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Abstract

Estimation of the unknown parameters that characterize a bilinear system is of primary importance in

many applications. The Cramer Rao lower bound (CRLB) provides a lower bound on the covariance matrix

of any unbiased estimator of unknown parameters. It is widely applied to investigate the limit of the accuracy

with which parameters can be estimated from noisy data. Here it is shown that the CRLB for a data set

generated by a bilinear system with additive Gaussian measurement noise can be expressed explicitly in terms

of the outputs of its derivative system which is also bilinear. A connection between the nonsingularity of

the Fisher information matrix and the local identifiability of the unknown parameters is exploited to derive

local identifiability conditions of bilinear systems using the concept of the derivative system. It is shown that

for bilinear systems with piecewise constant inputs the CRLB for uniformly sampled data can be efficiently

computed through solving certain Lyapunov equations. In addition, a novel method is proposed to derive the

asymptotic CRLB when the number of acquired data samples approaches infinity. These theoretical results are

illustrated through an example from surface plasmon resonance experiments for the determination of the kinetic

parameters of protein-protein interactions.

Keywords: Bilinear systems; Cramer Rao lower bound; Fisher information matrix; Local identifiability;

Parameter estimation; Surface plasmon resonance experiments; System identification.

I. INTRODUCTION

Bilinear systems are an important class of nonlinear systems because of their wide range of applications

in a number of different fields, including engineering, biomedical science, economics, etc. A fundamental

problem in these applications is to estimate/identify the unknown parameters of a bilinear system from its

output observations [1]–[4]. The question therefore naturally arises concerning the accuracy of the estimation

that can be achieved based on the assumed bilinear system model and observed noisy outputs. The Cramer

Rao lower bound (CRLB) gives a lower bound on the covariance matrix of any unbiased estimator of unknown

parameters [5], [6]. It is commonly used to evaluate the performance of an estimation/identification algorithm

and can provide guidance to improve the experimental design. The purpose of this paper is to derive an explicit

expression of the CRLB for noisy data sets generated by a bilinear system, from the perspective of system

theory.

The CRLB for estimating unknown parameters of stationary time series has received considerable attention

in the literature [7]–[9]. Recently, the CRLB or Fisher information matrix for one-dimensional (1D) dynamic

non-stationary systems with deterministic input and Gaussian measurement noise has been investigated in [10].
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The calculation of the Fisher information matrix for the 1D data is performed in terms of the derivative system

with respect to the system parameters and by using the solution to a Lyapunov equation. The above approach

has been extended to multidimensional (nD) data sets generated by nD linear separable-denominator systems

and applied to the analysis of nD nuclear magnetic resonance (NMR) spectroscopy data sets [11].

Here we generalize the results in [10] to bilinear systems and continue to explore some system theoretical

insights of the approach. It is shown that the Fisher information matrix for the output data samples of a multiple-

input-multiple-output (MIMO) bilinear system can be expressed in terms of the outputs of its derivative system

which is also an MIMO bilinear system. The use of the notion of derivative system brings two main benefits.

First, we can study properties of the Fisher information matrix and the CRLB from a system theoretic point

of view, e.g. the local identifiability conditions discussed in Section III. Second, for uniformly sampled data

sets generated by bilinear systems with piecewise constant inputs, the CRLB can be efficiently computed using

algorithms based on solutions to certain Lyapunov equations. Although there have been some papers on the

calculation of the CRLB for some specific bilinear models in the literature, such as [12], to our best knowledge,

however, an explicit expression of the CRLB for a general bilinear system model has not been available so far.

The organization of the paper is as follows. In Section II we apply the concept of derivative system to

obtain an explicit expression of the Fisher information matrix for noise corrupted data sets generated by an

MIMO time-invariant bilinear system. In Section III the nonsingularity conditions of the Fisher information

matrix are derived. Provided some weak regularity conditions hold the nonsingularity of the Fisher information

matrix is equivalent to the local identifiability of the system. For the uniformly sampled data sets generated by

a bilinear system with piecewise constant inputs, it is shown in Section IV that the CRLB can be efficiently

calculated through solving certain Lyapunov equations, and that the asymptotic CRLB can be derived without

explicitly computing the Fisher information matrix. In Section V the theoretical results presented in the paper

are illustrated by an example from surface plasmon resonance experiments aimed at estimating kinetic constants

of protein-protein interactions.

Notation

AT transpose of matrix A

⊕ sum of vector spaces

R
n×m space of n × m real matrices

θ =
[

θ1 . . . θK

]T
parameter vector

I(θ) Fisher information matrix for the parameter vector θ
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I identity matrix of appropriate dimension

σ2 variance of Gaussian noise

E {x} expected value of random variable x

var (x) variance of random variable x

rank {A} rank of matrix A

range {A} span of the columns of matrix A

det (A) determinant of matrix A

diag {M1, . . . , Mr} block diagonal matrix whose diagonal block entries are M1,

. . ., Mr

Φ = {A, B, C, F1, . . . , Fm} bilinear system with system matrices A, B, C, F1, . . ., Fm

Φ′ = {A, B, C, F1, . . . , Fm} derivative system of Φ with system matrices A, B, C,

F1, . . ., Fm

V set of admissible inputs

U set of piecewise constant inputs

u[l] lth constant input vector of a piecewise constant input

βl indicator function for the lth interval

II. CRAMER RAO LOWER BOUND

Consider the state-space model of a general MIMO time-invariant bilinear system given by (see [13])

ẋθ(t) = Axθ(t) +
m∑

q=1

Fquq(t)xθ(t) + Bu(t), xθ(t[0]) = x0, (1)

yθ(t) = Cxθ(t), t ≥ t[0], (2)

where xθ(t) ∈ R
n×1 is the state vector, u(t) ∈ R

m×1 is the input vector with components u1(t), . . ., um(t),

yθ(t) ∈ R
p×1 is the system output vector, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, Fq ∈ R
n×n, q = 1, . . . , m,

are the system matrices depending on the unknown parameter vector θ :=
[

θ1 . . . θK

]T
, and x0 is the

initial state vector, which can also depend on the parameter vector θ. For convenience of exposition, we use

the notation Φ := {A, B, C, F1, . . . , Fm} to represent the bilinear system with state vector xθ(t), input

u(t), output yθ(t), system matrices A, B, C, F1, . . ., Fm, and initial state x0, as defined in (1)-(2). The ith

element of yθ(t) is represented by yθ,i(t), i = 1, . . . , p, i.e., yθ(t) :=
[

yθ,1(t) . . . yθ,p(t)
]T

. Similarly, the

ith row of C is denoted by Ci, i = 1, . . . , p, i.e., C =
[

CT
1 . . . CT

p

]T
.
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In this paper two classes of input functions are considered for the bilinear system defined in (1)-(2) [14],

[15]:

(i) The set of admissible inputs V: these inputs are assumed to be piecewise continuous, have a finite number

of discontinuities and are defined on finite or semi-finite left-closed intervals whose left boundary point

is t[0].

(ii) The set of piecewise constant inputs U: they are vector-valued piecewise constant functions with a finite

number of steps. A piecewise constant input u ∈ U can be represented by

u(t) =
L−1∑
l=0

u[l]βl(t), t[0] ≤ t < t[L], (3)

where u[l] :=
[

u
[l]
1 . . . u

[l]
m

]T
, l = 0, . . . , L− 1, are constant vectors, and βl(t), l = 0, . . . , L− 1, are

the indicator functions defined by

βl(t) =


 1, for t ∈ [t[l], t[l+1]

)
,

0, for t /∈ [t[l], t[l+1]
)
.

Here, t[0], . . . , t[L] denote the starting and ending points of the time intervals with t[0] < . . . < t[L],

where t[L] can be either finite or infinite. Note that u[l] could be a zero vector, and that for a piecewise

constant input u ∈ U as defined in (3) we are only interested in the output yθ(t) for t[0] ≤ t < t[L].

Obviously, U ⊂ V. Unlike a linear system, it is difficult to express the output of a bilinear system in terms of

its input and system matrices in a simple closed form. For an admissible input u ∈ V, the input-output map can

be represented by the infinite Volterra series (see [16]). For a piecewise constant input u ∈ U, the input-output

description can be further simplified, as shown in the following lemma whose proof is standard (see also [17]).

Lemma 2.1: Assume that the input of the bilinear system Φ = {A, B, C, F1, . . . , Fm} is piecewise

constant as defined by (3). Let F [l] :=
∑m

q=1 Fqu
[l]
q and assume that A + F [l] is invertible, l = 0, . . . , L − 1.

Then the output of the system is given by

yθ(t) =
L−1∑
l=0

[
CQl(t)

(
W [l] + xθ(t[l])

)
− CW [l]

]
βl(t), t[0] ≤ t < t[L], (4)

where Ql(t) := e(A+F [l])(t−t[l]) and W [l] := (A + F [l])−1Bu[l], l = 0, . . . , L − 1, and xθ(t[l]) is given by

xθ(t[l]) =


 x0, for l = 0,

Ql−1(t[l])
(
W [l−1] + xθ(t[l−1])

)− W [l−1], for l = 1, . . . , L − 1.

Assume that we have acquired noise corrupted samples sθ,i(j), i = 1, . . . , p, j = 0, . . . , J − 1, of the

measured output of the bilinear system defined by (1)-(2), i.e.,

sθ,i(j) = yθ,i(tj) + wi(j), (5)
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where yθ,i(tj) is the ith noise free output element at the sampling point tj and wi(j) is the measurement

noise component, i = 1, . . . , p, j = 0, . . . , J − 1, t[0] ≤ t0 < t1 < . . . < tJ−1. We assume that the

measurement noise components have independent Gaussian distributions with zero mean and variance σ2
i,j ,

i = 1, . . . , p, j = 0, . . . , J − 1. Hence the probability density function p(S; θ) for the acquired data set

S := {sθ,i(j), i = 1, . . . , p, j = 0, . . . , J − 1} is given by

p(S; θ) =
p∏

i=1

J−1∏
j=0

1√
2πσ2

i,j

exp

(
− 1

2σ2
i,j

[sθ,i(j) − yθ,i(tj)]
2

)
.

The parameter space Θ, i.e. the set of all possible values for the parameter vector θ, is assumed to be an

open subset of the Euclidean space R
K×1. Also, p(S; θ) is assumed to satisfy the standard regularity conditions

(see e.g. [18], [19]). The Fisher information matrix I(θ) is then defined as

[I(θ)]sr = E

{(
∂ ln p(S; θ)

∂θs

)(
∂ ln p(S; θ)

∂θr

)}
, 1 ≤ s, r ≤ K,

where E{·} is the expected value with respect to the underlying probability measure. If I(θ) is positive definite

for all θ ∈ Θ, by the CRLB any unbiased estimator θ̂ of θ has a variance such that

var(θ̂) ≥ I−1(θ),

where var(θ̂) ≥ I−1(θ) is interpreted as meaning that the matrix (var(θ̂) − I−1(θ)) is positive semidefinite.

In the following theorem we first show that the derivative system (with respect to the given parameter vector

θ) of a general MIMO time-invariant bilinear system is also an MIMO time-invariant bilinear system. The

Fisher information matrix for the sampled output data of the bilinear system for Gaussian measurement noise

is then expressed using the output samples of its derivative system.

Theorem 2.1: Consider the bilinear system represented by Φ = {A, B, C, F1, . . . , Fm}. Assume that the

partial derivatives of A, B, C, F1, . . ., Fm and x0 with respect to the elements of θ exist for all θ ∈ Θ, and

that the input u(t) is independent of the parameter vector θ. Let

Yθ(t) :=




Yθ,1(t)
...

Yθ,p(t)


 , with Yθ,i(t) :=




∂yθ,i(t)
∂θ1

...
∂yθ,i(t)

∂θK


 (i = 1, . . . , p) , t ≥ t[0].

Then

1.) Yθ(t), t ≥ t[0], is the output of the derivative system Φ′ := {A, B, C, F1, . . . , Fm}, which is an MIMO

time-invariant bilinear system with state vector Xθ(t), t ≥ t[0], and has the same input u as Φ. The state

May 7, 2004 DRAFT



7

vector Xθ, initial state X0, and system matrices A, B, C, F1, . . . , Fm are given as follows, which will

be adopted throughout the paper.

Xθ(t) :=




∂1xθ(t)
...

∂Kxθ(t)


 , t ≥ t[0], X0 :=




∂1xθ(t[0])
...

∂Kxθ(t[0])


 , A := diag {∂1A, . . . , ∂KA},

B :=




∂1B
...

∂KB


 , C :=




C1

...

Cp


 with Ci := diag {∂1Ci, . . . , ∂KCi}, i = 1, . . . , p, (6)

Fq := diag {∂1Fq, . . . , ∂KFq}, q = 1, . . . , m,

where for s = 1, . . . , K

∂sxθ(t) :=


 xθ(t)

∂xθ(t)
∂θs


 , t ≥ t[0], ∂sxθ(t[0]) :=


 x0

∂x0
∂θs


 , ∂sA :=


 A 0

∂A
∂θs

A


 , (7)

∂sB :=


 B

∂B
∂θs


 , ∂sCi :=

[
∂Ci

∂θs
Ci

]
, ∂sFq :=


 Fq 0

∂Fq

∂θs
Fq


 , q = 1, . . . , m;

2.) for the data points sθ,i(j) := yθ,i(tj)+wi(j), where yθ,i(tj) is the sampled output of the bilinear system Φ

and wi(j) is independent Gaussian noise with zero mean and variance σ2
i,j , i = 1, . . . , p, j = 0, . . . , J−1,

t[0] ≤ t0 < t1 < · · · < tJ−1, the Fisher information matrix is given by

I(θ) =
p∑

i=1

J−1∑
j=0

1
σ2

i,j

PiYθ(tj)YT
θ (tj)P T

i . (8)

Here Pi ∈ R
K×pK , i = 1, . . . , p, is defined as

Pi = [ 0 . . . 0︸ ︷︷ ︸
(i−1) 0s

IK 0 . . . 0︸ ︷︷ ︸
(p−i) 0s

] , (9)

where 0 denotes the K × K zero matrix and IK the K × K identity matrix.

Proof: 1.) By assumption the partial derivatives of A, B, C, F1, . . ., Fm and x0 with respect to θs (s = 1, . . . , K

throughout the proof) exist for all θ ∈ Θ. Hence, the partial derivatives of xθ(t) and yθ,i(t), i = 1, . . . , p, with

respect to θs also exist for all θ ∈ Θ and t ≥ t[0]. Since the input u(t), t ≥ t[0], is piecewise continuous, it

follows that xθ(t) and ∂xθ(t)
∂θs

are partially differentiable with respect to t on t ≥ t[0] with the possible exception

of the discontinuities of u. Also, the partial derivative of ∂xθ(t)
∂t with respect to θs exists for all θ ∈ Θ and

t ≥ t[0] with the possible exception of the discontinuities of u. With the exception of the discrete discontinuities

of u, we have ∂ẋθ(t)
∂θs

= ∂2xθ(t)
∂θs∂t = ∂2xθ(t)

∂t∂θs
, t ≥ t[0] (see page 359 in [20]).
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Taking the partial derivative of (1) with respect to θs and using the product formula (see e.g. Lemma 2.3 of

[11]) give

∂ẋθ(t)
∂θs

=
[

∂A
∂θs

A
] xθ(t)

∂xθ(t)
∂θs


+

m∑
q=1

[
∂Fq

∂θs
Fq

]
uq(t)


 xθ(t)

∂xθ(t)
∂θs


+

∂B

∂θs
u(t), t ≥ t[0]. (10)

With the exception of the discontinuities of u, combining (1) and (10) yields

∂

∂t
∂sxθ(t) =

∂

∂t


 xθ(t)

∂xθ(t)
∂θs


 =


 ∂xθ(t)

∂t

∂2xθ(t)
∂t∂θs


 =


 ẋθ(t)

∂ẋθ(t)
∂θs




=


 A 0

∂A
∂θs

A




 xθ(t)

∂xθ(t)
∂θs


+

m∑
q=1


 Fq 0

∂Fq

∂θs
Fq


uq(t)


 xθ(t)

∂xθ(t)
∂θs


+


 B

∂B
∂θs


u(t)

= ∂sA∂sxθ(t) +
m∑

q=1

∂sFquq(t)∂sxθ(t) + ∂sBu(t), t ≥ t0. (11)

Also,

∂sxθ(t[0]) =


 xθ(t[0])

∂xθ(t[0])
∂θs


 =


 x0

∂x0
∂θs


 . (12)

Since yθ,i(t) = Cixθ(t), i = 1, . . . , p, t ≥ t[0], taking the partial derivative of yθ,i(t) with respect to θs gives

∂yθ,i(t)
∂θs

= ∂sCi∂sxθ(t), t ≥ t[0]. (13)

For i = 1, . . . , p, since

Yθ,i(t) =




∂yθ,i(t)
∂θ1

...
∂yθ,i(t)

∂θK


 , Xθ(t) =




∂1xθ(t)
...

∂Kxθ(t)


 , t ≥ t[0],

stacking the corresponding equations from (11) and (13) gives

Ẋθ(t) = AXθ(t) +
m∑

q=1

Fquq(t)Xθ(t) + Bu(t), (14)

Yθ,i(t) = CiXθ(t), t ≥ t[0]. (15)

The desired derivative system Φ′ is then obtained by stacking the corresponding equations from (15) as

Yθ(t) = CXθ(t), t ≥ t[0]. (16)

The initial condition of Φ′ is given by stacking the corresponding equations from (12) as Xθ(t[0]) = X0. Clearly,

Yθ(t), t ≥ t[0], is the output of the derivative system Φ′ := {A, B, C, F1, . . . , Fm}. Note that each element

of Yθ(t) is a continuous function of t for t ≥ t[0].
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2.) From a classic result on the Fisher information matrix (see e.g. [5]),

[I(θ)]sr = E

{(
∂ ln p(S; θ)

∂θs

)(
∂ ln p(S; θ)

∂θr

)}
=

p∑
i=1

J−1∑
j=0

1
σ2

i,j

∂yθ,i(tj)
∂θs

∂yθ,i(tj)
∂θr

, for 1 ≤ s, r ≤ K.

It then follows directly that the Fisher information matrix is given by

I(θ) =
p∑

i=1

J−1∑
j=0

1
σ2

i,j

Yθ,i(tj)YT
θ,i(tj) =

p∑
i=1

J−1∑
j=0

1
σ2

i,j

PiYθ(tj)YT
θ (tj)P T

i ,

where Yθ(tj) is the sampled output of the derivative system Φ′ at tj , j = 0, . . . , J − 1, and Pi, i = 1, . . . , p,

are defined in (9). �

For the data set generated by a bilinear system with a piecewise constant input u ∈ U, the following corollary

derives an explicit expression of its associated Fisher information matrix.

Corollary 2.1: Assume the bilinear system model and assumptions are the same as in Theorem 2.1, except

that the input u is piecewise constant and the data points are sampled from yθ,i(t), i = 1, . . . , p, at t[0] ≤ t0 <

t1 < . . . < tJ−1 < t[L]. Assume that A + F [l] is invertible, where F [l] :=
∑m

q=1 Fqu
[l]
q , l = 0, . . . , L − 1. Let

F [l] := diag {∂1F
[l], . . . , ∂KF [l]}, l = 0, . . . , L − 1, where for s = 1, . . . , K

∂sF
[l] :=


 F [l] 0

∂F [l]

∂θs
F [l]


 =

m∑
q=1


 Fq 0

∂Fq

∂θs
Fq


u[l]

q .

Then,

1.) the output of the derivative system Φ′ is given by

Yθ(t) =
L−1∑
l=0

[
CQl(t)

(
W [l] + Xθ(t[l])

)
− CW [l]

]
βl(t), t[0] ≤ t < t[L], (17)

where Ql(t) := e(A+F [l])(t−t[l]), W [l] :=
(A + F [l]

)−1 Bu[l], l = 0, . . . , L − 1, and

Xθ(t[l]) =


 X0, for l = 0,

Ql−1(t[l])
(W [l−1] + Xθ(t[l−1])

)−W [l−1], for l = 1, . . . , L − 1;

2.) the Fisher information matrix is given by

I(θ) =
p∑

i=1

J−1∑
j=0

1
σ2

i,j

PiYθ(tj)YT
θ (tj)P T

i

=
p∑

i=1

J−1∑
j=0

L−1∑
l=0

1
σ2

i,j

PiCQl(tj)
(
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T QT
l (tj)CT P T

i βl(tj)

−
p∑

i=1

J−1∑
j=0

L−1∑
l=0

1
σ2

i,j

PiCQl(tj)
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)
CT P T

i βl(tj)
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−
p∑

i=1

J−1∑
j=0

L−1∑
l=0

1
σ2

i,j

PiC
(
W [l]

(
W [l]

)T
+ W [l]X T

θ (t[l])
)
QT

l (tj)CT P T
i βl(tj)

+
p∑

i=1

J−1∑
j=0

L−1∑
l=0

1
σ2

i,j

PiCW [l]
(
W [l]

)T CT P T
i βl(tj). (18)

Proof: 1.) By Theorem 2.1, Yθ(t), t[0] ≤ t < t[L], is the output of the derivative system Φ′ :=

{A, B, C, F1, . . . , Fm}, which is bilinear and has the same piecewise constant input as Φ. Since A + F [l]

is a block lower-triangular matrix with A + F [l] as its diagonal block submatrices and A + F [l] is invertible, it

follows that A+F [l] is also invertible, l = 0, . . . , L− 1. Using Lemma 2.1 (see also (4)), we can easily derive

the explicit expression for Yθ(t), t[0] ≤ t < t[L], given in (17).

2.) The Fisher information matrix I(θ) given in (18) can be readily obtained by substituting Yθ(t) in (17)

into expression (8). �

III. LOCAL IDENTIFIABILITY

The parameter vector θ is said to be locally identifiable if there exists an open neighborhood of θ containing

no other parameter vector that is observably equivalent to θ [21]. The following Theorem 3.1 quoted from

[22] states that under some weak regularity conditions the local identifiability of an unknown parameter vector

is equivalent to the nonsingularity of its associated Fisher information matrix. This connection between local

identifiability and the invertibility of the Fisher information matrix is of importance in and of itself. It is also

relevant for the calculation of the CRLB which is typically expressed in terms of the inverse of the Fisher

information matrix I(θ).

Theorem 3.1: [22] Let θ be a regular point of the Fisher information matrix I(θ). Then θ is locally identifiable

if and only if I(θ) is nonsingular.

Specifically, Theorem 3.1 assumes that ∂p(S;θ)
∂θs

, ∂ ln p(S;θ)
∂θs

and the elements of I(θ) are continuous functions

of θ for each s = 1, . . . , K and all θ ∈ Θ. For the data model given by (5), the explicit expressions of ∂p(S;θ)
∂θs

and ∂ ln p(S;θ)
∂θs

are

∂p(S; θ)
∂θs

=


 p∏

i=1

J−1∏
j=0

1√
2πσ2

i,j




 p∑

i=1

J−1∑
j=0

1
σ2

i,j

[sθ,i(j) − yθ,i(tj)] (19)

· exp


 p∑

i=1

J−1∑
j=0

− 1
2σ2

i,j

[sθ,i(j) − yθ,i(tj)]
2


 ∂yθ,i(tj)

∂θs


 ,

and

∂ ln p(S; θ)
∂θs

=
p∑

i=1

J−1∑
j=0

1
σ2

i,j

[sθ,i(j) − yθ,i(tj)]
∂yθ,i(tj)

∂θs
. (20)
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From (19)-(20) and Theorem 2.1, it is easy to see that ∂p(S;θ)
∂θs

, ∂ ln p(S;θ)
∂θs

and the elements of I(θ) are continuous

functions of θ if the partial derivatives of A, B, C, F1, . . ., Fm and x0 with respect to the elements of θ are

continuous functions of θ for all θ ∈ Θ.

It will be shown shortly that the local identifiability of a bilinear system is closely related to the span of

reachable outputs of its associated derivative system with respect to the unknown parameter vector. Before

proceeding, we first review some important notions from mathematical system theory [16].

Definition 3.1: Consider a system with a set of inputs denoted by S. Then

1.) a state x is said to be reachable from initial state x0 via inputs S if there exists an input in S such that

the path of its corresponding states starts at x0 and passes through x;

2.) an output y is said to be reachable from initial state x0 via inputs S if there exists a state reachable from

x0 via inputs S such that its corresponding output is y.

The following lemma characterizes the span of reachable states and outputs of a bilinear system via admissible

inputs V or piecewise constant inputs U.

Lemma 3.1: Consider the MIMO bilinear system represented by Φ = {A, B, C, F1, . . . , Fm}. Let Ωxθ

denote the span of reachable states and Ωyθ
the span of reachable outputs from a given x0 via admissible inputs

V (or piecewise constant inputs U). Define matrices O[0], . . ., O[n−1] (n is the size of the state vector) as

O[0] := O0, O[1] :=
[

O0 O1

]
, . . . , O[n−1] :=

[
O0 . . . On−1

]
. (21)

Here O0, . . ., On−1 are given by

O0 :=
[

Ax0 B + B′
]
, Ov :=

[
AOv−1 F1Ov−1 . . . FmOv−1

]
, v = 1, . . . , n − 1,

where B′ =
[

F1x0 . . . Fmx0

]
. Then there exists an integer 0 ≤ r ≤ n − 1 such that

range
{

O[0]
}
⊂ range

{
O[1]
}
⊂ . . . ⊂ range

{
O[r]
}

= range
{

O[r+1]
}

= . . . = range
{

O[n−1]
}

,

and

Ωxθ
= range

{[
x0 O[r]

]}
, Ωyθ

= range
{[

Cx0 CO[r]
]}

.

Proof: Let x′
θ(t) := xθ(t) − x0 and y′θ(t) := yθ(t) − Cx0, t ≥ t[0]. By substitution, (1)-(2) become

ẋ′
θ(t) = Ax′

θ(t) +
m∑

q=1

Fquq(t)x′
θ(t) + (B + B′)u(t) + Ax0, x′

θ(t
[0]) = 0, (22)

y′θ(t) = Cx′
θ(t), t ≥ t[0], (23)

where B′ :=
[

F1x0 . . . Fmx0

]
. Let Ωx′

θ
denote the span of reachable states and Ωy′

θ
the span of reachable

outputs of the new system (22)-(23) from x′
θ(t

[0]) = 0 via admissible inputs V (or piecewise constant inputs
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U). By Lemmas 4.1 and 4.2 in [16] with some straightforward generalizations from SIMO bilinear systems to

their MIMO counterparts, there exists an integer 0 ≤ r ≤ n − 1 such that

range
{

O[0]
}
⊂ range

{
O[1]
}
⊂ . . . ⊂ range

{
O[r]
}

= range
{

O[r+1]
}

= . . . = range
{

O[n−1]
}

,

and

Ωx′
θ

= range{O[r]} and Ωy′
θ

= range{CO[r]},

where O[0], . . ., O[n−1] are defined in (21). Since xθ(t) = x′
θ(t) + x0 and yθ(t) = y′θ(t) + Cx0, t ≥ t[0], it is

obvious that

Ωxθ
= range

{[
x0 O[r]

]}
and Ωyθ

= range
{[

Cx0 CO[r]
]}

. �

Using the above lemma, we can now obtain necessary and sufficient conditions for the existence of an

output data set generated by a bilinear system with either admissible inputs or piecewise constant inputs such

that its associated Fisher information matrix I(θ) is nonsingular. Criteria for the nonsingularity of the Fisher

information matrix when the system is excited by a specific input will be given in the next section.

Theorem 3.2: Consider the bilinear system represented by Φ = {A, B, C, F1, . . . , Fm}. Assume that A,

B, C, F1, . . ., Fm and x0 depend on the unknown parameter vector θ of size K, and their partial derivatives

with respect to the elements of θ exist for all θ ∈ Θ and are continuous functions of θ. The derivative system

of Φ is represented by Φ′ = {A, B, C, F1, . . . , Fm}, where the dimension of A is M ×M with M = 2Kn.

Define matrices O[0], . . ., O[M−1] as

O[0] := O0, O[1] :=
[
O0 O1

]
, . . . , O[M−1] :=

[
O0 . . . OM−1

]
. (24)

Here O0, . . ., OM−1 are given by

O0 :=
[
AX0 B + B′

]
, Ov :=

[
AOv−1 F1Ov−1 . . . FmOv−1

]
, v = 1, . . . , M − 1, (25)

where B′ =
[
F1X0 . . . FmX0

]
. Assume that the measurement noise components have independent

Gaussian distributions with zero mean.

Then there exists a finite set of admissible inputs (or a finite set of piecewise constant inputs) and output

samples such that the associated Fisher information matrix I(θ) ∈ R
K×K is nonsingular if and only if

rank
{[

P1CX0 P1CO[r] P2CX0 P2CO[r] . . . PpCX0 PpCO[r]
]}

= K,

where Pi, i = 1, . . . , p, are defined in (9), and r is the integer such that

range
{
O[0]
}
⊂ range

{
O[1]
}
⊂ . . . ⊂ range

{
O[r]
}

= range
{
O[r+1]

}
= . . . = range

{
O[M−1]

}
. (26)
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Proof: We prove it for the case of admissible inputs. It can be similarly proven for the case of piecewise

constant inputs.

By Theorem 2.1, for the output data set generated by a single input u ∈ V, we have

Iu(θ) =
p∑

i=1

J−1∑
j=0

1
σ2

i,j

PiYθ(tj)YT
θ (tj)P T

i .

The above expression can be generalized to multiple or even infinitely many inputs. Consider an arbitrary set

of admissible inputs denoted by Γ. For each input u ∈ Γ, let Υu denote the set of output sample points, Xθ,u(t)

and Yθ,u(t) the state and output vectors of the derivative system Φ′. For each sample v ∈ Υu, let tv,u denote

the corresponding sampling instant of v, and σ2
i,v,u the noise variance at tv,u, i = 1, . . . , p. Then we have

I(θ) =
∑
u∈Γ

p∑
i=1

∑
v∈Υu

1
σ2

i,v,u

PiYθ,u(tv,u)YT
θ,u(tv,u)P T

i .

Since the size of I(θ) is K × K, nonsingularity of I(θ) is equivalent to that the span of the vectors

PiYθ,u(tv,u), i = 1, . . . , p, v ∈ Υu, for all u ∈ Γ is of dimension K.

Let ΩYθ
denote the span of reachable outputs of Φ′, and ΩPiYθ

the span of the vectors PiYθ(t) for all the

reachable outputs Yθ(t) of Φ′, i = 1, . . . , p, t ≥ t[0]. From bilinear system theory [16], the dimension of the

span of any set of outputs of Φ′ is no bigger than that of ΩYθ
, and there exists a finite set of admissible

inputs such that the span of the corresponding outputs is of the same dimension as that of the span of all the

reachable outputs. Similarly, the dimension of the span of any set of the vectors PiYθ(t), t ≥ t[0], is no bigger

than that of ΩPiYθ
, and there exists a finite set of admissible inputs such that the span of the corresponding

PiYθ(t), t ≥ t[0], is of the same dimension as that of ΩPiYθ
, i = 1, . . . , p. It is then clear that the existence

of a nonsingular I(θ) is equivalent to that the span of the vectors PiYθ(t), i = 1, . . . , p, t ≥ t[0], for all the

reachable outputs Yθ(t), t ≥ t[0], is of dimension K.

By Lemma 3.1, ΩYθ
= range

{[
CX0 CO[r]

]}
. Hence, ΩPiYθ

= range
{[

PiCX0 PiCO[r]
]}

, i =

1, . . . , p. Then the span of the vectors PiYθ(t), i = 1, . . . , p, t ≥ t[0], for all the reachable outputs Yθ(t),

t ≥ t[0], is given by

ΩP1Yθ
⊕ ΩP2Yθ

⊕ . . . ⊕ ΩPpYθ
=
[

P1CX0 P1CO[r] P2CX0 P2CO[r] . . . PpCX0 PpCO[r]
]
.

Therefore, there exists a finite set of admissible inputs and output samples such that the associated Fisher

information matrix I(θ) ∈ R
K×K is nonsingular if and only if dim{ΩP1Yθ

⊕ ΩP2Yθ
⊕ . . . ⊕ ΩPpYθ

} = K, i.e.,

rank
{[

P1CX0 P1CO[r] P2CX0 P2CO[r] . . . PpCX0 PpCO[r]
]}

= K,

for some integer 0 ≤ r ≤ M − 1. �
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Theorem 3.2 provides a convenient method to check whether the unknown parameter vector can be locally

identified from the output samples generated by a bilinear system model with either admissible inputs or

piecewise constant inputs.

IV. CRLB FOR UNIFORMLY SAMPLED OUTPUT DATA

Although Theorem 3.2 gives a condition for the existence of some admissible inputs or piecewise constant

inputs such that the unknown parameter vector can be locally identified from the corresponding output samples

of a bilinear system, it does not tell us what the inputs are, nor how many inputs should be used. In practice,

we are often restricted to measuring output samples of a bilinear system with just one input. Therefore, it is

important, both theoretically and practically, to know whether the unknown parameter vector can be locally

identified from the corresponding output samples of a bilinear system with a specific input. When the output of

a bilinear system with an admissible or a piecewise constant input is measured using a nonuniform sampling

scheme, the local identifiability can be tested based on the Fisher information matrix obtained by Theorem 2.1

or Corollary 2.1, respectively. However, checking the nonsingularity of the Fisher information matrix directly

is computationally rather inefficient, particularly for a large number of data samples. When the output of a

bilinear system with a piecewise constant input is sampled uniformly, it is possible to develop a simplified

method for checking the nonsingularity of the Fisher information matrix.

Another advantage of uniformly sampling the output of a bilinear system with a piecewise constant input

is that the associated Fisher information matrix and the CRLB can be computed efficiently through solving

certain Lyapunov equations. Moreover, it is also possible to derive the asymptotic CRLB for infinite uniformly

sampled data points.

Throughout the section we assume that all the eigenvalues of A + F [l], l = 0, . . . , L − 1, are in the open

left-half plane. Since A + F [l], l = 0, . . . , L − 1, is a block lower triangular matrix with A + F [l] as its

diagonal block submatrices, its eigenvalues are also in the open left-half plane, and hence the eigenvalues of

A[l]
d := e(A+F [l])Tl (A[l]

d is of dimension M × M with M = 2Kn) are in the open unit disc, where Tl is the

sampling period for the lth interval (t[l] ≤ t < t[l+1]) of the piecewise constant input, l = 0, . . . , L − 1.

Theorem 4.1: Consider the bilinear system represented by Φ = {A, B, C, F1, . . . , Fm}. Assume that

1.) A, B, C, F1, . . ., Fm and x0 depend on the unknown parameter vector θ of size K, and their partial

derivatives with respect to the elements of θ exist for all θ ∈ Θ and are continuous functions of θ;

2.) the input u is piecewise constant as defined by (3);

3.) the output signal is uniformly sampled with the sampling period Tl in the lth interval of the piecewise
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constant input, i.e., at

t
[l]
j[l] = t[l] + t[l,0] + j[l]Tl, j[l] = 0, . . . , J [l] − 1, t[l] ≤ t

[l]
j[l] < t[l+1],

where t
[l]
j[l] denotes the j[l]th sampling instant in the lth interval, t[l,0] is the starting time relative to t[l]

for sampling in the lth interval , and J [l], with J [l] ≥ M + 1, is the total number of samples acquired in

the lth interval, l = 0, . . . , L − 1;

4.) the noise components have independent Gaussian distributions with zero mean and variance σ
[l]
i,j

2
= σ2,

i = 1, . . . , p, j = 0, . . . , J [l] − 1, for l = 0, . . . , L − 1;

5.) the derivative system of Φ is represented by Φ′ = {A, B, C, F1, . . . , Fm};

6.) the eigenvalues of A + F [l], l = 0, . . . , L − 1, are in the open left-half plane.

Then I(θ) is nonsingular if and only if rank
{[

P1CO′ . . . PpCO′
]}

= K, where O′ ∈ R
M×L(M+1) is

defined as O′ :=
[
O′

0 . . . O′
L−1

]
, and O′

0, . . ., O′
L−1 is given by

O′
l :=

[
W [l]

(
A[l]

d

) t[l,0]

Tl
(W [l] + Xθ(t[l])

) (
A[l]

d

) t[l,0]

Tl A[l]
d

(W [l] + Xθ(t[l])
)

. . .

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M−1 (W [l] + Xθ(t[l])
) ]

, l = 0, . . . , L − 1.

Proof: The assumption that all the eigenvalues of A + F [l], l = 0, . . . , L − 1, are in the open left-half plane

implies that none of the eigenvalues of A[l]
d is equal to one. By Corollary 2.1, the Fisher information matrix

I(θ) is given by

I(θ) =
1
σ2

p∑
i=1

L−1∑
l=0

J [l]−1∑
j[l]=0

PiYθ(t
[l]
j[l])YT

θ (t[l]
j[l])P T

i .

I(θ) being nonsingular is equivalent to that the subspace spanned by all the vectors PiYθ(t
[l]
j[l]), i =

1, . . . , p, j[l] = 0, . . . , J [l] − 1, for l = 0, . . . , L − 1 is of full rank. We also have Yθ(t
[l]
j[l]) = CXθ(t

[l]
j[l]),

j[l] = 0, . . . , J [l] − 1, for l = 0, . . . , L − 1. Let Ō :=
[
Ō0 . . . ŌL−1

]
, where for l = 0, . . . , L − 1,

Ōl :=
[
Xθ(t

[l]
0 ) . . . Xθ(t

[l]
J [l]−1

)
]

and by Lemma 2.1

Xθ(t
[l]
j[l]) =

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)j[l] (
W [l] + Xθ(t[l])

)
−W [l], j[l] = 0, . . . , J [l] − 1.

Thus, I(θ) is nonsingular if and only if matrix
[

P1CŌ . . . PpCŌ
]

is of full rank, i.e., rank
{[

P1CŌ
. . . PpCŌ

]}
= K.

It remains to show that rank
{[

P1CŌ . . . PpCŌ
]}

= K is equivalent to rank
{[

P1CO′ . . .

PpCO′
]}

= K, for which it is sufficient to show range
{Ō} = range {O′}.
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Considering the submatrix Ōl of Ō and the submatrix O′
l (l = 0, . . . , L− 1 throughout the remainder of the

proof) of O′, we have Ōl = O′
lVl, where Vl ∈ R

(M+1)×J [l]
is given by

Vl =




−1 −1 . . . −1 −1 −1 −1 −1 . . . −1

1 0 . . . 0 0 −αl,M β
[1]
l,M β

[2]
l,M . . . β

[J [l]−M−1]
l,M

0 1 . . . 0 0 −αl,M−1 β
[1]
l,M−1 β

[2]
l,M−1 . . . β

[J [l]−M−1]
l,M−1

...
...

...
...

...
...

...
...

...
...

0 0 . . . 1 0 −αl,2 β
[1]
l,2 β

[2]
l,2 . . . β

[J [l]−M−1]
l,2

0 0 . . . 0 1 −αl,1 β
[1]
l,1 β

[2]
l,1 . . . β

[J [l]−M−1]
l,1




.

Here, αl,s, s = 1, . . . , M , is given by

det(λI −A[l]
d ) = λM + αl,1λ

M−1 + . . . + αl,M−1λ + αl,M .

By the Cayley-Hamilton theorem, (A[l]
d )M + αl,1(A[l]

d )M−1 + . . . + αl,M−1A[l]
d + αl,M = 0. We then have

Xθ(t
[l]
M ) =

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M (W [l] + Xθ(t[l])
)
−W [l]

= −W [l] − αl,M

(
A[l]

d

) t[l,0]

Tl

(
W [l] + Xθ(t[l])

)
− αl,M−1

(
A[l]

d

) t[l,0]

Tl A[l]
d

(
W [l] + Xθ(t[l])

)
− . . .

− αl,1

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M−1 (W [l] + Xθ(t[l])
)

.

By induction, we can always find β
[j′′−M ]
l,s , s = 1, . . . , M , j′′ = M + 1, . . . , J [l] − 1, such that

Xθ(t
[l]
j′′) = −W [l] − β

[j′′−M ]
l,M

(
A[l]

d

) t[l,0]

Tl W [l] − β
[j′′−M ]
l,M−1

(
A[l]

d

) t[l,0]

Tl A[l]
d W [l] − . . .

− β
[j′′−M ]
l,1

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M−1 W [l].

Consider now a submatrix of Vl given by

V ′
l =




−1 −1 . . . −1 −1 −1

1 0 . . . 0 0 −αl,M

0 1 . . . 0 0 −αl,M−1

...
...

...
...

...
...

0 0 . . . 1 0 −αl,2

0 0 . . . 0 1 −αl,1




.

Its determinant is

det(V ′
l ) = (−1)M+1(1 + αl,1 + . . . + αl,M ) = (−1)M+1 det(λI −A[l]

d )
∣∣∣
λ=1

�= 0,
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since none of the eigenvalues of A[l]
d is equal to one. Therefore, Vl is of full rank, and range

{Ōl

}
= range {O′

l},

l = 0, . . . , L − 1. Hence, range
{Ō} = range {O′}. �

When the bilinear system in Theorem 4.1 is locally identifiable, the next step is to calculate its associated

Fisher information matrix and the CRLB. Although the Fisher information matrix could be calculated using

Corollary 2.1 in Section II, it is computationally rather inefficient to directly compute the summations in (18),

particularly when the number of samples is large. We now propose an alternative method for computing the

Fisher information matrix efficiently through solutions to certain Lyapunov equations in the following theorem.

Standard results on Lyapunov equations can be found in [23], [24].

Theorem 4.2: Assume that the data model and all the assumptions are the same as in Theorem 4.1. Then

the Fisher information matrix for the given data set is

I(θ) =
1
σ2

p∑
i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2 (27)

−
(
P [l]

2

)T
((

A[l]
d

) t[l,0]

Tl

)T

+ J [l]W [l]
(
W [l]

)T




 CT P T

i ,

where P [l]
1 and P [l]

2 are obtained as follows.

P [l]
1 , l = 0, . . . , L − 1, is the unique solution to the following Lyapunov equation

A[l]
d P [l]

1

(
A[l]

d

)T − P [l]
1 = −

(
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T

+
(
A[l]

d

)J [l] (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
((

A[l]
d

)J [l]
)T

.

P [l]
2 , l = 0, . . . , L − 1, is given by

P [l]
2 =

(
I −
(
A[l]

d

)J [l]
)(

I −A[l]
d

)−1
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)

.

Proof: By the uniform sampling assumption and with A[l]
d = e(A+F [l])Tl , l = 0, . . . , L−1, the Fisher information

matrix in Corollary 2.1 can be rewritten as

I(θ) =
1
σ2

p∑
i=1

PiC



L−1∑
l=0


J [l]−1∑

j[l]=0

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)j[l] (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T

·
((

A[l]
d

)j[l]
)T
((

A[l]
d

) t[l,0]

Tl

)T

−
J [l]−1∑
j[l]=0

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)j[l]
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)
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−
J [l]−1∑
j[l]=0

(
W [l]

(
W [l]

)T
+ W [l]X T

θ (t[l])
)((

A[l]
d

)j[l]
)T
((

A[l]
d

) t[l,0]

Tl

)T

+
J [l]−1∑
j[l]=0

W [l]
(
W [l]

)T




 CT P T

i .

For l = 0, . . . , L − 1, let

P [l]
1 :=

J [l]−1∑
j[l]=0

(
A[l]

d

)j[l] (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
((

A[l]
d

)j[l]
)T

,

P [l]
2 :=

J [l]−1∑
j[l]=0

(
A[l]

d

)j[l]
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)

.

We then have

I(θ) =
1
σ2

p∑
i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2

−
(
P [l]

2

)T
((

A[l]
d

) t[l,0]

Tl

)T

+ J [l]W [l]
(
W [l]

)T




 CT P T

i .

Since all the eigenvalues of A[l]
d , l = 0, . . . , L − 1, are in the open unit disc, P [l]

1 , l = 0, . . . , L − 1, is the

unique solution to the following Lyapunov equation

A[l]
d P [l]

1

(
A[l]

d

)T − P [l]
1 = −

(
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T

+
(
A[l]

d

)J [l] (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
((

A[l]
d

)J [l]
)T

.

As
∑J [l]−1

j[l]=0

(
A[l]

d

)j[l]

=
(

I −
(
A[l]

d

)J [l]
)(

I −A[l]
d

)−1
, P [l]

2 is given by

P [l]
2 =

(
I −
(
A[l]

d

)J [l]
)(

I −A[l]
d

)−1
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)

, l = 0, . . . , L − 1. �

If data samples are finite and the nonsingularity conditions in Theorem 4.1 hold, the CRLB can be calculated

easily by inverting I(θ) in Theorem 4.2. However, when the number of data samples approaches infinity, i.e.,

J [l] → ∞, in general, I(θ) cannot be computed in this way since the term J [l]PiCW [l]
(W [l]

)T CT P T
i in (27)

can tend to infinity, l = 0, . . . , L − 1. In Theorem 4.4 we will propose a novel method for calculating the

asymptotic CRLB without computing I(θ) directly. Before proceeding, we extend Theorem 4.1 to the case of

infinite data samples.

Theorem 4.3: Assume that the data model is the same as in Theorem 4.1 and the number of equidistant

samples in each [t[l], t[l+1]) is equal, i.e., J [l] = J ′, l = 0, . . . , L− 1. The dimension of A[l]
d , l = 0, . . . , L− 1,
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is M × M with M = 2Kn. Then there exists a positive integer J0 such that for any J ′ > J0 the associated

Fisher information matrix IJ ′(θ) is nonsingular if

rank
{[

P1CO′′ . . . PpCO′′
]}

= K,

where O′′ ∈ R
M×L(M+1) is defined as

O′′ :=
[
O′′

0 . . . O′′
L−1

]
,

and O′′
0 , . . ., O′′

L−1 are given by

O′′
0 :=

[
W [0]

(
A[0]

d

) t[0,0]

T0
(W [0] + X0

) (
A[0]

d

) t[0,0]

T0 A[0]
d

(W [0] + X0

)
. . .

(
A[0]

d

) t[0,0]

T0
(
A[0]

d

)M−1 (W [0] + X0

) ]
,

O′′
l :=

[
W [l]

(
A[l]

d

) t[l,0]

Tl
(W [l] −W [l−1]

) (
A[l]

d

) t[l,0]

Tl A[l]
d

(W [l] −W [l−1]
)

. . .

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M−1 (W [l] −W [l−1]
) ]

, l = 1, . . . , L − 1.

Proof: For any given J ′ ≥ M + 1, by Theorem 4.1 the associated Fisher information matrix IJ ′(θ) is

nonsingular if and only if rank
{[

P1CO′
J ′ . . . PpCO′

J ′

]}
= K, where O′

J ′ :=
[
O′

0,J ′ . . . O′
L−1,J ′

]
and

O′
l,J ′ :=

[
W [l]

(
A[l]

d

) t[l,0]

Tl
(W [l] + Xθ(t[l])

) (
A[l]

d

) t[l,0]

Tl A[l]
d

(W [l] + Xθ(t[l])
)

. . .

(
A[l]

d

) t[l,0]

Tl

(
A[l]

d

)M−1 (W [l] + Xθ(t[l])
) ]

, l = 0, . . . , L − 1.

Note that we use subscript J ′ in O′
l,J ′ as Xθ(t[l]) may depend on J ′. It is easy to see that O′

0,J ′ = O′′
0 for

all J ′. When J ′ → ∞, we have t[l] → ∞ for l = 1, . . . , L. By Corollary 2.1 with limt[l]→∞Ql−1(t[l]) = 0,

limt[l]→∞Xθ(t[l]) = −W [l−1] for l = 1, . . . , L − 1. Thus, limJ ′→∞O′
l,J ′ = O′′

l for l = 1, . . . , L − 1. Hence,

lim
J ′→∞

[
P1CO′

J ′ . . . PpCO′
J ′

]
=
[

P1CO′′ . . . PpCO′′
]
,

which implies that for any ε > 0 there exists a Jε such that∥∥∥[ P1CO′
J ′ . . . PpCO′

J ′

]
−
[

P1CO′′ . . . PpCO′′
]∥∥∥ < ε

for all J ′ > Jε, where ‖ · ‖ denotes the norm of a matrix. Therefore, if
[

P1CO′′ . . . PpCO′′
]

is of full rank, i.e., rank
{[

P1CO′′ . . . PpCO′′
]}

= K, there exists a positive integer J0 such that

rank{
[

P1CO′
J ′ . . . PpCO′

J ′

]
} = K for all J ′ > J0, which implies IJ ′(θ) is nonsingular for all J ′ > J0.

�
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Given the nonsingularity condition holds for the asymptotic case, the following theorem proves the existence

of the asymptotic CRLB and gives an explicit expression. The asymptotic CRLB for the limiting case of infinite

data samples is defined as the limit of the CRLB for the corresponding finite data sample situations. This limit

exists since the Fisher information matrices form a monotonically increasing sequence of positive semidefinite

matrices.

Theorem 4.4: Assume that the data model is the same as in Theorem 4.1, except that the number of equidistant

samples in [t[l], t[l+1]) tends to infinity, i.e., J [l] = J ′, l = 0, . . . , L−1, and J ′ → ∞. Assume the nonsingularity

condition in Theorem 4.3 holds. Then the asymptotic CRLB is given by

var(θ̂) ≥ lim
J ′→∞

I−1
J ′ (θ) =


 σ2U⊥

((
U⊥)T PU⊥

)−1
(U⊥)T , if rank(U) < K,

0, if rank(U) = K,

where P , U and U⊥ are defined as follows:

i.) Construction of P:

P :=
p∑

i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2 −

(
P [l]

2

)T
((

A[l]
d

) t[l,0]

Tl

)T





· CT P T
i ,

where P [0]
1 is the unique solution to the following Lyapunov equation

A[0]
d P [0]

1

(
A[0]

d

)T − P [0]
1 = −

(
W [0] + X0

)(
W [0] + X0

)T
,

P [l]
1 , l = 1, . . . , L − 1, is the unique solution to the following Lyapunov equation

A[l]
d P [l]

1

(
A[l]

d

)T − P [l]
1 = −

(
W [l] −W [l−1]

)(
W [l] −W [l−1]

)T
,

P [0]
2 is given by

P [0]
2 =

(
I −A[0]

d

)−1
(
W [0]

(
W [0]

)T
+ X0

(
W [0]

)T
)

,

and P [l]
2 , l = 1, . . . , L − 1, is given by

P [l]
2 =

(
I −A[l]

d

)−1
(
W [l]

(
W [l]

)T −W [l−1]
(
W [l]

)T
)

.

ii.) Construction of U and U⊥: Represent the span of all PiCW [l], i = 1, . . . , p, l = 0, . . . , L− 1, by Ψ, and

let N denote the rank of Ψ. Then U ∈ R
K×N is defined as a full rank matrix such that the column space of U

is equal to Ψ, i.e., range {U} = Ψ. For N < K, U⊥ ∈ R
K×(K−N) is defined as a full rank matrix such that

UT U⊥ = 0 and rank
{[

U U⊥
]}

= K.

May 7, 2004 DRAFT



21

Proof: With J [l] = J ′ for l = 0, . . . , L− 1, the Fisher information matrix in Theorem 4.2 can be rewritten in

terms of J ′ as

IJ ′(θ) =
1
σ2




p∑
i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1,J ′

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2,J ′

−
(
P [l]

2,J ′

)T
((

A[l]
d

) t[l,0]

Tl

)T



 CT P T

i + J ′
p∑

i=1

L−1∑
l=0

PiCW [l]
(
W [l]

)T CT P T
i


 ,

where P [l]
1,J ′ , l = 0, . . . , L − 1, is the unique solution to the following Lyapunov equation

A[l]
d P [l]

1,J ′

(
A[l]

d

)T − P [l]
1,J ′ = −

(
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
(28)

+
(
A[l]

d

)J ′ (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
((

A[l]
d

)J ′)T

,

and P [l]
2,J ′ , l = 0, . . . , L − 1, is given by

P [l]
2,J ′ =

(
I −
(
A[l]

d

)J ′)(
I −A[l]

d

)−1
(
W [l]

(
W [l]

)T
+ Xθ(t[l])

(
W [l]

)T
)

.

Let

PJ ′ :=
p∑

i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1,J ′

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2,J ′ −

(
P [l]

2,J ′

)T

·
((

A[l]
d

) t[l,0]

Tl

)T



 CT P T

i .

Then

IJ ′(θ) =
1
σ2

(
PJ ′ + J ′

p∑
i=1

L−1∑
l=0

PiCW [l]
(
W [l]

)T CT P T
i

)
.

By Theorem 4.3, IJ ′(θ) is nonsingular for all J ′ > J0, which in turn implies that IJ ′(θ) is positive definite

as the Fisher information matrix is always positive semidefinite. In the remainder of the proof, we assume

J ′ > J0. When J ′ → ∞, the limit of PJ ′ exists and is given by

P := lim
J ′→∞

PJ ′

=
p∑

i=1

PiC



L−1∑
l=0


(A[l]

d

) t[l,0]

Tl P [l]
1

((
A[l]

d

) t[l,0]

Tl

)T

−
(
A[l]

d

) t[l,0]

Tl P [l]
2 −

(
P [l]

2

)T
((

A[l]
d

) t[l,0]

Tl

)T





· CT P T
i ,
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where P [l]
1 := limJ ′→∞ P [l]

1,J ′ and P [l]
2 := limJ ′→∞ P [l]

2,J ′ , l = 0, . . . , L − 1. By Corollary 2.1 with

limt[l]→∞Ql−1(t[l]) = 0, limt[l]→∞Xθ(t[l]) = −W [l−1] for l = 1, . . . , L − 1. Using limJ ′→∞
(
A[l]

d

)J ′

= 0,

l = 0, . . . , L − 1, with (28), P [0]
1 is the unique solution to the following Lyapunov equation

A[0]
d P [0]

1

(
A[0]

d

)T − P [0]
1 = −

(
W [0] + X0

)(
W [0] + X0

)T
,

and P [l]
1 , l = 1, . . . , L − 1, is the unique solution to the following Lyapunov equation

A[l]
d P [l]

1

(
A[l]

d

)T − P [l]
1 = −

(
W [l] −W [l−1]

)(
W [l] −W [l−1]

)T
.

Similarly,

P [0]
2 =

(
I −A[0]

d

)−1
(
W [0]

(
W [0]

)T
+ X0

(
W [0]

)T
)

,

and

P [l]
2 =

(
I −A[l]

d

)−1
(
W [l]

(
W [l]

)T −W [l−1]
(
W [l]

)T
)

, l = 1, . . . , L − 1.

For J ′ → ∞, although IJ ′(θ) tends to infinity, the inverse of IJ ′(θ) still converges, as will be shown in the

following. Using a singular value decomposition,
∑p

i=1

∑L−1
l=0 PiCW [l]

(W [l]
)T CT P T

i can be expressed as

p∑
i=1

L−1∑
l=0

PiCW [l]
(
W [l]

)T CT P T
i =

[
Us U⊥

s

] Σ 0

0 0


[ Us U⊥

s

]T
, (29)

where Σ ∈ R
N×N is diagonal with positive diagonal entries, Us ∈ R

K×N , U⊥
s ∈ R

K×(K−N), and
[

Us U⊥
s

]
is orthogonal. By substitution,

I−1
J ′ (θ) = σ2


PJ ′ + J ′

[
Us U⊥

s

] Σ 0

0 0


[ Us U⊥

s

]T−1

= σ2
[

Us U⊥
s

][ Us U⊥
s

]T
PJ ′

[
Us U⊥

s

]
+ J ′


 Σ 0

0 0




−1 [

Us U⊥
s

]T

= σ2
[

Us U⊥
s

] UT
s PJ ′Us + J ′Σ UT

s PJ ′U⊥
s(

U⊥
s

)T PJ ′Us

(
U⊥

s

)T PJ ′U⊥
s


−1 [

Us U⊥
s

]T
.

Consider first the case when N = K, i.e., Us has a rank of K and U⊥
s diminishes in (29). In this case, the

asymptotic CRLB is given by

var(θ̂) ≥ lim
J ′→∞

I−1
J ′ (θ) = σ2Us

[
lim

J ′→∞
(
UT

s PJ ′Us + J ′Σ
)−1
]

UT
s

= σ2Us

[
lim

J ′→∞
1
J ′

][
lim

J ′→∞

(
1
J ′U

T
s PJ ′Us + Σ

)−1
]

UT
s

= 0,
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since limJ ′→∞
(

1
J ′ UT

s PJ ′Us

)
= 0 and Σ is of full rank.

Next, consider the case when N < K. Let Z1 := UT
s PJ ′Us +J ′Σ, Z2 := UT

s PJ ′U⊥
s , Z3 :=

(
U⊥

s

)T PJ ′U⊥
s ,

and ∆ := Z3 − ZT
2 Z−1

1 Z2 (∆ is called the Schur complement of Z1). That IJ ′(θ) is positive definite implies
 Z1 Z2

ZT
2 Z3


 is also positive definite. Then Z1 and ∆ are positive definite (see Theorem 7.7.6 in [25]). Using

the formula of the inverse of block matrices [23],
 UT

s PJ ′Us + J ′Σ UT
s PJ ′U⊥

s(
U⊥

s

)T PJ ′Us

(
U⊥

s

)T PJ ′U⊥
s


−1

=


 Z−1

1 + Z−1
1 Z2∆−1ZT

2 Z−1
1 −Z−1

1 Z2∆−1

−∆−1ZT
2 Z−1

1 ∆−1


 .

For J ′ → ∞, limJ ′→∞ Z−1
1 = limJ ′→∞

(
UT

s PJ ′Us + J ′Σ
)−1 = limJ ′→∞

(
UT

s PUs + J ′Σ
)−1 = 0. Since

IJ ′(θ) is positive definite, for any nonzero vector b ∈ R
(K−N)×1

bT
(
U⊥

s

)T PJ ′U⊥
s b = σ2bT

(
U⊥

s

)T
IJ ′(θ)U⊥

s b > 0,

which shows that limJ ′→∞ ∆ = limJ ′→∞
(
U⊥

s

)T PJ ′U⊥
s =

(
U⊥

s

)T PU⊥
s is positive definite. Therefore,

lim
J ′→∞


 UT

s PJ ′Us + J ′Σ UT
s PJ ′U⊥

s(
U⊥

s

)T PJ ′Us

(
U⊥

s

)T PJ ′U⊥
s


−1

=


 0 0

0
((

U⊥
s

)T PU⊥
s

)−1


 .

The asymptotic CRLB is then given in terms of Us as

var(θ̂) ≥ lim
J ′→∞

I−1
J ′ (θ) = σ2

[
Us U⊥

s

] 0 0

0
((

U⊥
s

)T PU⊥
s

)−1


[ Us U⊥

s

]T

= σ2U⊥
s

((
U⊥

s

)T PU⊥
s

)−1 (
U⊥

s

)T
.

Finally, we show that U⊥
s

((
U⊥

s

)T PU⊥
s

)−1 (
U⊥

s

)T = U⊥
((

U⊥)T PU⊥
)−1 (

U⊥)T . As range
{
U⊥} =

range
{
U⊥

s

}
, there exists a nonsingular matrix V ∈ R

(K−N)×(K−N) such that U⊥
s = U⊥V . It follows that

U⊥
s

((
U⊥

s

)T PU⊥
s

)−1 (
U⊥

s

)T
= U⊥V

((
U⊥V

)T PU⊥V

)−1 (
U⊥V

)T

= U⊥
((

U⊥
)T PU⊥

)−1 (
U⊥
)T

. �

In the next section we illustrate the theoretical results presented in the previous sections using an example

from surface plasmon resonance experiments for the determination of the kinetic parameters of protein-protein

interactions.
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V. EXAMPLE

Surface plasmon resonance (SPR) (see, e.g. [26], [27]) occurs under certain conditions from a conducting

film at the interface between two media of different refractive index. Biosensors such as instruments by the

BIAcore company offer a technique for monitoring protein-protein interactions in real time using an optical

detection principle based on SPR. In the experiments one of the proteins (ligand) is coupled to a sensor chip

and the second protein (analyte) is flowed across the surface coupled ligand using a micro-fluidic device. SPR

response reflects a change in mass concentration at the detector surface as molecules bind or dissociate from

the sensor chip. It can be used to estimate the kinetic constants of protein-protein interactions.

In this example we use the theoretical results presented in the previous sections to analyze the SPR

experiments for one-to-one protein-protein interactions that can be modeled by the differential equation

Ṙ(t) = ka (Rmax − R(t)) C0(t) − kdR(t), t ≥ t[0], R(t[0]) = 0, (30)

where R(t) is the measured SPR response in resonance units (RU), ka and kd are the kinetic association and

dissociation constants of the interaction respectively, Rmax is the maximum analyte binding capacity in RU,

C0(t) is the concentration value of the analyte in the flow cell which can be controlled in the experiments, and

the initial SPR response is assumed to be zero.

Let xθ(t) := R(t), u(t) := C0(t), yθ(t) := R(t), t ≥ t[0], and x0 := R(t[0]) = 0, (30) becomes the following

bilinear system Φ = {A, B, C, F1}

ẋθ(t) = Axθ(t) + F1u(t)xθ(t) + Bu(t), xθ(t[0]) = x0, (31)

yθ(t) = Cxθ(t), t ≥ t[0], (32)

where A = −kd, B = kaRmax, C = 1, F1 = −ka. The unknown parameter vector to be estimated in the

experiments is θ =
[

ka kd Rmax

]T
.

A practical SPR experiment may consist of an association phase (t[0] ≤ t < t[1]) and a dissociation phase

(t[1] ≤ t < t[2]), or one of these two phases. During the association phase analyte is flowed across the ligand on

the sensor chip with constant concentration C0 up to time t[1], i.e., C0(t) = C0, t[0] ≤ t < t[1]. The dissociation

phase immediately follows the association phase and is characterized by analyte free buffer being flowed across

the sensor chip, i.e., C0(t) = 0, t[1] ≤ t < t[2]. Hence, a two-phase SPR experiment can be modeled by the

bilinear system Φ = {A, B, C, F1} with a two-phase piecewise constant input

u(t) = u[0]β0(t) + u[1]β1(t), t[0] ≤ t < t[2],
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where

u[0] = C0, β0(t) =


 1, for t ∈ [t[0], t[1]

)
,

0, for t /∈ [t[0], t[1]) , u[1] = 0, β1(t) =


 1, for t ∈ [t[1], t[2]

)
,

0, for t /∈ [t[1], t[2]) .
Note that in the two-phase SPR experiment the output samples are obtained from yθ(t) for t[0] ≤ t < t[2].

A. Derivative System

The first step is the calculation of the derivative system by Theorem 2.1. We represent the derivative system

of Φ = {A, B, C, F1} by Φ′ = {A, B, C, F1} where A, B, C, F1 are given as follows.

A := diag {∂1A, ∂2A, ∂3A} where

∂1A =


 −kd 0

0 −kd


 , ∂2A =


 −kd 0

−1 −kd


 , ∂3A =


 −kd 0

0 −kd


 .

B :=




∂1B

∂2B

∂3B


 where

∂1B =


 kaRmax

Rmax


 , ∂2B =


 kaRmax

0


 , ∂3B =


 kaRmax

ka


 .

C := diag {∂1C1, ∂2C1, ∂3C1} where

∂1C1 =
[

0 1
]
, ∂2C1 =

[
0 1

]
, ∂3C1 =

[
0 1

]
.

F1 := diag {∂1F, ∂2F, ∂3F} where

∂1F1 =


 −ka 0

−1 −ka


 , ∂2F1 =


 −ka 0

0 −ka


 , ∂3F1 =


 −ka 0

0 −ka


 .

Since the initial state x0 of Φ is equal to zero, the initial state vector X0 of Φ′ is also equal to zero, i.e.

X0 =
[

0 0 0 0 0 0
]T

.

B. Local Identifiability

Before computing the CRLB, we first verify whether θ is locally identifiable by the set of admissible inputs or

the set of piecewise constant inputs, and then discuss its local identifiability for a specific two-phase piecewise

constant input.
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Case 1: The set of admissible or piecewise constant inputs: In this case we make the practically impossible

assumption that an input of the bilinear system model Φ can be freely selected from the set of admissible inputs

V (or piecewise constant inputs U) and we can repeat the experiment for another input from the same set and

measure the corresponding output samples for each experiment conducted. Simple calculations give

rank
{[

P1CX0 P1CO[1]
]}

= rank







0 Rmax −kdRmax −2kaRmax

0 0 −kaRmax 0

0 ka −kakd −k2
a




 = 3

for positive ka, kd and Rmax, which holds for practical SPR experiments. Note that P1 = I3 as p = 1 and

K = 3. Since the size of θ is 3, by Theorem 3.2 there exists a finite output data set generated by the bilinear

system model with some admissible inputs (or piecewise constant inputs) such that θ is locally identifiable.

Case 2: A specific two-phase piecewise constant input with uniform sampling: We next exploit Theorem 4.1

to find out whether the same parameter vector θ is locally identifiable for a specific two-phase piecewise

constant input with uniform sampling. In the remaining part of the example, we assume that the output samples

in the association and dissociation phases are acquired with the sampling intervals T0 and T1 respectively, and

t[0,0] = t[1,0] = 0. By simple calculations, we obtain

P1CW [0] =




− C0kdRmax

(C0ka+kd)2

C0kaRmax

(C0ka+kd)2

− C0ka

C0ka+kd


 , P1CA[0]

d (W [0] + X0) =




a0C0Rmax(T0C2
0k2

a+T0C0kakd−kd)
(C0ka+kd)2

a0C0kaRmax(T0C0ka+T0kd+1)
(C0ka+kd)2

− a0C0ka

C0ka+kd


 ,

P1CA[1]
d (W [1] + Xθ(t[1])) =


a1C0Rmax[(t[1]−t[0])a′
0C

2
0k2

a+(t[1]−t[0])a′
0C0kakd−a′

0kd+kd]
(C0ka+kd)2

a1C0kaRmax[(t[1]−t[0])a′
0C0ka+(t[1]−t[0])a′

0kd+T1a′
0C0ka+T1a′

0kd−T1C0ka−T1kd+a′
0−1]

(C0ka+kd)2

a1C0ka(1−a′
0)

C0ka+kd


 ,

where a0 := e−(C0ka+kd)T0 , a1 := e−kdT1 and a′0 := e−(C0ka+kd)(t[1]−t[0]). It is easy to verify that

rank
{
P1CO′} = rank

{[
P1CW [0] P1CA[0]

d (W [0] + X0) P1CA[1]
d (W [1] + Xθ(t[1]))

]}
= 3.

Thus, by Theorem 4.1, θ is locally identifiable by a two-phase experiment with uniform sampling.

We next consider the nonsingularity criterion in Theorem 4.3 for the asymptotic situation where an infinite

number of data set points are available. Of the necessary expressions all have already been established with
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the exception of

P1CA[1]
d (W [1] −W [0]) =




a1C0kdRmax

(C0ka+kd)2

−a1C0kaRmax(T1C0ka+T1kd+1)
(C0ka+kd)2

a1C0ka

C0ka+kd


 .

Hence,

rank
{
P1CO′′} = rank

{[
P1CW [0] P1CA[0]

d (W [0] + X0) P1CA[1]
d (W [1] −W [0])

]}
= 3.

It then follows from Theorem 4.3 that θ is also locally identifiable for sufficiently large J [0] and J [1]. This is

of course an obvious result since local identifiability in the finite data case implies local identifiability in the

infinite data case.

C. CRLB and Asymptotic CRLB

Since θ is locally identifiable by the finite data set uniformly sampled from the output of a two-phase SPR

experimental model, the next step is to apply Theorem 4.2 and Theorem 4.4 to numerically calculate the

associated CRLB and asymptotic CRLB. Here we use simulated data so that we could conveniently select

various experimental settings. For comparison, typical numerical values from [28] are assigned to the unknown

parameters, i.e.,

ka = 1478 M−1s−1, kd = 4.5 × 10−3 s−1, Rmax = 7.75 RU.

The sampling intervals are chosen as T0 = T1 = 1 s, and the noise variance is assumed to be σ2 = 1. Fig. 1

plots the CRLB in terms of the standard deviations of ka, kd and Rmax as functions of C0 and the number of

data samples. Obviously, it shows that increasing the number of samples improves the accuracy of estimation.

As can be seen from the figure, when the number of samples is sufficiently large, e.g. J [0] = J [1] = 1000, the

CRLB approaches the asymptotic CRLB, which is the lowest possible CRLB, given fixed sampling intervals.

The plot also reveals that the concentration value C0 has an influence on the accuracy of parameter estimation.

From Fig. 1(a), the optimal values of C0 corresponding to the lowest variances of ka for different number of

data samples lie between 1.0 × 10−5 M and 2.0 × 10−5 M, and for C0 greater than the optimal values the

variance increases slowly with C0. On the other hand, the variances of kd and Rmax decrease with the increase

of C0, but remain almost constant when C0 is greater than 2.0× 10−5 M. Therefore, a good choice of C0 for

practical two-phase SPR experiments would be around the value of 2.0 × 10−5 M .
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Fig. 1. The CRLB for simulated two-phase one-to-one SPR experimental data with T0 = T1 = 1 s and σ2 = 1. (a), (b) and (c) plot

the standard deviations of the estimates of ka, kd and Rmax respectively for different concentration values and different numbers of

samples acquired in the association and dissociation phases.

D. Analytical Solution of Asymptotic CRLB

For the two-phase SPR experimental model with identical uniform sampling interval T for both the association

and the dissociation phases, i.e., T0 = T1 = T , it is in fact possible to give an explicit expression for the

asymptotic CRLB for the unknown parameters ka, kd and Rmax. The following results are obtained by applying

Theorem 4.4 with some algebraic manipulations. The detailed derivations are omitted here but can be found in

[29].

var(k̂a) ≥
[

lim
J ′→∞

I−1
J ′ (θ)

]
11

=
σ2
(−a6

0a
4
1 − a4

0a
6
1 + 6a4

0a
4
1 − a6

0a
2
1 − a2

0a
6
1 − 6a2

0a
2
1 + a4

0 + a4
1 + a2

0 + a2
1

)
(C0ka + kd)

2

T 2a2
0(a

2
0 + 1)a2

1(a
2
1 + 1)C4

0k2
aR

2
max

.

var(k̂d) ≥
[

lim
J ′→∞

I−1
J ′ (θ)

]
22

=
σ2 (C0ka + kd)

2 (1 − a1)
3 (a1 + 1)3

T 2a2
1(a

2
1 + 1)C2

0k2
aR

2
max

.

var(R̂max) ≥
[

lim
J ′→∞

I−1
J ′ (θ)

]
33

=
σ2

T 2a2
0(a

2
0 + 1)a2

1(a
2
1 + 1)C4

0k4
a

[(−a4
0a

6
1 + 3a4

0a
4
1 − a2

0a
6
1 − 3a4

0a
2
1 + 3a2

0a
4
1 − 3a2

0a
2
1 + a4

0

+a2
0

)
C2

0k2
a +
(−2a4

0a
6
1 + 6a4

0a
4
1 − 2a2

0a
6
1 − 6a4

0a
2
1 + 6a2

0a
4
1 − 6a2

0a
2
1 + 2a4

0 + 2a2
0

)
C0kakd

+
(−a6

0a
4
1 − a4

0a
6
1 + 6a4

0a
4
1 − a6

0a
2
1 − a2

0a
6
1 − 6a2

0a
2
1 + a4

0 + a2
0 + a4

1 + a2
1

)
k2

d

]
.
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E. One-phase SPR Experiment with Uniform Sampling

Finally, we show that the same parameter vector θ is not locally identifiable if only a one-phase piecewise

constant input u(t) = u[0]β0(t), t[0] ≤ t < t[1], is applied to the bilinear system in the above example, i.e.

the experiment consists of only an association phase. Note that in this one-phase SPR experiment the output

samples are obtained from yθ(t) for t[0] ≤ t < t[1].

Based on the results in Case 2 of Subsection V-B, it is easy to check that

rank
{
P1CO′} = rank

{[
P1CW [0] P1CA[0]

d (W [0] + X0) . . . P1C
(
A[0]

d

)5
(W [0] + X0)

]}
= 2 < 3.

By Theorem 4.1, θ is not locally identifiable in this case. Similarly, it is easy to show that θ is not locally

identifiable in the asymptotic case either.
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