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ABSTRACT

In the recent past, the increased use of optical microscopes in
quantitative studies, such as single molecule microscopy, has
generated significant interest in quantifying its performance
limit. Here, by adopting an information-theoretic stochastic
framework, we present expressions to calculate performance
limits that quantify the capabilities of optical microscopes.
We revisit the resolution problem from the stochastic frame-
work and derive a new resolution measure. Our result, unlike
Rayleigh’s resolution criterion, predicts that the resolution of
an optical microscope is not limited, but that the resolvability
depends on the detected photon count. Analytical expressions
are also given that take into account the effect of deteriorat-
ing experimental factors such as pixelation and noise sources.
We also consider the location estimation problem, which is of
relevance for particle tracking applications.

1. INTRODUCTION

The optical microscope has been an invaluable tool for bio-
logical research. The recent past has witnessed an increased
use of optical microscopy as a cellular imaging modality. Op-
tical microscopes perform tasks ranging from long term (hours
time scale) three dimensional imaging of live cells to fast
imaging (milliseconds time scale) of molecular interactions
within a cellular environment even at the single molecule level
([1, 2]). In several biological applications the data acquired
through an optical microscope requires extensive quantitative
analysis ([2]). In order to carry out such studies, it is im-
portant for an experimenter to know the capabilities of the
instrument. This not only provides insight into determining
the feasibility of a particular experiment, but it also helps in
designing an optimal experimental setup.

In this paper we present results to calculate performance
limits that quantify the capabilities of an optical microscope.
Due to the random nature of the acquired data, we adopt a
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stochastic framework and use the tools of statistical estima-
tion theory ([3]) to determine the performance limit. We con-
sider a data model in which the photon emission (detection)
process is modeled as a random process (shot noise process).
We take into account the pixelation of the detector and addi-
tive noise sources, such as Poisson and Gaussian noise sources,
that are typically present in the acquired data ([4]). We note
that our results are applicable to several microscopic tech-
niques such as fluorescence microscopy, bright-field microscopy,
etc.

We investigate the resolution problem, which is an impor-
tant problem in optical microscopy. The classical resolution
criterion of Rayleigh, although widely used, is well known to
be based on heuristic notions ([5]) that are incompatible with
current imaging approaches. By using the above stochastic
framework, we derive a new resolution measure that over-
comes the limitations of Rayleigh’s criterion. According to
our new resolution measure, the resolution of an optical mi-
croscope is not limited and it can be improved by increasing
the expected number of detected photons. We note that our
new resolution measure is in contrast to other results ([6, 7])
that are not applicable to photon-limited applications, since
they are based on deterministic data models that only consider
the additive Gaussian noise component. We also investigate
the location estimation problem, which is of current interest
in biological applications such as particle tracking.

2. GENERAL RESULTS

Our approach to calculating the performance limit is based on
the statistical theory concerning the Fisher information ma-
trix ([3, 8]). According to the Cramer-Rao inequality ([8]),
the variance of any unbiased estimator θ̂ of an unknown pa-
rameter θ is always greater than or equal to the inverse Fisher
information matrix, i.e., Var(θ̂) ≥ I−1(θ). Since the perfor-
mance of an unbiased estimator is typically specified in terms
of its standard-deviation, the above inequality implies that the
square-root of the (corresponding leading diagonal element
in the) inverse Fisher information matrix provides a bound to

7700-7803-9577-8/06/$20.00 ©2006 IEEE ISBI 2006



the accuracy with which the unknown parameter θ can be de-
termined. Therefore, the performance limit to determining a
particular object attribute is defined as the square root of the
inverse Fisher information matrix calculated for that attribute.

For a general parameter estimation problem in optical mi-
croscopy, the expression of the Fisher information matrix cor-
responding to the acquisition time interval [t0, t] is given by

I(θ) =

∫ t

t0

∫
C

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T

×

∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ, θ ∈ Θ. (1)

The above result (see [9] for details) is a generalization of
the Fisher information matrix given in [10, chap 4] to the
time varying case. Here Λθ denotes the intensity function of
the Poisson process, which models the time points of the de-
tected photons, fθ,τ denotes the density function of the inde-
pendent random variables that model the spatial coordinates
of the detected photons and C denotes the detector. It is as-
sumed that the spatial and the temporal components are mu-
tually independent of each other. In deriving eq. 1 no spe-
cific assumptions have been made regarding the functional
form of fθ,τ or Λθ . Therefore, the above expression of I(θ)
is applicable to a wide variety of imaging conditions, such
as (in)coherent/polarized illumination and detection, etc. We
note that an implication of the time dependence of the den-
sity function fθ,τ is that the above equation is applicable to
moving objects.

Effects of pixelation and noise
The Fisher information matrix I(θ) given in eq. 1 considers a
detector that provides the time points and the spatial coordi-
nates of every detected photon. We next consider a pixelated
detector {C1, . . . , CNp

} in which the acquired data consists
of the number of photons detected at each pixel Ck (Ck ⊆
R

2), where Np denotes the total number of pixels. It can
be shown that the photon count from the object of interest at
the kth pixel is independently Poisson distributed with mean
µθ, which is given by µθ(k, t) :=

∫ t

t0

∫
Ck

Λθ(τ)fθ,τ (r)drdτ ,
where k = 1, . . . , Np, θ ∈ Θ, [t0, t] denotes the acquisition
time interval and Λθ and fθ,τ denote the intensity function
and the density function, respectively. We consider two inde-
pendent additive noise sources, namely Poisson and Gaussian
noise sources. Poisson noise (mean β(k, t)) is used to model
the effects of autofluorescence and scattering at the kth pixel,
and Gaussian noise (mean ηk, variance σ2

w,k) is used to model
the measurement noise at the kth pixel due to the readout pro-
cess.

In the absence of the additive noise sources (Poisson and
Gaussian noise), the expression of the Fisher information ma-
trix for a pixelated detector follows from a well known result
for Poisson random variables (see [9, 10]). In the presence of
additive noise sources the expression for the Fisher informa-
tion matrix for a pixelated detector is given by ([9])

I(θ) :=

NpX
k=1

„
∂µθ(k, t)

∂θ

«T
∂µθ(k, t)

∂θ
× (2)

0

B
B
B
B
B
B
B
B
B
B
@

Z

R

0

B
B
@

P
∞

l=1
[νθ(k,t)]l−1e

−νθ(k,t)

(l−1)! ·
1

√

2πσw,k

e

−
1
2

„
z−l−ηk

σw,k

«2 1

C
C
A

2

pθ,k(z)
dz − 1

1

C
C
C
C
C
C
C
C
C
C
A

,

where θ ∈ Θ, νθ(k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np,
θ ∈ Θ, µθ and β are as given above, and

pθ,k(z) :=
1

√
2πσw,k

∞X

l=0

[νθ(k, t)]le−νθ(k,t)

l!
e
−

1
2

„
z−l−ηk

σw,k

«2

,

where θ ∈ Θ and z ∈ R. Analogous to eq. 1, the above
expression of the Fisher information matrix is also applicable
to a wide variety of imaging conditions.

3. RESOLUTION PROBLEM

The resolution problem is concerned with the task of deter-
mining the distance of separation d between two point sources
from the data acquired with an optical microscope setup. Here
we consider imaging conditions analogous to those assumed
in Rayleigh’s criterion, i.e., the point sources are in focus and
emit incoherent, unpolarized light.

The intensity function is given by Λθ(τ) = Λ1(τ)+Λ2(τ),
τ ≥ t0, where Λi denotes the photon detection rate of the
point source, i = 1, 2, and the density function fθ,τ is given
by

fθ,τ (r) :=
1

2M2
q

„
x

M
−

d

2
,

y

M

«

+
1

2M2
q

„
x

M
+

d

2
,

y

M

«

, (3)

where (x, y) ∈ R
2, θ ∈ Θ, τ ≥ t0, M denotes the total

lateral magnification of the microscope setup, and q denotes
the image function of the point source. The image function is
defined as the image of an object that is imaged at unit mag-
nification when the object is located at the origin of the coor-
dinate axes in the specimen space. By definition, the image
function satisfies the integral identity

∫
R

2 q(x, y)dxdy = 1.
In the above equation we consider a simple arrangement in
which the point sources are separated by a distance d and are
located equidistant from the origin on the x axis.

Substituting for fθ,τ and Λθ in eq. 1, the general expres-
sion for the Fisher information matrix corresponding to the
resolution problem is given by

I(d) :=
1

4

Z t

t0

Z
R

2

1

Λ1(τ)q(x + d
2
, y) + Λ2(τ)q(x −

d
2
, y)

×

 
Λ1(τ)

∂q(x + d
2
, y)

∂x

− Λ2(τ)
∂q(x −

d
2
, y)

∂x

!2

dxdy. (4)

According to optical diffraction theory the image of an in-
focus point source that emits incoherent, unpolarized light
is described by the Airy profile ([11]), which, in terms of
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an image function is given by q(x, y) = J2
1 (α

√
x2 + y2)/

(π(x2 + y2)), (x, y) ∈ R
2, where J1 denotes the first or-

der Bessel function of the first kind, α = 2πna/λ, na de-
notes the numerical aperture of the objective lens and λ de-
notes the wavelength of the detected photons. Substituting
for q in eq. 4 and assuming that the photon detection rate
of the point sources is a constant i.e., Λi(τ) = Λ0, τ ≥ t0,
i = 1, 2, the fundamental resolution measure (fundamental
performance limit to determining the distance d) is given by

δd :=
1√
I(d)

=
1√

4π · Λ0 · (t − t0) · Γ0(d)
·

λ

na

, (5)

where Γ0(d) is given by

Γ0(d) :=

Z

R
2

1

J2
1 (αr01)

r2
01

+
J2
1 (αr02)

r2
02

„

(x +
d

2
)
J1(αr01)J2(αr01)

r3
01

−(x −
d

2
)
J1(αr02)J2(αr02)

r3
02

«2

dxdy, (6)

with Jn denoting the nth order Bessel function of the first
kind, r01 :=

√
(x + d/2)2 + y2 and r02 :=

√
(x − d/2)2 + y2.

The above result pertains to the best case scenario, since the
stochastic framework used to obtain I(d) considers a micro-
scope setup in which the detector provides the time points
and the spatial coordinates of every detected photon with-
out adding any extraneous noise sources. For any imaging
condition, this is an idealization of current imaging detec-
tors in which the presence of finite-size pixels and measure-
ment noise deteriorate the acquired data. By definition, δd is
a bound to the smallest possible standard deviation of any un-
biased estimator of the distance, and therefore, eq. 5 gives
a result that is fundamental to the imaging conditions that
are analogous to those of Rayleigh’s criterion. We note that
the expression for δd shows how the resolution measure is af-
fected by deterministic properties such as the numerical aper-
ture of the objective lens na, the wavelength of the detected
photons λ and the acquisition time t − t0, and stochastic pa-
rameters such as the photon detection rate Λ0.

Fig. 1 shows the behavior of the fundamental resolution
measure δd as a function of the distance of separation d for
a pair of point sources with λ = 600 nm and that are im-
aged with a 1.45 NA objective lens. According to Rayleigh’s
criterion, the two point sources cannot be resolved if their dis-
tance of separation is below 261 nm (≈ 0.61λ/na). From the
figure we see that for distances well below Rayleigh’s crite-
rion (50 − 250 nm), the numerical value of δd is relatively
small thereby predicting high accuracy in estimating d. How-
ever, for very small distances of separation (d < 50 nm), the
numerical value of δd becomes large thereby predicting rel-
atively poor accuracy in estimating d. For example, the fun-
damental resolution measure predicts an accuracy not better
than ±7.88 nm to resolve a distance of 10 nm between the
two point sources when the expected photon count per point

source is 2500. On the other hand, the fundamental resolu-
tion measure predicts an accuracy not better than ±2.5 nm to
resolve a distance of 200 nm for the same expected photon
count per point source.

In many applications, the 2D Gaussian profile is often
used instead of the Airy profile due to the relative ease of
simulating Gaussian profiles. The Gaussian image function
is given by q(x, y) = (1/(2πσ2)) exp(−(x2 + y2)/(2σ2)),
(x, y) ∈ R

2, where σ denotes the width of the Gaussian pro-
file. Setting Λi(τ) = Λ0, τ ≥ t0, i = 1, 2, and substituting
for q and Λi in eq. 4, the fundamental resolution measure
corresponding to the Gaussian profile is given by

1√
Ī(d)

=
σ√

Λ0(t − t0)

1√
Ψ0(d)

,

where

Ψ0(d) =
1

8πσ4

Z
R

2

1

e
−

(x+ d
2 )2+y2

2σ2 +
−

(x−
d
2 )2+y2

2σ2

×

 
(x +

d

2
)e

−

(x+ d
2 )2+y2

2σ2 − (x −
d

2
)e

−

(x−
d
2 )2+y2

2σ2

!2

dxdy.

We next consider the case of a pixelated detector with
square pixels of length W . To calculate the Fisher informa-
tion for the pixelated detector we require the expression for
µθ(k) - the mean photon count of the point sources at the kth

pixel, and the expression for ∂µθ(k)/∂θ. For the Airy profile,
the expression for µθ(k) and ∂µθ(k)/ ∂θ have to be evalu-
ated through numerical integration. For the Gaussian profile,
the expression for µθ(k) and ∂µθ(k)/∂θ can be expressed in
terms of the error function and are given by

µθ(k) = µθ(i, j) :=
Λ0(t − t0)

4

([
erf(α−

i ) − erf(α−
i−1)

]
+

[
erf(α+

i ) − erf(α+
i−1)

])
(erf(δj) − erf(δj−1)) , θ ∈ Θ,

∂µθ(i, j)

∂d
:=

Λ0(t − t0)

4
√

2πσ

([
e−(α−

i−1)
2
− e−(α−

i )2
]

+
[
e−(α+

i )2 − e−(α+
i−1)

2
])

(erf(δj) − erf(δj−1)) ,

where erf denotes the error function, α±
j = (iW ± Md/2)/

(
√

2Mσ), i = 1, . . . , Nx and δj = (jW )/(
√

2Mσ), j =
1, . . . , Ny. In the above expression, (i, j) denotes the row
and the column number of the kth pixel, Nx (Ny) denotes the
number of pixels in the pixel array along the x (y) direction,
k = 1, . . . , Np and Np = Nx + Ny. The above expressions
are obtained by making use of the identity (∂/∂x)erf(f(x))

= (2/
√

π)e−f2(x) ∂f(x)
∂x

, x ∈ R.

Location estimation problem
We next consider the problem of estimating the location of
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Fig. 1 Behavior of the fundamental resolution measure (eq. 5) as a function of the

distance of separation. Here, the expected number of detected photons per point source

is set to be Λ0(t − t0) = 2500 photons, the wavelength of the detected photons is

set to be λ = 600 nm and the numerical aperture of the objective lens is set to be

na = 1.45.

an object. Here, we use the Gaussian profile to describe the
image of the object (see [12] for results pertaining to the Airy
profile). The unknown parameter is set to be θ = (x0, y0, σ, Λ0),
where (x0, y0) denotes the location of the object, σ denotes
the width of the Gaussian profile and Λ0 denotes the photon
detection rate of the object. The density function fθ,τ is given
by

fθ,τ(r) :=
1

2π(Mσ)2
e
−

(x−Mx0)2+(y−My0)2

2(Mσ)2 , (x, y) ∈ R
2,

where θ ∈ Θ, τ ≥ t0 and M denotes the total lateral magni-
fication of the microscope setup. The intensity function Λθ is
given by Λθ(τ) := Λ0, τ ≥ t0. Substituting for Λθ and fθ,τ

in the Fisher information matrix given in eq. 1 and inverting
it, we get

I−1(θ) :=

⎡⎢⎢⎢⎢⎣
σ2

Λ0(t−t0)
0 0 0

0 σ2

Λ0(t−t0)
0 0

0 0 σ2

4Λ0(t−t0)
0

0 0 0 Λ0
t−t0

⎤⎥⎥⎥⎥⎦ ,

(7)
where θ ∈ Θ.

We next consider a pixelated detector with square pixels
of length W . To calculate the Fisher information matrix, we
require the expression for µθ(k) and ∂µθ(k)/ ∂θ, which, for
the Gaussian profile are given by

µθ(k) = µθ(i, j) =
Λ0t

4

“
erf(εi)−erf(εi−1)

”“
erf(κj)−erf(κj−1)

”
,

∂µθ(i, j)

∂x0
=

Λ0t
√

8πσ

“
e
−ε2i−1 − e

−ε2i

”“
erf(κj) − erf(κj−1)

”
,

∂µθ(i, j)

∂y0
=

Λ0t
√

8πσ

“
erf(εi) − erf(εi−1)

”“
e
−κ2

j−1 − e
−κ2

j

”
,

∂µθ(i, j)

∂σ
=

Λ0t

2
√

πσ

h“
εi−1e

−ε2i−1 − εie
−ε2i
”“

erf(κj) − erf(κj−1)
”

+
“

erf(εi) − erf(εi−1)
”“

κj−1e
−κ2

j−1 − κje
−κ2

j

”i
,

∂µθ(i, j)

∂Λ0
=

1

Λ0
µθ(i, j),

where erf denotes the error function, θ ∈ Θ, εi := iW−Mx0√
2Mσ

,

κj := jW−My0√
2Mσ

for i = 1, . . . , Nx and j = 1, . . . , Ny .
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