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ABSTRACT

A recently developed algorithm is applied to calculate a state space realization of a 3D microscopy image set. It
is based on interpreting the image set as the impulse response of a 3D separable system. As an application it is
shown how this algorithm, combined with approximation steps, can be used to suppress noise in 3D experimental
point spread functions. The approach was motivated by a well known problem that a noisy point spread function
degrades the results of deconvolution algorithms for the restoration of 3D fluorescence microscopy image sets.
The proposed approach can also be applied to 3D fluorescence microscopy image sets of cells.
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1. INTRODUCTION

The point spread function is of central importance in any deconvolution algorithm. In blind algorithms the point
spread function is estimated as part of the algorithm whereas in non-blind algorithms the point spread function
is assumed to be known. In non-blind algorithms either an experimentally acquired point spread function or a
theoretically calculated one is used. It is well known that a theoretical point spread function is often an imprecise
model for the actual point spread function.1, 2 Since it is known that an inaccurate point spread function can
affect the performance of deconvolution algorithms3 the experimental point spread function would appear to be
the preferred choice of a point spread function model for a deconvolution algorithm. However, the significant
noise components in experimental point spread functions are serious obstacles to their use in deconvolution
algorithms, since it is known that a noisy point spread function can compromise the results of deconvolution
algorithms.

It therefore appears that a promising approach is to suppress noise or random components in an experimental
point spread function and to use a smoothed point spread function in deconvolution. As a standard method, a
Gaussian filter is often used to smooth 3D image sets, including point spread functions.4, 5 Since the approach
is based on a weighted average of neighboring pixels it typically results in the loss of sharp details in the point
spread functions. Another approach to suppress noise is to average the acquired data from 20-30 beads and then
to average the resulting point spread function cylindrically about the optical axis.6, 7 However, this approach
removes any potential asymmetry in the point spread function.

Many advanced signal processing techniques call for the use of state space models. For example, state space
realizations are often used for multi-dimensional filter design (see8–11 and references therein). Therefore the
question arises whether it is possible to use state space techniques to suppress noise in experimental point
spread functions. Here we will show that it is indeed possible to calculate the state space representation of
a 3D experimental point spread function, which is treated as the impulse response of a 3D separable system.
In particular, we show how the algorithm can lead to a significant reduction in the noise components of the
experimental point spread function.
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In Section 2 we review the algorithm introduced in12 and discuss its application to general three- and two-
dimensional image sets. As a concrete example, in Section 3 we discuss the application of the algorithm to
the smoothing of three-dimensional experimental point spread functions. Section 4 is devoted to a study of the
improvement of deconvolution algorithms if smoothed point spread functions are used instead of non-smooth
ones.

2. ALGORITHM

The algorithm that was developed by Ober et al.12 is based on the generalization of a realization approach of
one-dimensional sequences as it is encountered in systems and control theory.13

A general n-order linear state space description of a 1D discrete system with constant coefficients takes the
form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k),

k = 0, 1, 2, . . .. The n × 1 vector x(k) is called the state vector. The input signal is the m × 1 vector sequence
u(k), k = 0, 1, 2, ..., and y(k), k = 0, 1, 2, ..., is the p × 1 output signal.14 We have A ∈ Rn×n, B ∈ Rn×m,
and C ∈ Rp×n. The impulse response H of the system is the output sequence when u(0) = 1, and u(k) = 0,
k = 1, 2, 3, ..., with zero initial state x(0) = 0. It is straightforward to verify that

H(k) = CAk−1B, k = 1, 2, 3, . . .

The parameter set (A, B, C) is also called a state space realization of the sequence H(k), k = 1, 2, 3, . . .. The
converse problem is the one that is of relevance here. This realization problem addresses the question of given
a sequence of real numbers/vectors/matrices H(k), k = 1, . . . , N , when does there exist a state space system
(A, B, C) such that

H(k) = CAk−1B, k = 1, 2, 3, . . . , N.

A general realization result shows that for a finite sequence such a realization always exists.13 The resulting
system is, however, not unique. For example, a transformed (TAT−1, TB, CT−1) with a nonsingular matrix T
will provide another realization of the same sequence. For numerical reasons the choice of a specific realization
often plays an important role.

In12 this realization approach was extended to three dimensional sequences given, for example, by a three
dimensional pixelated finite image. A central result12 is that a 3D discrete finite image set P (k1, k2, k3) ki =
1, . . . , Ni, i = 1, 2, 3, can be decomposed into three 1D sequences Pi, i = 1, 2, 3, i.e.,

P (k1, k2, k3) = P1(k1)P2(k2)P3(k3), ki = 1, . . . , Ni, (1)

i = 1, 2, 3. Each 1D sequence is then modeled as the impulse response of a system, i.e.,

Pi(ki) = CiA
ki−1
i Bi, ki = 1, 2, 3, ..., i = 1, 2, 3. (2)

Therefore, a finite discrete 3D image set P can be represented as

P (k1, k2, k3) = C1A
k1−1
1 B1C2A

k2−1
2 B2C3A

k3−1
3 B3,

ki = 1, . . . , Ni, i = 1, 2, 3.12

To implement the realization algorithms the questions left are how to decompose the 3D image set P into
three 1D sequences Pi, i = 1, 2, 3, and how to calculate the state space realization (Ai, Bi, Ci) for each 1D
sequence Pi, i = 1, 2, 3. The specific algorithm introduced by Ober et al.,12 is given in Section 6.

The algorithm depends crucially on singular value decompositions. Two singular value decompositions are
used to decompose the 3D image set into three 1D sequences (1) while another three singular value decompo-
sitions are used to calculate the state space realizations for the three 1D sequences (2). The algorithm can be
used in two modes. One is to obtain a full and exact representation of the 3D data set. For applications in
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microscopy the approximation mode is probably more useful. For the purposes of approximation the singular
value decompositions are used by ‘dropping’ small singular values in the factorization.

In each singular value decomposition, we will obtain a series of singular values. As a general rule, the larger a
singular value is the more important it is for the approximation. The small singular values are insignificant and
can be dropped in the approximation. Due to the presence of noise in the 3D image set, small singular values
are corrupted by noise. By excluding those singular values, we are able to obtain a smoothed approximation
of the noisy image set. Let r1, r2 denote the numbers of the dropped singular values in the first two singular
value decompositions used to decompose the image set P and let s1, s2, s3 be the numbers of the discarded
singular values in the other three singular value decompositions used to calculate the state space realizations.
The smoothed estimate of the 3D image set P obtained is then denoted as P r1,r2;s1,s2,s3 .

This algorithm was applied to the noise reduction in 3D fluorescence microscopy images.12 In the subsequent
sections we will discuss the application of the algorithm to the noise reduction in experimentally acquired point
spread functions.

3. NOISE SUPPRESSION OF POINT SPREAD FUNCTIONS

In this section, we illustrate how to use the algorithm to suppress noise of the experimental point spread function
Pexp shown in Figure 1.

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

Figure 1. Comparison of the experimental point spread function Pexp and its smoothed estimate P 122,119;29,64,9
exp (Sec-

tion 3). a1, a2, a3 show the 22th frame (Pexp(k1, 22, k3), k1, k3 = 1, . . . , 128), the 22th frame (P 122,119;29,64,9
exp (k1, 22, k3),

k1, k3 = 1, . . . , 128) and their difference. These frames are cross sections of the 3D image sets orthogonal to the op-
tical axis. b1, b2, b3 show the cross section Pexp(65, k2, k3), k2 = 1, . . . , 43, k3 = 1, . . . , 128, the cross section
P 122,119;29,64,9

exp (65, k2, k3), k2 = 1, . . . , 43, k3 = 1, . . . , 128 and their difference. These frames are cross sections of the
3D image sets along the optical axis. For more information about the coordinate system see Section 3.

The point spread function was acquired at 100nm increments and the pixel size is 67× 67 nm2 in the object
space. The cropped image set Pexp consists of 43 frames each being a 128×128 pixel array. In12 it was shown that
the identification of the middle index of the pixel array with the optical axis is numerically favorable. Therefore,
the middle index k2 of Pexp is set to correspond to the optical axis, i.e. the z axis and the lateral axis x (y) is
assigned to the index k3 (k1). As a result, the size of Pexp is 128 × 43 × 128.

As described in Section 2, we suppress noise of the point spread function by excluding small singular values of
the five singular value decompositions used in the algorithm. The key question is how to determine the number
of retained singular values in each singular value decomposition in order to generate a smoothed estimate of the
point spread function.
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As an example we will show in detail how to determine the number of retained singular values in the first
singular value decomposition. The same approach can be used to determine the number of retained singular
values of the other singular value decompositions.
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Figure 2. The singular values of the first singular value decomposition (Approximation Step 1) and their importance
in the approximation. a. The singular values of the first singular value decomposition; b. The root-mean-square errors
(RMSE) between the smoothed point spread functions and the experimental point spread function Pexp. The smoothed
estimates are obtained by using different numbers of retained singular values in the first singular value decomposition
(Approximation Step 1) but keeping 20 singular values of the second singular value decomposition and all singular values
in the other singular value decompositions.

Figure 2.a shows the singular values of the first singular value decomposition used in the algorithm. We
observe that the singular values change sharply. Only less than 10 singular values have significant values, while
the rest of the singular values are relatively small. We generate the smoothed estimates of Pexp with different
numbers of retained singular values of the first singular value decomposition but with the same number of
retained singular values of the other singular value decompositions in the algorithm. Then we calculate the
root-mean-square errors between the smoothed estimates and Pexp and plot them in Figure 2.b. (For two 3D
sequences P (k1, k2, k3), P̂ (k1, k2, k3) ∈ R, ki = 1, 2, . . . , Ni, i = 1, 2, 3, the root-mean-square error is defined by

ε =
(

1
N1N2N3

∑N1
k1=1

∑N1
k2=1

∑N3
k3=1(P (k1, k2, k3) − P̂ (k1, k2, k3))2

)1/2

.) As the number of retained singular values
decreases, the root-mean-square error increases gradually because more noise components are suppressed. When
the number of retained singular values is five or less, the root-mean-square error increases rapidly. This implies
that the main features of the experimental point spread function are severely distorted in the approximation due
to the loss of large singular values. We have to choose the number of retained singular values such that noise
suppression is maximized without severe distortions in the approximation. There is no apparent optimal choice
(Figure 2) and we have chosen to retain the first six singular values.

In a similarly way, we decide to retain 9, 100, 200, 120 singular values of the second, third, fourth and
fifth singular value decompositions. The singular values of the last three singular value decompositions typically
change more slowly. This is because the noise components in the experimental point spread function have already
been suppressed to a large extent in the first two singular value decompositions.

The total numbers of the singular values of each singular value decomposition are 128, 128, 129, 264 and 129
and we discarded 122, 119, 29, 64 and 9 singular values in the first, second, third, fourth and fifth singular value
decompositions. Following the notation introduced in Section 2 the smoothed point spread function is denoted
as P 122,119;29,64,9

exp .

Cross sections of P 122,119;29,64,9
exp , shown in Figure 1, appear to be fairly smooth and the difference between

the smoothed point spread function and the experimental point spread function appears as random noise.

4. DECONVOLUTION RESULTS

We tested the influence of noise suppression of point spread functions on the performance of the accelerated
Richardson-Lucy algorithm15 with both simulated data and acquired microscopy images.
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From the results of the simulation we find that the root-mean-square error between the simulated images and
the best recovered images using a smoothed point spread function is typically between one-fifth to one-fourth
of the root-mean-square error between the simulated images and the best recovered images using a noise point
spread function. In addition, as the number of the iterations increases, the recovered images using the noisy
point spread function diverge significantly faster than the recovered images using the smoothed point spread
function. It becomes clear that the performance of the accelerated Richardson-Lucy algorithm is very sensitive
to the noise levels of the point spread functions.
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Figure 3. Comparison of the cropped recovered images of a Jurkat cell transfected with FcRn-GFP via the accelerated
Richardson-Lucy algorithm with 300 iterations. a1, b1 and c1 show the cropped 40th frame (Imc(k1, 40, k3), k1 =
60, . . . , 190, k3 = 45, . . . , 175) of the acquired image set Imc, the 40th frame of the recovered image set using Pexp

(Figure 1), and P 122,119;29,64,9
exp (Figure 1), respectively. The coordinate system is the same as in Figure 1.

We deconvolve an image set (Figure 3) of a Jurkat cell transfected by FcRn-GFP with the experimental point
spread function Pexp (Figure 1) and the smoothed point spread function P 122,119;29,64,9

exp (Figure 1) using the
accelerated Richardson-Lucy algorithm with 300 iterations. Cross sections of both recovered images are shown
in Figure 3. The difference between both recovered images is obvious. When the smoothed point spread function
is used, more details are visible. For example, the typical doughnut shape of a sorting endosome is only visible
in the reconstruction that uses the smoothed point spread function.

Further details on the application of the algorithm to the smoothing of point spread functions can be found
in.16

5. CONCLUSIONS

In this paper we have discussed the use of the algorithm proposed in12 to suppress noise in fluorescence mircoscopy
image sets such as experimental point spread functions. The analysis has shown that this algorithm is capable
of effectively suppressing randomness or noise in experimental point spread functions.

We have also examined the influence of noise suppression on the point spread function on the performance
of the accelerated Richardson-Lucy algorithm. It has been shown that the deconvolution algorithm gives signif-
icantly improved results when smoothed point spread functions are used.
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Appendix

Algorithm Let P (k1, k2, k3), ki = 1, 2, . . . , Ni, i = 1, 2, 3, represent a three-dimensional data array.

1. Subtract an estimated background level b̂ (e.g. the mean of the data points near the boundary of the data
array P ) from data array P , and define Φ(k1, k2, k3) := P (k1, k2, k3)− b̂, ki = 1, 2, . . . , Ni, i = 1, 2, 3 (if no
approximation is carried out, take b̂ = 0).

2. Arrange the entries of the resulting data array Φ to form a matrix Q3 as

Q3 =




Φ(1, 1, 1) Φ(1, 1, 2) · · · Φ(1, 2, 1) Φ(1, 2, 2) · · · Φ(1, 3, 1) Φ(1, 3, 2) · · · Φ(1, N2, N3)
Φ(2, 1, 1) Φ(2, 1, 2) · · · Φ(2, 2, 1) Φ(2, 2, 2) · · · Φ(2, 3, 1) Φ(2, 3, 2) · · · Φ(2, N2, N3)
Φ(3, 1, 1) Φ(3, 1, 2) · · · Φ(3, 2, 1) Φ(3, 2, 2) · · · Φ(3, 3, 1) Φ(3, 3, 2) · · · Φ(3, N2, N3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Φ(N1, 1, 1) Φ(N1, 1, 2) · · · Φ(N1, 2, 1) Φ(N1, 2, 2) · · · Φ(N1, 3, 1) Φ(N1, 3, 2) · · · Φ(N1, N2, N3)


 .

3. (Approximation step 1) Decompose Q3 via the singular value decomposition∗ as Q3 = U1Σ1V1. Partition

Σ1 = diag(Σ̂1,
ˆ̂Σ1), U1 = [Û1,

ˆ̂
U1], and V1 =

[
V̂1

ˆ̂
V 1

]
conformally, where Σ̂1 ∈ R

K1×K1 and ˆ̂Σ1 ∈ R
r1×r1 .

Define Φr1
1 (i) ∈ R

1×K1 , i = 1, . . . , N1, such that




Φr1
1 (1)

Φr1
1 (2)

Φr1
1 (3)
...

Φr1
1 (N1)




:= Û1Σ̂
1/2
1 (for a diagonal matrix D =

diag(d1, d2, . . . , dn), di ≥ 0, i = 1, 2, . . . , n, we define D1/2 = diag(d1/2
1 , d

1/2
2 , . . . , d

1/2
n )) and define Rr1

3 (i) ∈
R

K1×1, i = 1, . . . , N2N3, such that
[Rr1

3 (1), . . . , Rr1
3 (N2N3)] := Σ̂1/2

1 V̂1. Note that r1 denotes the number of discarded singular values in this
step.

4. Arrange Rr1
3 (1), . . . , Rr1

3 (N2N3) to form Q2 as

Q2 :=




R
r1
3 (1) R

r1
3 (2) R

r1
3 (3) · · · R

r1
3 (N3)

R
r1
3 (N3 + 1) R

r1
3 (N3 + 2) R

r1
3 (N3 + 3) · · · R

r1
3 (2N3)

R
r1
3 (2N3 + 1) R

r1
3 (2N3 + 2) R

r1
3 (2N3 + 3) · · · R

r1
3 (3N3)

.

.

.
.
.
.

.

.

.
.
.
.

R
r1
3 ((N2 − 1)N3 + 1) R

r1
3 ((N2 − 1)N3 + 2) R

r1
3 ((N2 − 1)N3 + 3) · · · R

r1
3 (N2N3)


 ,

where Q2 ∈ R
N2K1×N3 .

5. (Approximation step 2) Decompose Q2 via the singular value decomposition as Q2 = U2Σ2V2. Partition

Σ2 = diag(Σ̂2,
ˆ̂Σ2), U2 = [Û2,

ˆ̂
U2], and V2 =

[
V̂2

ˆ̂
V 2

]
conformally, where Σ̂2 ∈ R

K2×K2 and ˆ̂Σ2 ∈ R
r2×r2 .

∗A singular value decomposition of a two-dimensional M ×L matrix Q is defined by the factorization Q = UΣV, where
U , V are matrices of sizes M -by-K and K-by-L, respectively, such that U∗U = I and V V ∗ = I , in which I denotes an

identity matrix, and Σ = diag(σ1, σ2, . . . , σK) =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σK


 with singular values σi > 0, i = 1, . . . , K.
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Define Φr2
2 (i) ∈ R

K1×K2 , i = 1, . . . , N2, such that




Φr2
2 (1)

Φr2
2 (2)

Φr2
2 (3)
...

Φr2
2 (N2)




:= Û2Σ̂
1/2
2 , and define Φr2

3 (i) ∈ R
K2×1,

i = 1, . . . , N3, such that [Φr2
3 (1), Φr2

3 (2), . . . , Φr2
3 (N3)] := Σ̂1/2

2 V̂2. Note that r2 denotes the number of
discarded singular values in this step.

6. (Approximation step 3, 4, 5) Calculate the realizations (Ar1;s1
1 , Br1;s1

1 , Cr1;s1
1 ), (Ar2;s2

2 , Br2;s2
2 , Cr2;s2

2 ) and
(Ar2;s3

3 , Br2;s3
3 , Cr2;s3

3 ) of Φr1
1 , Φr2

2 and Φr2
3 , respectively, via the realization step (see below) for some

s1, s2, s3 ≥ 0, where Φr1
1 (i) ∈ R

1×K1 , i = 1, . . . , N1, Φr2
2 (i) ∈ RK1×K2 , i = 1, . . . , N2, and Φr2

3 (i) ∈ R
K2×1,

i = 1, . . . , N3, from step 3 and step 5. Note that s1, s2 and s3 are the numbers of singular values discarded
in the corresponding realization step.

7. Calculate the estimate Φr1,r2;s1,s2,s3 as

Φr1,r2;s1,s2,s3(k1, k2, k3) = Cr1;s1
1 (Ar1;s1

1 )k1−1Br1;s1
1 Cr2;s2

2 (Ar2;s2
2 )k2−1Br2;s2

2 Cr2;s3
3 (Ar2;s3

3 )k3−1Br2;s3
3 ,

ki = 1, 2, . . . , Ni, i = 1, 2, 3. (1)

8. Add the estimated background level b̂ to the estimation Φr1,r2;s1,s2,s3 such that

P (k1, k2, k3) ≈ P r1,r2;s1,s2,s3(k1, k2, k3) := Φr1,r2;s1,s2,s3(k1, k2, k3) + b̂, ki = 1, 2, . . . , Ni, i = 1, 2, 3. (2)

Realization step Let P (i) ∈ R
p×m, i = 1, 2, . . . , N , be a finite one-dimensional sequence.

1. Construct the (N + 1)p × (N + 1)m Hankel matrix

H =




P (1) P (2) · · · P (N − 1) P (N) 0
P (2) P (3) · · · P (N) 0 0

...
...

...
...

...
P (N) 0 · · · 0 0 0

0 0 · · · 0 0 0




,

where 0 denotes a block of zeros of size p × m.

2. Let H = UΣV be a singular value decomposition.

3. Partition Σ = diag(Σ1, Σ2), Σ1 ∈ R
n×n, Σ2 ∈ R

s×s, U = [U1, U2], U1 ∈ R
(N+1)p×n, U2 ∈ R

(N+1)p×s, and

V =
[

V1

V2

]
, V1 ∈ R

n×(N+1)m, V2 ∈ R
s×(N+1)m, conformally. We also allow for the trivial partition in

which the second components are empty, i.e. s = 0.

4. Let Cs ∈ R
p×n be the first p rows of U1Σ

1/2
1 .

5. Let Bs ∈ R
n×m be the first m columns of Σ1/2

1 V1.

6. Let U1 =




Ū1
11
...

Ū1
N1

Ū1
(N+1)1


, where Ū1

t11 ∈ R
p×n for all t1 = 1, . . . , N + 1, and define U↑

1 =




Ū1
21
...

Ū1
(N+1)1


 and

U↓
1 =




Ū1
11
...

Ū1
N1


. Then let As = Σ−1/2

1 U↓∗
1 U↑

1 Σ1/2
1 ∈ R

n×n.

Note that the symbols r1, r2, s1, s2 and s3 denote the numbers of dropped singular values in each singular
value decomposition. When r1 = r2 = s1 = s2 = s3 = 0 we have P = P 0,0;0,0,0, i.e a perfect reconstruction.12

For the sake of simplifying the notation, we write P rs := P r1,r2;s1,s2,s3 , with rs := {r1, r2; s1, s2, s3}.
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