

m
and E(Re(ε(n, m))Im(ε(n, m))) = 0. The noise-free signal is
denoted by

g(n, m) : =
K∑

k=1

L∑
l=1

ckle
r1k tn+r2l sm ei(ω1k tn+ω2l sm+φkl )

= s(n, m) − ε(n, m).

Note that we have not assumed that the variance of the noise
in the indirect dimension is identical for each increment. This
will be analyzed further in Section 4. We also allow for nonuni-
form sampling in our setup in both the direct and the indirect
dimensions.

Using the well-known description of the probability distribu-
tion function of Gaussian noise we can write down the proba-
bility distribution function p(x, 	) (	 is the parameter vector)
of an acquired sample (x(n, m))1≤n≤N ;1≤m≤M of the data as

p(x, 	) =
N∏

n=1

M∏
m=1

1√
2πσ 2

m

e
− 1

2σ2
m

(Re(x(n,m))−Re(g(n,m)))2
× 1√
2πσ 2

m

e
− 1

2σ2
m

(Im(x(n,m))−Im(g(n,m)))2

.

PARAMETER ESTIMATION 3

The log-likelihood function is therefore

ln(p(x, 	)) =
N∑

n=1

M∑
m=1

[
− ln(2π ) − 2 ln(σm)

− 1

2σ 2
m

(Re(x(n, m)) − Re(g(n, m)))2

− 1

2σ 2
m

(Im(x(n, m)) − Im(g(n, m)))2

]
.

The Fisher information matrix is defined as

F(	) =
[
−E

∂2 ln p(x, 	)

∂	i∂	 j

]
1≤i, j≤P

,

where E stands for taking the expectation and the parameter
vector 	 is given by

	 = (θ1θ2 · · · θP ).

For any unbiased estimator 	̂ = (θ̂1θ̂2 · · · θ̂ P ) of the parameter
vector 	 we then have that the Cramer–Rao lower bound is
given by (see, e.g., (9))

var(θ̂i ) ≥ [F−1(	)]i i .

An important result of the paper is that the entries of the Fisher
information matrix can be computed analytically for the 2D
NMR data given above. This result is presented in the Appendix.

In Section A.1 we also show how to derive several of the
entries of the Fisher information matrix. The results presented
in the Appendix address the relatively general case for two-
dimensional NMR experiments that was introduced above. Spe-
cific practical situations may require a somewhat different set-
ting. Expressions for the higher dimensional NMR experiments
can be derived analogously. Similarly, for example, if certain
parameters are known, this information can be included in a
relatively straightforward fashion. Another situation that may
present itself is when the parameters that are discussed here are
not the ones that are being sought but a transformation of these
parameters is the actual interest of the experiment. For example,
it may be a frequency shift that is to be estimated rather than the
actual frequency. In this case a standard transformation result is
of use (see, e.g., (9)).

2.1. Example

The above derived expressions of the Fisher information ma-
trix for the general data model are rather lengthy. To illustrate the
results we therefore specialize the expressions for a relatively

simple situation. For the special case of one (not necessarily
identical) resonance in the direct and indirect dimensions, i.e.,
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the case K = L = 1, the data are given by

s(n, m) = c11eiφ11 e(iω11+r11)tn+(iω21+r21)sm + ε(n, m)

= c11er11tn+r21sm ei(ω11tn+ω21sm+φ11) + ε(n, m)

= c11er11tn+r21sm cos(ω11tn + ω21sm + φ11)

+ Re(ε(n, m))

+ i(c11er11tn+r21sm sin(ω11tn + ω21sm + φ11)

+ Im(ε(n, m))).

We assume that all six parameters c11, r11, r21, ω11, ω21, and φ11

are unknown.
Specializing the formulae in Appendix A.2 we can obtain

the entries of the 6 × 6 Fisher information matrix F(	). If the
parameter vector 	 is given by

	 = (c11, r11, r21, ω11, ω21, φ11)

then the entries of the symmetric Fisher information matrix are

F(1, 1) = −E
∂ ln2(p(x, 	))

∂c2
11

=
N∑

n=1

M∑
m=1

1

σ 2
m

e2(r11tn+r21sm ),

F(2, 2) = −E
∂ ln2(p(x, 	))

∂r2
11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )t2

n ,

F(3, 3) = −E
∂ ln2(p(x, 	))

∂r2
21

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )s2

m,

F(4, 4) = −E
∂ ln2(p(x, 	))

∂ω2
11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )t2

n ,

F(5, 5) = −E
∂ ln2(p(x, 	))

∂ω2
21

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )s2

m,

F(6, 6) = −E
∂ ln2(p(x, 	))

∂φ2
11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm ),

F(1, 2) = F(2, 1) = −E
∂ ln2(p(x, 	))

∂c11∂r11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c11e2(r11tn+r21sm )tn,

F(1, 3) = F(3, 1) = −E
∂ ln2(p(x, 	))

∂c11∂r21
=
N∑

n=1

M∑
m=1

1

σ 2
m

c11e2(r11tn+r21sm )sm,
T AL.

F(1, 4) = F(4, 1) = −E
∂ ln2(p(x, 	))

∂c11∂ω11
= 0,

F(1, 5) = F(5, 1) = −E
∂ ln2(p(x, 	))

∂c11∂ω21
= 0,

F(1, 6) = F(6, 1) = −E
∂ ln2(p(x, 	))

∂c11∂φ11
= 0,

F(2, 3) = F(3, 2) = −E
∂ ln2(p(x, 	))

∂r11∂r21

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )tnsm,

F(2, 4) = F(4, 2) = −E
∂ ln2(p(x, 	))

∂r11∂ω11
= 0,

F(2, 5) = F(5, 2) = −E
∂ ln2(p(x, 	))

∂r11∂ω21
= 0,

F(2, 6) = F(6, 2) = −E
∂ ln2(p(x, 	))

∂r11∂φ11
= 0,

F(3, 4) = F(4, 3) = −E
∂ ln2(p(x, 	))

∂r21∂ω11
= 0,

F(3, 5) = F(5, 3) = −E
∂ ln2(p(x, 	))

∂r21∂ω21
= 0,

F(3, 6) = F(6, 3) = −E
∂ ln2(p(x, 	))

∂r21∂φ11
= 0,

F(4, 5) = F(5, 4) = −E
∂ ln2(p(x, 	))

∂ω11∂ω21

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )tnsm,

F(4, 6) = F(6, 4) = −E
∂ ln2(p(x, 	))

∂ω11∂φ11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )tn,

F(5, 6) = F(6, 5) = −E
∂ ln2(p(x, 	))

∂ω21∂φ11

=
N∑

n=1

M∑
m=1

1

σ 2
m

c2
11e2(r11tn+r21sm )sm .

Note that in fact the Fisher information matrix has a number of
repeated entries. If we set

a := F(1, 1), b := F(2, 1), c := F(1, 3),

d := F(2, 2), e := F(2, 3), f := F(3, 3),
g := F(4, 6), h := F(5, 6), z := F(6, 6),
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we have that the Fisher information matrix F(	) is given by

F(	) =




a b c 0 0 0
b d e 0 0 0
c e f 0 0 0

0 0 0 d e g

0 0 0 e f h

0 0 0 g h z




.

Note that this matrix is block diagonal, which has interesting
consequences for the Cramer–Rao lower bound. The Cramer–
Rao lower bound is given by the diagonal elements of the inverse
of F(	),

CRLBi = [F(	)−1]i i =
[

R 0
0 Q

]
i i

,

where

R = 1

−ae2 + 2bce − b2 f − c2d + a f d

·

−e2 + f d ce − b f −cd + eb

ce − b f −c2 + a f bc − ae
−cd + eb bc − ae −b2 + ad




Q = 1

d f z − dh2 − e2z + 2geh − g2h

·

 f z − h2 −ez + gh eh − g f

−ez + gh dz − g2 ge − dh
eh − g f ge − dh d f − e2


 .

3. CRAMER–RAO LOWER BOUND
AND PARAMETER ESTIMATION

As was discussed in Section 2 the Cramer–Rao lower bound
provides a lower bound for the variance of any parameter es-
timate given by an unbiased estimation procedure. One of the
ways in which this bound can be used is to evaluate the perfor-
mance of an estimation algorithm. Clearly, by the fundamental
result the variance of an unbiased estimator cannot be lower
than the Cramer–Rao lower bound. However, it is not a pri-
ori obvious that there are algorithms that attain this bound. We
will illustrate this with an example that a least square estima-
tion procedure attains or at least comes close to attaining the
bound.

Consider the case of two (not necessarily identical) reso-

nances in the direct and indirect dimensions, respectively; i.e.,
the case K = L = 2, for which the data are given by
PARAMETER ESTIMATION 5

s(n, m) =
2∑

k=1

2∑
l=1

ckle
r1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

+ Re(ε(n, m)) + i

(
2∑

k=1

2∑
l=1

ckle
r1k tn+r2l sm

× sin(ω1k tn + ω2l sm + φkl) + Im(ε(n, m))

)
.

For this example, we assume that all 16 parameters are ordered
into the following parameter vector

	 = (c11, c12, c21, c22, r11, r12, r21, r22, ω11, ω12,

ω21, ω22, φ11, φ12, φ21, φ22).

For the purpose of illustration, we fix the values of the param-
eter vector as

	0 = (.15, .22, .12, .13, −.1, −.35, −.15, −.45,

1.445, 2.136, 2.702, .88, .683, 1.366, 2.4167, .982).

Gaussian noise is then added to the signal. The noisy signal is
uniformly sampled with 1024 samples in the direct and 32 sam-
ples in the indirect dimension (see Fig. 1 for a plot of a trace of the
noisy 2D data set with a −20-dB noise level). To demonstrate the
validity of the Cramer–Rao lower bound, we choose five differ-
ent noise levels (−10, −20, −30, −40, −50 dB, respectively).
The noise level is defined as follows. If the simulated Gaussian
white noise has zero mean and variance σ 2 then the noise level
in dB is defined by 10 log10(σ 2) = 20 log10(σ ).

For each noise level, we estimate the parameters from the sim-
ulated data using a nonlinear least-squares estimation procedure,

0 200 400 600 800 1000 1200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
FIG. 1. The real part of the first trace of a 1024 × 32 2D data set with noise
level at −20 dB.



ET
6 OBER

−55−50−45−40−35−30−25−20−15−105
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Noise Level [dB]

FIG. 2. Comparison of lower bound obtained for CRLB for the variance
estimate of ω11 (solid line -�-) with estimated variance based on nonlinear
least-squares parameter estimate (×) for five noise levels (−10, −20, −30, −40,

−50 dB).

and the number of Monte Carlo runs is set to 50. When running
the nonlinear least-squares optimization algorithm, we start with
a random initial estimate vector in the neighborhood of the real
parameter vector. The least-squares optimization routine was
coded in Matlab (10) using the optimization toolbox in a straight-
forward way.

In Fig. 2 we show a comparison of the bound for the variance
obtained from the Cramer–Rao lower bound for the parame-
ter ω11 and the estimated parameter based on the least-squares
estimates. The comparison is shown for the five noise levels
−10, −20, −30, −40, −50 dB, respectively. The plot shows a
high level of agreement. Full agreement cannot be expected since
finite sample effects are unavoidable for the estimated variances.
These finite sample effects could also result in the estimated
variance being even lower than the CRLB. The plots also show
that the variance of the estimates decreases with decreasing noise
level of the data.

In Fig. 3 the full 16 × 16 matrix for the CRLB is shown for
a noise level of −20 dB. The diagonal terms provide a lower
bound for the variances of the corresponding parameter. For ex-
ample 9.5 · 10−6 which is the (9, 9) entry of the CRLB matrix
provides a lower bound for the variance of any unbiased estimate
of the 9th parameter in the parameter vector, i.e., for θ9 = ω11.
The off-diagonal terms provide information on the covariance
between the parameter estimates for two different parameters.
For example, the fact that the (1, 13) entry is very small indi-
cates that the parameter estimates for θ11 and c11 are essentially
uncorrelated, i.e., independent of one another. In Fig. 4 the esti-

mated variance matrix is presented based on the simulations and
estimation procedure discussed above. The agreement between
AL.
FIG. 3. Cramer–Rao lower bound matrix for 2D NMR data set in Section 3
with noise level −20 dB.
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FIG. 4. Variance matrix for parameter estimates based on simulations of
2D NMR data set in Section 3 with noise level −20 dB.
PARAMETER ESTIMATION 7

the two matrices is good, also taking into consideration the finite
sample effects that were discussed above.

4. EXPERIMENT DESIGN USING THE CRAMER–RAO
LOWER BOUND

In the previous section we have seen that the Cramer–Rao
lower bound is essentially attained by a least-squares parame-
ter estimation method. In this section we investigate how the
Cramer–Rao lower bound can be used to give insights into how
the experimental design influences the accuracy with which the
parameters can be estimated. We follow the approach discussed
earlier that a reduced variance of an unbiased parameter estimate
is interpreted as a more accurate estimate. An experimental de-
sign can then be analyzed by computing the Cramer–Rao lower
bound for the data set that will result from the implementation of
the experimental design. A decreased Cramer–Rao lower bound
would then lead to a parameter estimate that has increased accu-
racy assuming that a parameter estimation method is available
that attains the bound, as was shown to exist for the example
discussed in Section 3.

In the following two sections we will be looking at two ex-
amples of such considerations. The first shows how the CRLB
could be used to evaluate whether nonuniform sampling might
improve the accuracy of the estimates. The second shows how
to evaluate averaging schemes of traces in 2D experiments. It
should be pointed out that our main concern is not to advocate
certain experimental designs, such as nonuniform sampling over
uniform sampling. Our interest is to provide a tool to the experi-
mentalist that allows the experimentalist to decide in quantitative
terms which experimental design is superior from the point of
view of minimizing the Cramer–Rao lower bound.

These two applications are only a small number of the po-
tential uses of the Cramer–Rao lower bound to evaluate exper-
imental designs. They should, however, give a good indication
for the type of analysis that is possible. For ease of presentation
we again use a relatively simple data model. The same approach
could be used to investigate more general data models.

4.1. Nonuniform Sampling

The question as to whether nonuniform sampling is to be
preferred over uniform sampling has been addressed by various
authors (see, e.g., (11) for a textbook treatment). Here we do not
wish to advocate a new sampling scheme. However, we would
like to show how our results on the CRLB can be used to evaluate
various schemes.

We again consider the 2D example of Section 3. For this ex-
ample we are going to consider uniform and nonuniform sam-
pling in the direct and indirect dimensions. We first consider
the sampling process in the indirect dimension. For the uniform

sampling scheme the following 16 sampling points are chosen
with sampling interval t = 1.54 as (0.00 1.54 3.07 4.61 6.14
7.68 9.21 10.75 12.28 13.82 15.35 16.89 18.42 19.96 21.49
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TABLE 1
CRLB for Different Sampling Methods

u|u n|u n|n
c11 5.923e-05 4.534e-05 2.655e-05
c12 1.220e-04 8.709e-05 4.619e-05
c21 8.925e-05 7.332e-05 4.244e-05
c22 1.852e-04 1.417e-04 7.341e-05
r11 1.842e-05 2.355e-05 1.147e-05
r12 1.459e-03 1.167e-03 6.827e-04
r21 7.548e-05 5.347e-05 6.197e-05
r22 4.580e-04 2.715e-04 1.834e-04
ω11 1.842e-05 2.355e-05 1.147e-05
ω12 1.459e-03 1.167e-03 6.827e-04
ω21 7.548e-05 5.347e-05 6.197e-05
ω22 4.580e-04 2.715e-04 1.834e-04
θ11 2.632e-03 2.015e-03 1.180e-03
θ12 2.521e-03 1.799e-03 9.543e-04
θ21 6.198e-03 5.092e-03 2.947e-03
θ22 1.096e-02 8.385e-03 4.344e-03

Note. u|u (n|n) stands for (non)uniform sampling in both dimensions; n|u
stands for nonuniform sampling in the indirect dimension and nonuniform sam-
pling in the direct dimension. The precise sampling scheme is explained in the
text.

23.03). The nonuniform sampling points have been determined
following an exponential scheme discussed in (11) with

t j+1 = −e−Lt j − 1−e−LT

M−1

L
, j = 1, 2, . . . , M − 1,

where t1 = 0, L = 0.1, T = 23.03, and M = 16 for getting the
nonuniform sample points in the indirect dimension in this ex-
ample. These samples are given by (0.00 0.62 1.28 1.98 2.74
3.57 4.46 5.45 6.54 7.77 9.16 10.79 12.73 15.14 18.33 23.03).

In the direct dimension the 1024 sampling points were sam-
pled in the uniform case at a sampling interval ofs = 0.015. For
the nonuniform sampling scheme the data points were generated
using an exponential scheme given by a formula similar to the
above one for t j+1 except that now L = 1.15, T = 15.35, and
M = 1024.

In Table 1 the results of the corresponding Cramer–Rao lower
bound calculations are summarized. It follows clearly that by in-
troducing the above discussed non-uniform sampling the CRLB
is generally decreased. Ignoring other possible considerations
such as ease of parameter estimation, this shows that the exper-
imental design based on using the given nonuniform sampling
schemes for both dimensions will produce the best data amongst
the three experimental designs that were analyzed. The term best
data set is used here to indicate the data set that allows for the
most precise estimation of the underlying parameters as assessed
by the CRLB, amongst the data sets that are being considered.
It might be intuitively clear that the presented nonuniform sam-
pling scheme is superior to the uniform sampling scheme for the

given data set. The value of using the Cramer–Rao lower bound
to evaluate the different sampling strategies lies in the fact that a
precise quantitative evaluation for the various strategies is pos-
T AL.

sible. In practice the spectroscopist would have to weigh the
established benefits of the nonuniform sampling scheme against
other considerations that are not addressed by the Cramer–Rao
lower bound such as the fact that nonuniformly sampled data
cannot be processed by the standard Fourier transform-based
methods to obtain a spectrum.

4.2. Averaging to Improve Parameter Estimation Accuracy

Experimental time is at a premium in NMR spectroscopy, in
particular for multidimensional experiments. The experimental
time is directly proportional to the number of scans that are ac-
quired. The signal-to-noise ratio is often improved by averaging
scans. This amounts to changing the variance σ 2

m in the noise de-
scription. Note that if σ 2

m is constant for all m, i.e., σ 2 := σ 2
m , for

m = 1, 2, . . . , it follows from the expressions for the Cramer–
Rao lower bound in the Appendix that the Cramer–Rao lower
bound is proportional to σ 2. This shows that uniformly lowering
the noise level will lead to an improvement in the bound on the
variance of the parameter estimates by an equal amount.

The question that will be addressed now to illustrate the po-
tential use of the Cramer–Rao lower bound is whether it can, for
example, be beneficial to average more scans for low increment
numbers rather than averaging the same number of scans for
each increment. In Table 2 the results of CRLB calculations are
summarized for our standard 2D example system (see Section 3)
with 16 being the size of the indirect dimension. Two averaging
schemes were considered. The first is the traditional scheme in
which for each increment in the indirect dimension a fixed num-
ber of repeated experiments (in our case 16) are acquired and
then averaged. Since in our example the indirect dimension has
16 increments this amounts to a total of 256 acquired traces. In
the second scheme we propose to acquire an unequal number of

TABLE 2
CRLB for Different Sampling and Weighting Methods

u|u UA n|u UA n|u NA n|n NA

c11 3.702e-06 2.834e-06 2.569e-06 1.471e-06
c12 7.627e-06 5.443e-06 4.680e-06 2.483e-06
c21 5.578e-06 4.583e-06 3.677e-06 2.096e-06
c22 1.158e-05 8.856e-06 6.894e-06 3.597e-06
r11 1.151e-06 1.472e-06 2.184e-06 1.062e-06
r12 9.118e-05 7.296e-05 6.683e-05 3.900e-05
r21 4.718e-06 3.342e-06 2.440e-06 2.829e-06
r22 2.863e-05 1.697e-05 1.113e-05 7.524e-06
ω11 1.151e-06 1.472e-06 2.184e-06 1.062e-06
ω12 9.118e-05 7.296e-05 6.683e-05 3.900e-05
ω21 4.718e-06 3.342e-06 2.440e-06 2.829e-06
ω22 2.863e-05 1.697e-05 1.113e-05 7.524e-06
θ11 1.645e-04 1.259e-04 1.142e-04 6.540e-05
θ12 1.576e-04 1.125e-04 9.670e-05 5.130e-05
θ21 3.874e-04 3.182e-04 2.553e-04 1.456e-04
θ22 6.850e-04 5.240e-04 4.079e-04 2.129e-04

Note. u|u (n|n) stands for (non)uniform sampling in both dimensions; n|u

stands for nonuniform sampling in the indirect dimension and uniform sampling
in the direct dimension. UA (NA) stands for (non)uniform averaging in the first
dimension. The precise sampling and weighting scheme is explained in the text.
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a nonuniform averaging scheme for traces. This was also inves-
ACHIEVABLE ACCURACY O

traces per increment. In this nonuniform averaging scheme we
propose to again acquire 256 scans for the 2D experiment but we
acquire and average 29 traces for the first increment, 27 traces
for the second increment, 26 for the third, etc. The list of num-
bers of traces for all the increments is given by 29, 27, 26, 24, 22,
20, 19, 17, 15, 13, 12, 10, 8, 6, 5, 3. In the noise description for
a two-dimensional data set we allowed each column s(n, m)n≥1

to have a different variance σ 2
m , m ≥ 1. This means that our

proposed averaging scheme can be easily incorporated in the
general data model. If an acquired trace has variance σ 2 then
the average of k traces will have variance σ 2/k. This means, for
example, that in our case the variance σ 2

1 for the first increment
will be σ 2

1 = σ 2/29.
Four different experimental designs have been considered, in

which uniform averaging and nonuniform averaging have been
combined with uniform and nonuniform sampling. The results in
Table 2 show that a combination of the above discussed nonuni-
form averaging scheme with the nonuniform sampling schemes
introduced in Section 4.1 produces a reduction in the CRLB for
the various parameters by a factor of about 3.

An issue that needs to be addressed in the context of experi-
mental design is that in practice the parameters of a system are
often not known and the purpose of the experiment is to estimate
these unknown parameters. We believe that the presented results
can nevertheless be of importence in practice. First, in many
situations the experimentalist has a relatively good knowledge

of the ranges within which the parameters can be expected to
lie. An experimental design can then be evaluated using expected

APPENDIX: THE ENTRIES OF THE FISHER INFORMATION MATRIX

A.1. Derivation of Entries of Fisher Information Matrix

We are here going to show how to derive the entries for a few cases. The other entries are derived similarly and the results are
listed below.

To compute the entries of the Fisher information matrix the second order partial derivatives of ln p(x, 	) have to be calculated.
The first order partial derivatives are given by

∂ ln(p(x, 	))

∂ckl
=

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))er1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))er1k tn+r2l sm sin(ω1k tn + ω2l sm + φkl),

∂ ln(p(x, 	))

∂r1k
=

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))
L∑

v=1

ckver1k tn+r2vsm cos(ω1k tn + ω2vsm + φkv)tn

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))
L∑

v=1

ckver1k tn+r2vsm sin(ω1k tn + ω2vsm + φkv)tn

=
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

tigated in conjunction with nonuniform sampling to show that
an improved CRLB can be obtained for the examined system.
+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(
PARAMETER ESTIMATION 9

parameters. Such an approach would give the experimentalist a
good indication about which parameters are difficult and which
are less difficult to estimate. Moreover, a preliminary experiment
could be carried out to obtain this initial information. Based on
the preliminary results a careful experimental design could be
developed for a full experiment that is aimed to very precisely
estimate the required parameters.

5. CONCLUSIONS

Classical statistical results show that the Cramer–Rao lower
bound provides a lower bound for the variance of a parameter
estimation scheme, provided it is unbiased, i.e., provided that
on average it produces the correct results. Here we have shown
that the CRLB can be calculated explicitly for a parameter es-
timation problem for a general 2D NMR data set. Using Monte
Carlo type simulations we have shown for a simulated example
that the variance of estimates using a nonlinear least-squares
parameter estimation algorithm in fact attain this bound. It
was also shown how the developed results can be applied
to study questions of experimental design. Using example
systems we used our CRLB results to show that a certain
nonuniform sampling scheme in fact produces superior results
over the uniform sampling scheme that was considered. We
also introduced (for the first time to the best of our knowledge)
n, m)))tner1k tn
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv),
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∂ ln(p(x, 	))

∂r2l
=

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))smer2l sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))smer2l sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul),

∂ ln(p(x, 	))

∂ω1k
= −

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv),

∂ ln(p(x, 	))

∂ω2l
= −

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))smer2l sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))smer2l sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul),

∂ ln(p(x, 	))

∂φkl
= −

N∑
n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))ckle
r1k tn+r2l sm sin(ω1k tn + ω2l sm + φkl)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))ckle
r1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl),

Based on the above first order partial derivatives, we can continue to derive all the second order partial derivatives. However, since
the derivation is long and tedious, we only give a few examples here. In particular, as to be illustrated in the following, we have to
derive separately second order partial derivatives such as (∂ ln2(p(x, 	)))/(∂r2

1k) and (∂ ln2(p(x, 	)))/(∂r1k∂r1p) (k �= p) since they
are different from each other. However, after taking the expectation as required for the Fisher information matrix, it is often possible
to use a general expression. For example, although we are unable to arrive at a unified expression (∂ ln2(p(x, 	)))/(∂r1k∂r1p) that
would cover both cases k = p and k �= p, we are able to derive a unified expression E((∂ ln2(p(x, 	)))/(∂r1k∂r1p)) that does cover
both cases k = p and k �= p.

∂ ln2(p(x, 	))

∂r2
1k

= ∂

∂r1k

{
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

}

=
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tn
∂

∂r1k
{er1k tn }

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂r1k
{(Re(x(n, m)) − Re(g(n, m)))} tner1k tn

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tn
∂

∂r1k
{er1k tn }

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)
+
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂r1k
{(Im(x(n, m)) − Im(g(n, m)))} tner1k tn

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)



ACHIEVABLE ACCURACY OF PARAMETER ESTIMATION 11

=
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))t2
n er1k tn

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e2r1k tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)2

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))t2
n er1k tn

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e2r1k tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)2

.

On the other hand for k �= p,

∂ ln2(p(x, 	))

∂r1k∂r1p
= ∂

∂r1p

{
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

}

=
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂r1p
{(Re(x(n, m)) − Re(g(n, m)))} tner1k tn

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂r1p
{(Im(x(n, m)) − Im(g(n, m)))} tner1k tn

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

= −
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)
·
(

L∑
v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv)

)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)
·
(

L∑
v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

)
.

It is not possible to consider (∂ ln2(p(x, 	)))/(∂r1k∂r1p) in a unified fashion for both cases k = p and k �= p. By taking the
expectation, we have for the case p = k that

E
∂ ln2(p(x, 	))

∂r2
1k

= −
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e2r1k tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)2

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e2r1k tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)2

,

and for k �= p

E
∂ ln2(p(x, 	))

∂r1k∂r1p
= −

N∑
n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)
( )
·
L∑

v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv)
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−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

)
.

The above two expressions can be unified using a single expression:

E
∂ ln2(p(x, 	))

∂r1k∂r1p
= −

N∑
n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv)

)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

)
,

where k can be equal to p and also be different from p.
Two more second order partial derivatives are derived in the following.

∂ ln2(p(x, θ ))

∂c2
kl

= ∂

∂ckl

{
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))er1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))er1k tn+r2l sm sin(ω1k tn + ω2l sm + φkl)

}

=
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂ckl
{(Re(x(n, m)) − Re(g(n, m)))} er1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

+
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂ckl
{(Im(x(n, m)) − Im(g(n, m)))} er1k tn+r2l sm sin(ω1k tn + ω2l sm + φkl)

= −
∑

n

∑
m

1

σ 2
m

e2(r1k n+r2l m) cos2(ω1kn + ω2lm + φkl) −
∑

n

∑
m

1

σ 2
m

e2(r1k n+r2l m) sin2(ω1kn + ω2lm + φkl)

= −
∑

n

∑
m

1

σ 2
m

e2(r1k n+r2l m).

∂ ln2(p(x, 	))

∂r1k∂ω2l
= ∂

∂ω2l

{
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tner1k tn
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

}

=
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tner1k tn
∂

∂ω2l

{
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

}

N∑ M∑ L∑

+

n=1 m=1

1

σ 2
m

∂

∂ω2l
{(Re(x(n, m)) − Re(g(n, m)))}tner1k tn

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)
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+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tner1k tn
∂

∂ω2l

{
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

}

+
N∑

n=1

M∑
m=1

1

σ 2
m

∂

∂ω2l
{(Im(x(n, m)) − Im(g(n, m)))} tner1k tn

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

= −
N∑

n=1

M∑
m=1

1

σ 2
m

(Re(x(n, m)) − Re(g(n, m)))tnsmckle
r1k tn+r2l sm sin(ω1k tn + ω2l sm + φkl)

+
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

+
N∑

n=1

M∑
m=1

1

σ 2
m

(Im(x(n, m)) − Im(g(n, m)))tnsmckle
r1k tn+r2l sm cos(ω1k tn + ω2l sm + φkl)

−
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv).

Other second order partial derivatives can be similarly derived, but are omitted here to save space.

A.2. List of Entries of Fisher Information Matrix

Using the notation of Section 2, and taking the expectation of the second order partial derivatives derived in the previous section
of the Appendix, we here list the entries of the Fisher information matrix for the data analysis of 2D NMR data sets discussed in
Section 2.

E
∂ ln2(p(x, 	))

∂ckl∂cpq
= −

N∑
n=1

M∑
m=1

1

σ 2
m

e(r1k+r1p)tn+(r2l+r2q )sm · cos((ω1k−ω1p)tn + (ω2l − ω2q )sm + (φkl − φpq )),

E
∂ ln2(p(x, 	))

∂r1k∂r1p
= −

N∑
n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv)

)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

)
.

E
∂ ln2(p(x, 	))

∂r2l∂r2q
= −

N∑
n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

(
K∑

u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul)

)

(
K∑ )
·
u=1

cuqer1u tn cos(ω1utn + ω2qsm + φuq )
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−
N∑

n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

(
K∑

u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul)

)

·
(

K∑
u=1

cuqer1u tn sin(ω1utn + ω2qsm + φuq )

)
.

E
∂ ln2(p(x, 	))

∂ω1k∂ω1p
= −

N∑
n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

(
L∑

v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

)

·
(

L∑
v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv)

)
.

E
∂ ln2(p(x, 	))

∂ω2l∂ω2q
= −

N∑
n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

(
K∑

u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul)

)

·
(

K∑
u=1

cuqer1u tn sin(ω1utn + ω2qsm + φuq )

)

−
N∑

n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

(
K∑

u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul)

)

·
(

K∑
u=1

cuqer1u tn cos(ω1utn + ω2qsm + φuq )

)
.

E
∂ ln2(p(x, 	))

∂φkl∂φpq
= −

N∑
n=1

M∑
m=1

1

σ 2
m

cklcpqe(r1k+r1p)tn+(r2l+r2q )sm · cos((ω1k − ω1p)tn + (ω2l − ω2q )sm + (φkl − φpq )).

E
∂ ln2(p(x, 	))

∂ckl∂r1p
= −

N∑
n=1

M∑
m=1

L∑
v=1

1

σ 2
m

tncpve(r1k+r1p)tn+(r2l+r2v )sm · cos((ω1k − ω1p)tn + (ω2l − ω2v)sm + (φkl − φpv)).

E
∂ ln2(p(x, 	))

∂ckl∂r2q
= −

N∑
n=1

M∑
m=1

K∑
u=1

1

σ 2
m

smcuqe(r1k+r1u )tn+(r2l+r2q )sm · cos((ω1k − ω1u)tn + (ω2l − ω2q )sm + (φkl − φuq )).

E
∂ ln2(p(x, 	))

∂ckl∂ω1p
= −

N∑
n=1

M∑
m=1

L∑
v=1

1

σ 2
m

tncpve(r1k+r1p)tn+(r2l + r2v )sm · sin((ω1k − ω1p)tn + (ω2l − ω2v)sm + (φkl − φpv)).

E
∂ ln2(p(x, 	))

∂ckl∂ω2q
= −

N∑
n=1

M∑
m=1

K∑
u=1

1

σ 2
m

smcuqe(r1k+r1u )tn+(r2l + r2q )sm · sin((ω1k − ω1u)tn + (ω2l − ω2q )sm + (φkl − φuq )).
E
∂ ln2(p(x, 	))

∂ ckl∂φpq
= −

N∑
n=1

M∑
m=1

1

σ 2
m

cpqe(r1k+r1p)tn+(r2l+r2q )sm · sin((ω1k − ω1p)tn + (ω2l − ω2q )sm + (φkl − φpq )).
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E
∂ ln2(p(x, 	))

∂r1k∂r2l
= −

N∑
n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv) ·
K∑

u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul)

−
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv) ·
K∑

u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul).

E
∂ ln2(p(x, 	))

∂r1k∂ω1p
=

N∑
n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv) ·
L∑

v=1

cpver2vsm sin(ω1ptn + ω2vsm + φpv)

−
N∑

n=1

M∑
m=1

1

σ 2
m

t2
n e(r1k+r1p)tn

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv) ·
L∑

v=1

cpver2vsm cos(ω1ptn + ω2vsm + φpv).

E
∂ ln2(p(x, 	))

∂r1k∂ω2l
=

N∑
n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn + r2l sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv)

−
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn + r2l sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv).

E
∂ ln2(p(x, 	))

∂r1k∂φpl
= −

N∑
n=1

M∑
m=1

L∑
v=1

1

σ 2
m

tnckvcple
(r1k+r1p)tn+(r2l+r2v )sm · sin((ω1k − ω1p)tn + (ω2v − ω2l)sm + (φkv − φpl)).

E
∂ ln2(p(x, 	))

∂r2l∂ω1k
=

N∑
n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn + r2l sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv)

−
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn + r2l sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul) ·

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv),

E
∂ ln2(p(x, 	))

∂r2l∂ω2q
=

N∑
n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

K∑
u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul) ·

K∑
u=1

cuqer1u tn sin(ω1utn + ω2qsm + φuq )

−
N∑

n=1

M∑
m=1

1

σ 2
m

s2
me(r2l+r2q )sm

K∑
u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul) ·

K∑
u=1

cuqer1u tn cos(ω1utn + ω2qsm + φuq ),

E
∂ ln2(p(x, 	))

∂ r2l∂φkq
= −

N∑
n=1

M∑
m=1

K∑
u=1

1

σ 2
m

smckqcule
(r1k+r1u )tn + (r2l + r2q )sm · sin((ω1u − ω1k)tn + (ω2l − ω2q )sm + (φul − φkq )),

E
∂ ln2(p(x, 	))

∂ω1k∂ω2l
= −

N∑
n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

L∑
v=1

ckver2vsm sin(ω1k tn + ω2vsm + φkv) ·
K∑

u=1

cule
r1u tn sin(ω1utn + ω2l sm + φul)

−
N∑

n=1

M∑
m=1

1

σ 2
m

tnsmer1k tn+r2l sm

L∑
v=1

ckver2vsm cos(ω1k tn + ω2vsm + φkv) ·
K∑

u=1

cule
r1u tn cos(ω1utn + ω2l sm + φul),

E
∂ ln2(p(x, 	))

∂ω1k∂φpl
= −

N∑
n=1

M∑
m=1

L∑
v=1

1

σ 2
m

tnckvcple
(r1k+r1p)tn+(r2l+r2v )sm · cos((ω1k − ω1p)tn + (ω2v − ω2l)sm + (φkv − φpl)),

2 N M K
E
∂ ln (p(x, 	))

∂ω2l∂φkq
= −

∑
n=1

∑
m=1

∑
u=1

1

σ 2
m

smckqcule
(r1k+r1u )tn+(r2l+r2q )sm · cos((ω1k − ω1u)tn + (ω2q − ω2l)sm + (φkq − φul)),
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