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Abstract

The analysis of experimental data of exponential type plays a central role in many biophysical applications. We introduce a novel

noniterative algorithm to analyze the association phase and dissociation phase of surface plasmon resonance experiments. It is

shown that this algorithm can determine kinetic constants with a high level of accuracy in the presence of significant levels of noise.

This algorithm should provide a valuable alternative to existing data analysis techniques.

� 2003 Elsevier Science (USA). All rights reserved.
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The analysis of empirical data is often a key aspect of

an experiment. The advent of high-powered and rela-

tively inexpensive computers has brought with it re-

newed interest in the use of more complex algorithmic
tools that had earlier not been possible to implement.

One characteristic of the data of many biophysical ex-

periments is that the data are in effect of exponential

type, i.e., that the data are the sum of data points that

can be represented as an exponential function with ap-

propriately chosen coefficient and exponent. Surface

plasmon resonance experimental data, in the absence of

mass transport, is the example that will be investigated
here. Liquid-phase NMR (see, e.g., [1–3]), fluorescence

life time (see, e.g., [4]), and sedimentation equilibrium

(see, e.g., [5]) experiments also lead to this type of data.

Early approaches to the analysis of BIAcore dissoci-

ation data for simple 1:1 interactions relied on taking

the logarithm of the data and on determining the dis-

sociation constant through a simple linear regression

analysis [6–8]. This approach is not very satisfactory for
a number of reasons. For example, taking the logarithm

destroys many basic statistical properties of the noise,

which can lead to nonoptimal estimates. This approach

can also be applied only to data resulting from 1:1 in-

teractions with nonnegative data points. Therefore, use
of a nonlinear least squares optimization routine to fit a

suitable model to the data is now often advocated [6,9].

In fact, we [10] have shown that this approach leads to

very good estimates in the sense that the variance of the

parameter estimates is consistent with the Cramer Rao

lower bound. One major disadvantage is that the opti-

mization routine is iterative and therefore suffers from

the standard convergence problems of gradient-based
iterative schemes. First, initial conditions have to be

given which requires another algorithm. Second, if the

initial conditions are not close to the actual global

minimum of the optimization problem the algorithm

might converge to a local minimum which corresponds

to an incorrect parameter estimate.

An ever greater demand for experimental throughput

also puts higher demands on the capabilities of the
data analysis software. With existing tools it is not too

difficult to analyze individual sensorgrams since poten-

tial shortcomings in the data analysis algorithms can

be overcome by user interaction with the software.

*Corresponding author. Fax: 1-214-648-1259.

E-mail address: sally.ward@UTSouthwestern.edu (E. Sally Ward).

Analytical Biochemistry 312 (2003) 57–65

www.elsevier.com/locate/yabio

ANALYTICAL

BIOCHEMISTRY

0003-2697/02/$ - see front matter � 2003 Elsevier Science (USA). All rights reserved.

PII: S0003 -2697 (02 )00431-1

mail to: sally.ward@UTSouthwestern.edu


High-throughput experimentation does, however, re-
quire algorithmic tools that depend less on user input.

A recent advance in the development of data analysis

algorithms has received a considerable amount of at-

tention in the signal processing field. The so-called

subspace algorithms (see, e.g., [11–15]) are noniterative

algorithms that exhibit high-quality estimates. In this

paper we investigate the subspace algorithm that ad-

dresses the data analysis problem encountered in the
analysis of surface plasmon resonance data as acquired

for example on a BIAcore instrument.

It is the expectation that this algorithm can become a

routine technique to analyze surface plasmon resonance

data.

Materials and methods

The experimental setup and data have been described

earlier [10]. Themain aspects are briefly summarized here.

Reagents

The mouse antibody (IgG1) was purified from culture

supernatants of the 9E10 hybridoma [16] using protein
A–Sepharose and standard methods. The myc peptide

(EQKLISEEDLN) was synthesized in the peptide syn-

thesis facility of the Howard Hughes Medical Institute

and Department of Biochemistry, University of Texas

Southwestern Medical Center.

Immobilization

The 9E10 antibody was coupled at various densities to

CM5 chips using amine coupling. Relatively high cou-

pling densities (ca. 5000–12,000 resonance units (RU))

were found to be necessary to obtain measurable signals

with the myc peptide. However, to avoid unacceptable

baseline drift these high coupling densities necessitated

the use of extensive equilibration times prior to running

experiments. For use as a control (reference) surface,
flow cell 1 of each sensor chip was treated with the

coupling chemistry using buffer without added ligand.

SPR experiments

Experiments were carried out using a BIAcore 2000

instrument (see [6]). Experiments were run using pro-

gramed methods and the BIAcore control software. Myc
peptide was used at a concentration of 38lM in phos-

phate-buffered saline, pH 7.2, containing 0.01% Tween

20 (PBST). All experiments were run at 25 �C and in-

jections of analyte were carried out using 240 ll and the
kinject command. Dissociation phases were sufficiently

long to allow complete dissociation of analyte from the

flow cells, therefore avoiding the need to use regenera-

tion injections. A flow rate of 20 ll/min was used in all
experiments. For the present data 11 repetitions of the

experiment were analyzed.

Data analysis

Data models

The standard equation that describes the result of a

measurement in a flow cell for a 1:1 interaction is given
by (see, e.g., [6])

dR
dt

ðtÞ ¼ konCðtÞðRmax � RðtÞÞ � koffRðtÞ;

where RðtÞ is the measured signal in resonance units

(RU), kon is the association rate constant, koff is the
dissociation rate constant, Rmax is the maximum analyte
binding capacity in (RU), and CðtÞ is the concentration
of the analyte that flows over the chip.

During the association phase the analyte concentra-

tion is assumed to be constant, i.e., CðtÞ ¼: C0 for
t06 t6 t1. During the subsequent dissociation phase the
injected analyte concentration is then set to zero; i.e.,

CðtÞ ¼ 0 for tP t1. Hence for the association phase the
signal is given by

RaðtÞ ¼ Reqð1� e�tkobsÞ for 06 t6 t1;

where kobs :¼ konC0 þ koff and Req :¼ ðkonC0RmaxÞ=kobs;
for the dissociation phase it is given by

RdðtÞ ¼ Raðt1Þe�ðt�t1Þkoff for tP t1:

It is important to note for the subsequent development

that both the association and the dissociation phase data

are of exponential type; i.e., they are linear combina-

tions of exponential functions. Here we also interpret

the constant function as an exponential function with
zero exponent. Specifically, if we set

Ad :¼ koff ; bd :¼ Raðt1Þ; and cd :¼ 1

then the dissociation data is easily represented as

RdðtÞ ¼ cdeðt�t1ÞAdbd for tP t1:

Similarly, if we set

Aa :¼
0 0

0 �kobs

0
@

1
A; ba :¼

Req
�Req

0
@

1
A; ca :¼ ð 1 1 Þ

then the association phase data can be represented as

RaðtÞ ¼ caetAaba for tP 0;

where we used here the standard definition of the matrix

exponential (see, e.g., [17]).
The measured data are of course not of the contin-

uous time type described here but are sampled data with

constant sampling intervals and are corrupted by noise,

i.e., the data are given by

yðkT Þ ¼ cekTAcbþ wðkÞ ¼ cAkbþ wðkÞ
for k ¼ 0; 1; 2; . . . ; ð1Þ
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for some vectors c, b, and matrix Ac, with A ¼ eTAc ,
sampling interval T, and noise sequence wðkÞ for k ¼
0; 1; 2; . . ..

Subspace algorithm for exponential data

The specific subspace algorithm (see, e.g., [12,13])

that we will review here determines the A, b, and c in Eq.

(1), given a data sequence yð0Þ; yð1Þ; . . . ; yðNÞ.
First, the original data is organized into a Hankel

matrix

Hdata ¼

yð0Þ yð1Þ . . . . . . . . .

yð1Þ yð2Þ . .
.

..

. . .
. . .

. . .
.

..

. . .
.

yðN � 2Þ yðN � 1Þ
..
.

yðN � 1Þ yðNÞ

2
666666664

3
777777775
:

Second, a singular value decomposition Hdata ¼ USV
of the Hankel matrix is performed, where U and V are

unitary matrices, i.e., U�U ¼ I and VV � ¼ I , and S is a

diagonal matrix with positive entries, the singular val-
ues, that are ordered with respect to magnitude, i.e., the

largest singular value is the first diagonal entry, etc.

The subsequent steps depend on the number of com-

ponents that make up the signal that is to be estimated.

Let k be the number of exponential components that

make up the data. In the situation discussed above, a 1:1

interaction, k ¼ 1 for the dissociation data and k ¼ 2 for

the association data. We define reduced matrices ofU,V,
and S as follows.Ureduced is given by the first k columns of

U, Vreduced is given by the first k rows of V, and Sreduced is
given by the first k rows and columns of S.

The final estimates ÂA, b̂b, and ĉc of A, b, and c are now

obtained as follows. The estimate ĉc is given by the first
row of UreducedS

1=2
reduced, the estimate b̂b is given by the first

column of S1=2reducedVreduced, and ÂA is given by

ÂA ¼ U "
reducedS

1=2
reducedðU

#
reducedS

1=2
reducedÞ

�R
;

where U "
reduced is obtained from Ureduced by removing the

first row of Ureduced, and U #
reduced is obtained from Ureduced

by removing the last row of Ureduced and 	�R stands for a
right inverse of 	, i.e. ÂA can be obtained by solving the

associated system of linear equations.
As a last step the desired parameters have to be ex-

tracted from the estimated ÂA, b̂b, and ĉc. To this end letWbe

a diagonalizing transformation of ÂA; i.e.,AD ¼ W ÂAW �1 is
a diagonal matrix. Also define bD ¼ W b̂b and cD ¼ ĉcW �1.
Of course, for the dissociation data discussed above this

step is not necessary since ÂA is a scalar. In this case we can
immediately set AD :¼ ÂA, bD :¼ b̂b, and cD :¼ ĉc.
For the dissociation data the dissociation constant

koff is estimated by

k̂koff ¼ � logðADÞ
T

;

where T is the sampling interval. The analogous step for
the association data is slightly more delicate. For con-

sistency of notation, we assume that the first diagonal

entry of the 2
 2 matrix AD is closest to 1. If this is not
the case, the diagonal entries of AD, the entries of bD,
and the entries of cD need to be transposed. Let now a1
be the first and a2 be the second diagonal entries of AD.
An estimate of kobs ¼ konC0 þ koff is given by

k̂kobs ¼ � logða2Þ
T

;

and an estimate, R̂Req, of the equilibrium value Req is gi-
ven by

R̂Req ¼ bDð1ÞcDð1Þ:

The analysis of data for other interaction models such
as the parallel association and dissociation of two li-

gands is carried out analogously.

Data analysis based on logarithm of data

To analyze the data in the ‘‘classical’’ approach [7]

the logarithm of all the dissociation data points is taken.

For the association data the equilibrium value Req is
estimated by averaging a number of data points for
which the equilibrium value of the association phase has

been attained. This equilibrium value is then added to

each of the association data points after these data have

been multiplied by )1. The logarithm of the resulting

data points is taken.

The observed association constant kobs and dissocia-
tion constant koff are then easily estimated by solving a
linear regression problem.

Parameter estimation by least squares minimization

The initial conditions for the gradient-based least

squares algorithm were given by a subspace estimate.

The gradient-based search algorithm to minimize the

least squares modeling error was of the Marquardt–

Levenberg type [18].

Simulation of BIAcore data

Data were simulated using the programming language

Matlab [19]. Zero mean independent Gaussian noise was

added to each data point. The standard deviation was

chosen to be 0.25 RU in line with the measured noise

level in our BIAcore 2000 instrument (see [10]), which is

slightly lower than the noise standard deviation of 0.3
RU as reported in the instrument manual [6].

Data processing and software environment

All data were analyzed and processed using custom-

written software in the programming language Matlab.

The sensorgrams were all zero-adjusted and reference cell

data were subtracted. For the analysis of the association
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and dissociation phases suitable data segments were cut
out from the sensorgrams. The software can be obtained

by contacting the first author (ober@utdallas.edu).

Results

To evaluate the performance of the proposed sub-

space algorithm a data set with relatively low signal

levels was chosen. Such data sets are typically more
difficult to analyze since the signal-to-noise ratio is lower

and potential artifacts are more pronounced than those

in data sets with larger signal levels. Fig. 1 shows an

overlay of the 11 sensorgrams for the myc peptide–9E10

antibody interaction [10,16].

All of the sensorgrams in this data set were analyzed

using the methods presented above. Fig. 2 shows a

representative association data segment analyzed using

Fig. 1. An overlay of 11 sensorgrams of the myc peptide–9E10 antibody interaction [10] is shown. The measured sensorgrams are zero-adjusted and

aligned along the time axis, and a background reference sensorgram is subtracted. Myc peptide was injected at a concentration of 38 lM and a flow

rate of 20ll/min.

A

B

Fig. 2. (A) The association phase of one of the sensorgrams of the data presented in Fig. 1. The data fit based on the subspace method is shown in

heavy solid line. (B) The residuals of the fit in A.
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the subspace method. The plot of the residuals shows
that the fit is good overall. A measure of the quality of

the fits is that a subsequent adjustment of the parame-

ters using a gradient-based optimization routine did not

significantly reduce the mean square errors. This is

shown in Figs. 3 and 4, where the values of the estimates
are shown for the rate constants for the individual sen-

sorgrams and the corresponding mean square errors.

The results are summarized in Table 1. They show that

use of the subspace-based method generally produces

A

B

Fig. 3. (A) Estimates of kobs ¼ konC0 þ koff for the association phases of the sensorgrams in Fig. 1. The parameters from three estimation methods are

shown: linear regression of the log of the data (�), subspace method (s), and optimization method using the results of the subspace method as initial

conditions (M). (B) The mean square errors for the fits that yielded the estimates in A. The symbols correspond to those in A.

A

B

Fig. 4. A Estimates of the dissociation constant koff for the dissociation phases of the sensorgrams in Fig. 1. The parameters from three estimation

methods are shown: linear regression of the log of the data (�), subspace method (s), and optimization method (M). (B) The mean square errors for

the fits that yielded the estimates in A. The symbols correspond to those in A.
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good results that are often better than those obtained by

use of the linear regression-based method. The optimi-

zation-based results consistently show the smallest mean

square error. This is not surprising because the sub-

space-based estimates were used as initial conditions for

the optimization algorithm, and the algorithm mini-

mizes mean square error.

The linear regression-based method is applicable
only for 1:1 interactions, whereas the subspace method

can be used to analyze exponential data that arise

from more complicated interactions. To demonstrate

this, noisy data were simulated for a parallel associ-

ation and dissociation interaction for two ligands (see

Fig. 5 for a representative simulated sensorgram).

Using the subspace-based method a data set of 20

sensorgrams was analyzed. The two association con-

stants and dissociation constants, the corresponding
coefficients, and the equilibrium value Req were esti-

Table 1

Myc–9E10 antibody interaction

Estimation methoda Mean kobs ðs�1Þ Var kobs ðs�2Þ Mean Req (RU) Var Req (RU2) Average mean square error (RU2)

Linear regression 0.034334 4.1767e)005 14.67 0.040272 0.096408

Subspace 0.04177 1.4059e)005 14.2638 0.099033 0.17685

Optimized 0.037254 6.0447e)006 14.642 0.032477 0.06018

Estimation methodb Mean kd ðs�1Þ Var kd ðs�2Þ Mean R0 (RU) Var R0 (RU2) Average mean square error (RU2)

Linear regression 0.0047508 3.0753e)008 13.7255 0.18459 0.063886

Subspace 0.0049176 3.6375e)008 13.801 0.14189 0.054625

Optimized 0.0047818 2.749e)008 13.801 0.13984 0.053033

aResults of estimates for the analysis of the association phase of the myc peptide–9E10 antibody interaction (Fig. 1). For each of the 11 as-

sociation segments in this data set, the observed association constant kobs and the equilibrium value Req are estimated with the linear regression
method, the subspace method, and the optimized nonlinear least squares method using the estimates of the subspace model as initial conditions. For

each estimation method, the mean and variance of the 11 kobs and Req estimates are tabulated. In addition, the average mean square error of the fits is
shown for each estimation method. The length of the association segment is varied to use the most suitable segment for each type of estimation

method. In particular, for the linear regression approach only very short segments could be used. Otherwise, negative values in the difference between

the data and the estimated equilibrium values would cause the logarithm operation to fail.
bResults of estimates for the analysis of the dissociation phase of the myc peptide–9E10 antibody interaction (Fig. 1). For each of the 11 dis-

sociation segments in this data set, the dissociation constant kd and the initial value R0 are estimated with the linear regression method, the subspace
method, and the optimized nonlinear least squares method using the estimates of the subspace model as initial conditions. For each estimation

method, the mean and variance of the 11 kd and R0 estimates are tabulated. Again, the average mean square error of the fits is shown for each
estimation method. The length of the dissociation segment is 70 data points in all cases.

Table 2

Parallel interaction with two ligands

Parameter value Subspace Optimized

Mean Variance Mean Variance

Dissociation phase

koff1 ðs�1Þ 0.1 0.10097 3.6117e)005 0.099882 3.137e)005
koff2 ðs�1Þ 0.02 0.020217 1.3281e)006 0.020008 1.1633e)006
R01 (RU) 10 9.9401 0.15804 10.0008 0.13583

R02 (RU) 5 5.0723 0.189 4.9971 0.15925

Association phase

kobs1 ðs�1Þ 0.02 0.020641 3.701e)006 0.019696 1.7156e)006
kobs2 ðs�1Þ 0.5 0.50848 0.0092195 0.5215 0.0031465

Req1 (RU) 10 9.9182 0.39673 10.1084 0.12752

Req2 (RU) 5 4.7914 0.11445 4.9759 0.032272

Req1 þ Req2 (RU) 15 14.7096 0.65333 15.0843 0.079072

Req (RU) 15 14.8721 0.52575 — —

Results of the analysis of the simulated parallel association and dissociation interaction (Fig. 5) are shown. The parameter value column gives the

values used to simulate the association and dissociation data. Independent Gaussian noise with zero mean and standard deviation of 0.25 RU has

been added to the data points. The subspace method and optimized nonlinear least squares method (using the estimates of the subspace method as

initial conditions) have been used to estimate the parameters. The simulation has been repeated 20 times with randomly generated noise. For each

estimation technique, the means and variances of the various parameters estimated for the 20 sensorgrams are tabulated. Note that in this model

there are two ways to estimate the equilibrium value Req of the association phase of the sensorgram. First, the coefficients Req1 and Req2 can be added.
Second, Req can be estimated directly as was done in the analysis of the 1:1 interaction (see Materials and methods). The results of both approaches
are given. They agree well, but not surprisingly the variance of the direct estimate of Req is slightly lower than that obtained as the sum of Req1 and
Req2. The average mean square error for the subspace models is 0.29313 RU2 for association and 0.06369 RU2 for dissociation. For the optimized

models, the corresponding error measures are 0.07027 RU2 for association and 0.06363 RU2 for dissociation.
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mated. Fig. 6 shows a representative fit of the asso-

ciation phase of a sensorgram. The results are

summarized in Table 2. The estimates using the sub-

space-based method generally show only a small dif-

ference compared with the actual values of the

parameters. These estimates were further improved by

Fig. 5. A simulated sensorgram for a parallel association and dissociation interaction of two ligands, i.e., the sensorgram is given by

RðtÞ ¼
0 t < t1
Req1ð1� e�ðt�t1Þkobs1 Þ þ Req2ð1� e�ðt�t1Þkobs2 Þ t16 t < t2
R01e�ðt�t2Þkd1 þ R02e�ðt�t2Þkd2 tP t2

8<
:

with t1 ¼ 200 s, t2 ¼ 600 s, kobs1 ¼ 0:02s�1, kobs2 ¼ 0:5s�1, Req1 ¼ 10 RU, Req2 ¼ 5 RU, koff1 ¼ 0:1s�1, koff2 ¼ 0:02s�1, R01 ¼ 10 RU, R02 ¼ 5 RU.

Thus, the association phase is simulated for 400 s and subsequent dissociation is simulated for 500 s. Gaussian noise with a standard deviation of 0.25

RU is added to the data points.

A

B

Fig. 6. (A) The association phase of the simulated sensorgram described in Fig. 5 with data fit based on the subspace method (heavy solid line). (B)

The residuals of the fit in (A).
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using them as initial conditions for a gradient-based
optimization algorithm.

Discussion

Exponential data arises in many biophysical appli-

cations. Here our particular interest is data arising from

surface plasmon resonance experiments. However, the
approach and results are easily applied to many other

areas of biophysical data analysis.

The analysis of such exponential data is not without

problems. If no measurement noise were present a

number of more or less elementary schemes would easily

lead to a solution. It is, however, the presence of noise

that complicates the analysis. In most cases the param-

eters of interest are decay rates. This means that the
parameters to be estimated are nonlinear in the data.

Currently two data analysis methods are primarily used.

In one method, the logarithm of the data points is taken

[7]. This translates the data analysis problem into a

linear regression problem if the data are made up of only

one exponential component. In the other standard

method, gradient-based optimization algorithms are

used to fit a model to the data [6,9]. Both algorithms
have their advantages and disadvantages. The first

method is restricted to the analysis of 1:1 interactions. In

addition, the logarithm introduces nonlinear distortions

in the noise and changes the noise characteristics in a

nonuniform fashion. This makes a statistical analysis of

the estimation procedure difficult and can lead to biased

estimates. Furthermore, when low signal levels are en-

countered, measurement of noise might lead to negative
data points for which the logarithm cannot be taken.

The gradient-based optimization methods on the other

hand often have statistically optimal or near optimal

properties (see, e.g., [10]). Their disadvantages lie in the

fact that convergence is not guaranteed. Depending on

the initial conditions of the search the algorithm could

converge to a local minimum rather than a global one.

This highlights another potential problem with iterative
algorithms, i.e., that good initial conditions are needed.

An additional algorithm is needed to determine these

initial conditions.

In the signal-processing literature so-called subspace

algorithms have received a significant amount of atten-

tion (see, e.g., [11–15]). Here we have analyzed simulated

and experimental surface plasmon resonance data ac-

quired on a BIAcore 2000 instrument using a particular
subspace algorithm for exponential type data. Subspace

algorithms have the advantage that they are noniterative

and therefore do not require initial conditions and do

not have the convergence problem of iterative algo-

rithms. In contrast to the linear regression-based algo-

rithm that relies on taking the logarithm of the data

points, subspace algorithms are not restricted to data

that arise from 1:1 interactions and can easily deal with
negative data points. We have adapted the existing

subspace algorithm to analyze the present data and

evaluated its performance using both experimental and

simulated data.

We have examined the use of this algorithm to pro-

vide estimates for association and dissociation data. We

found that the estimates are very accurate. In fact, if the

estimates are used as starting points for a subsequent
gradient-based optimization routine the quality of the

parameter estimates does not improve significantly

through the further optimization step.

An examination of the performance of the subspace

algorithm applied to simulated data for a parallel as-

sociation and dissociation interaction of two ligands

shows that the algorithm also performs well in this more

complicated situation. Such an interaction cannot be
adequately analyzed with the standard method which

relies on turning the problem into a linear regression

problem by taking logarithms of the data.

The use of this subspace algorithm is, however, also

not without potential pitfalls. The algorithm can easily

handle very high noise levels, but care should be taken

with data sets that have outliers or other artifacts. These

should be removed; the resulting gaps can be filled with
values interpolated from neighboring data points.

A central step in the subspace method is a singular

value decomposition. This is typically a computationally

expensive operation. However, with current computers

this is not a problem for the typical lengths of data sets

that are being analyzed. In fact, in our experience the

time taken to analyze a data set using the subspace

method was significantly shorter than the time taken by
the gradient-based method.

This algorithm, like most others, will not produce

reliable estimates if the data does not comply with the

model. For example, in the estimation of dissociation

data for a 1:1 interaction a misleading estimate could be

expected when the data have a nonzero offset that is not

accounted for in the model. To account for such an

offset is in principle straightforward and would be a
minor modification of the procedure used to estimate

the equilibrium value Req in the analysis of the associ-
ation data.

The newly proposed method is a complement to ex-

isting methods and provides an important tool for the

analysis of surface plasmon resonance experiments of

exponential type. The availability of noniterative algo-

rithms is of particular importance for automated data
analysis problems.
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