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Abstract

Amodi4cation of an iterative Picard process is proposed to approximate the output of a non-linear system by a concatenation
of systems with linear state dynamics and non-linear outputs. A local uniform convergence result is given. The motivating
example is a non-linear system that arises in surface plasmon resonance experiments to determine protein–protein interaction
constants. We show with simulations that for this example the approximants converge not only locally but over the full time
interval of interest in the application.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Over the years a large array of powerful tools have
been developed for the study of linear systems. In
contrast, due to the signi4cant technical problems in-
volved the tools available for the study of non-linear
systems are more limited. This immediately leads to
the question of whether or not non-linear systems can
be e<ectively approximated by linear ones in some
appropriate sense.
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Our particular approach is motivated by a data
analysis problem that arises in the biophysical study
of protein–protein interactions using the surface plas-
mon resonance methodology (see Section 3 for more
details). To describe the underlying phenomena a
non-linear system is often advocated as an appropriate
model to explain the dynamics of the kinetic process.
Since many analysis techniques are only available
for linear systems, we were therefore led to investi-
gate how to best approximate trajectories or outputs
of non-linear systems. Here we present a modi4ed
Picard process that under certain conditions leads to
local uniform approximation of the trajectories of a
non-linear system by a concatenation of systems with
linear state dynamics.
The ‘classical’ Picard iteration is a well-known

method which is typically introduced in university
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classes on ordinary di<erential equations. This process
is not well suited for our application since the approx-
imants are not easily interpreted in a system-theoretic
setting.
Recently, a Picard process (in which each step is lin-

ear) was introduced to 4nd the solution of a non-linear
system that is bounded for all time in response to an
input that is bounded for all time and to provide suf-
4cient conditions under which such a solution exists
[1,3]. In [1] the input and solution are assumed to be
integrable as well as bounded. The bounded solution
cannot be computed by solving an initial value prob-
lem since the initial condition is not known until the
solution is found. In contrast the current paper intro-
duces a Picard process to address initial value prob-
lems for non-linear systems.
We begin with a non-linear system of the form

ẋ(t) = f(t; x) + u(t); x(t0) = x0;

where x(t)∈Rn, f(t; 0)=0, f is continuously di<er-
entiable and u(t) denotes an n-tuple of time functions
that are considered to be the input to the system. More
general systems of the form ẋ = f(t; x; u) could be
considered, and the requirement that f(t; 0) = 0 can
be ignored by simply moving any constant or strictly
time dependent terms to the input u. We re-write the
above equation as

ẋ(t) = Ax(t) + F(t; x) + u(t); x(t0) = x0;

where A is a constant square matrix and F(t; x) con-
tains non-linear terms. A standard example would be
to take A= @f(0; 0)=@x and de4ne F accordingly. We
could also de4ne A by “expanding” about any point x
and adjusting u accordingly.
For an appropriate class of inputs u the initial value

problem

ẋ(t) = f(t; x) + u(t); x(0) = x0

has a (local in time) solution if and only if the solution
takes the form

x(t) = eAtx0 +
∫ t

0
eA(t−�)(F(�; x(�)) + u(�)) d�:

We introduce the following Picard process, where the
superscripts denote the iterates:

x1(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−�)u(�) d�;

x2(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−�)(F(�; x1(�)) + u(�)) d�;

...

xj+1(t) = eA(t−t0)x0+
∫ t

t0
eA(t−�)(F(�; xj(�))+ u(�)) d�;

...

Of course there are standard perturbation methods in
systems theory that deal with approximation of the
trajectories of a non-linear system by trajectories of a
linear system. For example, there is classic standard
stable, unstable manifold theory [7] about an equilib-
rium point. This assumes zero driving input for the
non-linear system, whereas we study systems with
non-zero input. There are also perturbation techniques
with particular emphasis on periodic inputs and peri-
odic solutions [7]. However, as our theory and simula-
tions indicate, we cannot restrict ourselves to periodic
inputs or trajectories. In our application the non-linear
system is 4rst excited by an input that results in a ris-
ing and leveling o< of the states of the system. Then
the input is withdrawn and the states decline and level
o< again. After a number of iterates the Picard method
we introduce represents the states of the non-linear
systems over the entire time interval in which the ris-
ing, leveling o<, declining, and leveling o< take place.
In Section 2 we state a result indicating that this pro-

cess converges under relatively weak conditions. Our
Picard process is applicable to general non-linear sys-
tems, not just mildly non-linear ones. The vector val-
ued functions f(t; x) and F(t; x) are simply assumed
to be continuously di<erentiable. The 4nal section
demonstrates the convergence process for the above
mentioned biophysical example.

2. Convergence

In this section we establish local convergence of
the modi4ed Picard iteration that we consider here.
The proof, which is omitted for brevity, follows that
of the proof of convergence for the standard Picard
process as in [7, Theorem 4.6, p. 56]. However,
several modi4cations are necessary to deal with our
situation.
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Theorem 2.1. Let D be a domain in R × Rn, i.e.
an open, connected and non-empty subset. Let
(t0; x0)∈D and let U0 be a positive constant. Assume
that

1. A is a constant n× n matrix.
2. u is an arbitrary vector valued function of time

such that |u(t)|6U0 for t¿ t0 and which for the
sake of simplicity can be assumed to be piecewise
continuous.

3. the non-linearity

F :D �→ Rn

is continuously di=erentiable.

With (t0; x0)∈D given, let a¿ 0, b¿ 0 be such that

S = {(t; x)∈R × Rn | t06 t6 t0 + a; ‖x − x0‖6 b}
⊆D:

For our Picard process with iterates xj(t)

1. there exists t1 with t0¡t16 t0 + a such that
(t; xj(t))∈ S for j¿ 1 and t06 t6 t1,

2. (xj)j¿1 converges uniformly on [t0; t1] to a contin-
uous function

x := lim
j→∞

xj;

3. there exist positive constants C and E such that
for t06 t6 t1

‖x(t)− xj(t)‖6C
∞∑
k=j

Ek

k!
;

4. the limit function x, is the unique solution on [t0; t1]
to the initial value problem,

ẋ(t) = Ax(t) + F(t; x(t)) + u(t); x(t0) = x0:

Note that the bound in part 3 of the theorem is in-
dependent of the particular input u. This shows that
the convergence properties are not dependent on the
particular input, provided that the input is bounded by
the constant U0. This means that the approximation
can be interpreted as a system theoretic convergence
in the sense that the original non-linear system is ap-
proximated by a concatenation of j linear systems with
non-linear outputs. Given an arbitrary bound U0, the
state xj of the approximant system provides a good
approximation to the state of the original system in a

uniform sense for arbitrary input if the input is less
than the prespeci4ed bound U0.
Established techniques for the approximation of

outputs of non-linear systems are Volterra expansions
and Fliess expansions [4]. For those expansions con-
vergence results that are local in time exist that are
analogous to the convergence result that we have es-
tablished for the expansion introduced here. In [2,6]
functional expansions are discussed that are uniform
on a speci4ed interval. However, those results only
apply for suSciently small inputs, a condition that is
not satis4ed for many applications including the ones
that we are interested in.

3. A mass transport model

In the following we are going to discuss an exam-
ple whose analysis has motivated the previous result.
Estimating the kinetic parameters of protein–protein
interactions is an important problem in molecular
biology and chemistry. A method that has attracted
much attention recently is based on the use of sur-
plasmon resonance methodology. Here one of the
proteins, protein A, is immobilized on a surface and
the other protein, protein B, is Towed across the sur-
face using a microTuidic device. The measured signal
is time-dependent and is proportional to the mass that
is accumulated on the surface.
As part of the model the mass transport of protein

A to and from the surface has to be modeled. The
following compartmental model has been advocated
as an adequate model to describe the protein–protein
interaction in the presence of mass transport (see e.g.
[5,8]):

dC
dt
=−kaC(RT − B) + kdB+ kM (CT − C);

dB
dt
= kaC(RT − B)− kdB:

Here CT is the concentration of analyte (protein B)
in the Tow cell (compartment 1) and C is the con-
centration of the analyte (protein A) on the cell sur-
face (compartment 2). kM is a transport coeScient.
CT is treated as an input. B is the amount bound
to the cell surface, i.e. is proportional to the pro-
tein A/protein B complexes. RT is the total receptor
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Fig. 1. Iteratives; solid lines indicate system trajectories; dashed lines indicate trajectories of iteratives.

concentration, i.e. the concentration of protein A on
the surface.
We relabel some variables by setting

x :=

(
x1

x2

)
:=

(
C

B

)
; v := CT:

Then

ẋ=

(−kaRT − kM kd

kaRT −kd

)
x +

(
ka

−ka

)
x1x2

+

(
kM

0

)
v:

The measured signal is given by

y = ( 0 1 )x:

The system of equations clearly falls into the class
of non-linear systems that we are considering by
setting

A :=

(−kaRT − kM kd

kaRT −kd

)
;

F(t; x(t)) :=

(
ka

−ka

)
x1(t)x2(t);

u(t) :=

(
kM

0

)
v(t):

The Picard iterations that we discussed earlier can
now be applied to this system. In Fig. 1, a simulation
of a solution to the system of equations is shown which
is typical of the data that is being acquired in an ac-
tual experiment with parameters ka=10−5, kd=0:01,
RT = 700, kM = 0:01, x0 = [0; 0] and v(t) = 1000 on
the interval [300; 1000] and v(t) = 0 elsewhere. State
1 is given by the solid “higher curve” and state 2 (the
amount bound) is indicated by the solid “lower curve”.
Fig. 1 shows the behaviour of the Picard iteratives
for this particular system. It shows clearly that state 1
converges extremely fast. The graphs also show how
the quality of the approximation by the iteratives im-
proves step by step for state 2 (indicated by dashed
lines). At iteration 16 no di<erence is recognizable
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between state 2 of the iterative and state 2 of the
system.
It is important to note that an explicit solution can

be given for the state equation of the approximating
system. In contrast, there is no analytical representa-
tion of the state of the non-linear system. Having an
analytical representation for the state of the approxi-
mating system available makes it possible to analyze
such questions as the dependence of the solution on
a particular parameter. Such studies are, however,
beyond the scope of the current paper.
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