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Antigen-specific T cell tolerance holds great promise for the treatment of autoimmune diseases. How-
ever, strategies to induce durable tolerance using high doses of soluble antigen have to date been un-
successful, due to lack of efficacy and the risk of hypersensitivity. In the current study we have overcome
these limitations by developing a platform for tolerance induction based on engineering the immuno-
globulin Fc region to modulate the dynamic properties of low doses (1 pg/mouse; ~50 pg/kg) of Fc-
antigen fusions. Using this approach, we demonstrate that antigen persistence is a dominant factor
governing the elicitation of tolerance in the model of multiple sclerosis (MS), experimental autoimmune
encephalomyelitis (EAE), induced by immunizing B10.PL mice with the N-terminal epitope of myelin
basic protein. Unexpectedly, our analyses reveal a stringent threshold of antigen persistence for both
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EAE prophylactic and therapeutic treatments, although distinct mechanisms lead to tolerance in these two
Fc engineering settings. Importantly, the delivery of tolerogenic Fc-antigen fusions during ongoing disease results in the
FcRn downregulation of T-bet and CD40L combined with amplification of Foxp3™ T cell numbers. The gen-

Tolerance eration of effective, low dose tolerogens using Fc engineering has potential for the regulation of autor-

eactive T cells.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Organ-specific autoimmune diseases such as multiple sclerosis
(MS), rheumatoid arthritis and type 1 diabetes mellitus represent a
major cause of death in developed countries. It is well established
that the aberrant activation of autoreactive CD4™ T cells is a driver
of autoimmune disorders. Currently approved therapies for auto-
immunity that broadly target such cells include the depletion of
lymphocyte subsets, the targeting of immune activation/co-

Abbreviations: APCs, antigen presenting cells; AUC, area under the curve; CNS,
central nervous system; EAE, experimental autoimmune encephalomyelitis; FcRn,
neonatal Fc receptor; LNs, lymph nodes; MBP, myelin basic protein; MS, multiple
sclerosis; WT, wild type.
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stimulatory signals or the inhibition of leukocyte trafficking [1].
However, these approaches can result in adverse side effects such
as systemic toxicities and increased risk for infection or cancer [1].
Consequently, a need for the development of treatments, such as
tolerance induction, to selectively target autoantigen-specific T
cells persists.

The induction of autoantigen-specific T cell tolerance using high
doses of soluble immunodominant peptides to delete or anergize
autoreactive T cells has been extensively explored [2,3]. Although
such approaches, including the delivery of altered peptide ligands,
have shown efficacy in reducing disease in animal models of MS
and diabetes, the translation of such therapies into humans has
been unsuccessful [2,4]. Further, there are significant safety con-
cerns due to reports of fatal anaphylaxis in many animal models of
MS following the delivery of relatively high doses (necessitated by
rapid renal clearance [5]) of autoantigenic peptides during ongoing
disease [6,7]. A longstanding, unsolved challenge is therefore to
develop effective tolerizing agents that are safe for the therapy of
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autoimmunity.

Chronic exposure to autoantigens during autoimmunity results
in reduced disease severity, with mouse studies indicating that this
phenomenon results from regulatory T cell (Treg) activation [8]. In
addition, low dose, persistent antigen presentation during chronic
viral infections can lead to CD4™" T cell exhaustion or dysfunction in
an antigen-specific manner [9]. We therefore reasoned that the
development of delivery vehicles to enable persistence of low levels
of antigen could represent an effective approach to induce antigen-
specific T cell tolerance. However, the generation of antigen de-
livery strategies to achieve such immune homeostasis is chal-
lenging due to the limited understanding of the complex interplay
between antigen longevity and intracellular trafficking behavior,
which in turn determine the efficiency of antigen presentation by
antigen presenting cells (APCs).

Our Fc engineering studies indicate that antigenic peptide epi-
topes expressed as immunoglobulin Fc-epitope fusions can be
tuned to have different pharmacokinetics by modulating their
binding properties for the neonatal Fc receptor (FcRn) [10]. The
majority of naturally occurring antibodies of the IgG class bind to
FcRn at acidic pH (pH 6.0) but with an affinity that is negligible at
near neutral pH [11]. Consequently, following entry into cells
bathed at pH 7.3—7.4 by fluid phase processes, IgG can bind to FcRn
in early acidic endosomes and undergo recycling or transcytosis
[11—13]. These endosomal sorting pathways regulate the homeo-
stasis and transport of IgG in the body. Further, FcRn is expressed in
all professional APCs and is involved in antigen presentation [14]. In
the current study, this knowledge has been used to inform the
design of a panel of Fc-epitope fusions comprising the N-terminal
epitope of myelin basic protein (MBP1-9) linked to engineered Fc
regions with the goal of defining the requirements for tolerance
induction in a low antigen dose setting. Specifically, we have
generated a panel of Fc-MBP fusions with different subcellular
trafficking behavior and in vivo clearance properties. The effects of
these engineered proteins on both the prophylactic blockade and
treatment of disease in an experimental autoimmune encephalo-
myelitis (EAE) model involving the immunization of B10.PL (H-2")
mice with the immunodominant epitope, MBP1-9 (with N-terminal
acetylation) have been investigated.

By using Fc-engineering to tune antigen dynamics, we have
established the design requirements for antigen delivery vehicles
that result in T cell tolerance and amelioration of ongoing auto-
immune disease. Importantly, these studies have been carried out
using doses (1 pg/mouse; ~50 pg/kg) that are at least ~450-fold
lower than those used previously as either soluble antigen or
peptides coupled to microparticles for the treatment of autoim-
munity [3,15—17], reducing the risk of anaphylactic shock. Our
analyses have defined a remarkably stringent threshold of antigen
persistence that is necessary to induce tolerance prior to disease
induction and during ongoing disease. In these two settings,
although the threshold for antigen persistence is the same, the
pathways of tolerance induction are mechanistically distinct: under
prophylactic conditions, antigen-specific T cells are deleted or
anergized whereas during ongoing EAE, tolerance involves the
downregulation of T-bet and CD40L on antigen-specific T cells,
combined with the induction of regulatory Foxp3™ T cells. Our
studies demonstrate that the delivery of low doses of Fc-epitope
fusions represents a promising strategy for the treatment of auto-
immunity and other pathological, T cell-mediated conditions.

2. Materials and methods
2.1. Mice

B10.PL (H-2") mice were purchased from the Jackson Laboratory

(Bar Harbor, ME). Mice that transgenically express the 1934.4 TCR
(1934.4 tg mice [18]) or clone 19 TCR (T/R* tg mice [19]) were
kindly provided by Dr. Hugh McDevitt (Stanford University, CA) and
Dr. Juan Lafaille (New York University School of Medicine, NY),
respectively. Both the 1934.4 and clone 19 TCRs are specific for
MBP1-9 complexed with I-A" [18,19] and have similar affinities for
antigen [20]. Mice were bred in a specific pathogen-free facility at
the University of Texas Southwestern Medical Center or Texas A&M
University and were handled in compliance with institutional
policies and protocols approved by the Institutional Animal Care
and Use Committees. 6—10 week old male or female mice were
used in experiments.

2.2. Peptides

The N-terminal, acetylated peptide of MBP (MBP1-9, Ac-
ASQKRPSQR) and MBP1-9(4Y) (Ac-ASQYRPSQR) were purchased
from CS Bio (Menlo Park, CA).

2.3. Production of recombinant proteins

Expression constructs for the production of full length anti-
lysozyme antibodies (WT, m-set-1 and m-set-2) were generated
by isolating the cDNA encoding the heavy chain and light chain
from the D1.3 hybridoma (mouse IgG1, anti-hen egg lysozyme) [21].
The mutations were inserted into the WT heavy chain gene using
splicing by overlap extension and cloned into pOptiVEC™-TOPO®
vector (Life Technologies, Grand Island, NY) for expression. The
light chain gene was cloned into pcDNA™3.3-TOPO® vector (Life
Technologies, Grand Island, NY). Complete sequences of expression
plasmids are available upon request. The light chain expression
construct was transfected into CHO DG44 cells by electroporation.
Stable clones of CHO DG44 cells were selected for light chain
expression using previously described methods [22]. The light
chain transfectant expressing the highest levels of recombinant
protein was used as a recipient for the heavy chain constructs.
Clones expressing the highest levels of anti-lysozyme antibody
were selected and recombinant antibodies purified from culture
supernatants using lysozyme-Sepharose [23]. Mouse IgG1 (anti-
hen egg lysozyme, D13 [21]) was purified using lysozyme-
Sepharose [23] from hybridoma culture supernatants.

Expression plasmids encoding WT or mutated (m-set-2) mouse
IgG1-derived Fc-hinge connected at the C-termini through a Gly-
Ser-Gly-Gly linker to codons encoding the MBP1-9(4Y) epitope or
MBP1-9(4Y) epitope with residues 3 and 6 of the peptide replaced
by alanine have been described previously [10]. The glycine at the
N-terminus of the peptide mimics the acetyl group that is necessary
for T cell recognition of the MBP epitope [24]. The m-set-1 muta-
tions were inserted into the WT Fc-MBP fusion construct using
splicing by overlap extension and designed oligonucleotide
primers. All Fc-MBP fusion genes were cloned into pEF6/V5-His
vector (Life Technologies, Grand Island, NY). Fc-MBP fusion con-
structs were transfected into CHO-S cells, stable transfectants
selected and recombinant proteins purified from culture superna-
tants as described previously [10]. Analogous methods were used to
generate Fc-hinge variants (WT, m-set-1, m-set-2) without the C-
terminal MBP1-9 epitope. Complete sequences of expression con-
structs are available upon request.

2.4. Recombinant peptide-MHC complexes

Soluble, recombinant MBP1-9(4Y):[I-A" complexes were
generated using baculovirus-infected High Five insect cells and
purified as described previously [25]. The complexes were site-
specifically biotinylated and multimeric complexes (“tetramers”)
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were generated using PE-labeled ExtrAvidin (Sigma-Aldrich, St.
Louis, MO).

2.5. Cell lines

The MBP1-9:1-A%-specific T cell hybridoma #46 has been
described previously [26]. The I-A"-expressing B lymphoblastoid
line PL8 was generously provided by Dr. David Wraith (University of
Bristol, Bristol, U.K.). PL8:FcRn cells were generated by stably
transfecting PL8 cells with an expression construct encoding mouse
FcRn tagged at the C-terminus with GFP, followed by selection with
G418 (600 pg/ml, Life Technologies, Grand Island, NY) [10].

2.6. Surface plasmon resonance analyses

Equilibrium dissociation constants of WT and mutated mouse
Fc-hinge fragments (IgG1l-derived) for binding to recombinant
mouse FcRn were determined using surface plasmon resonance
and a BIAcore 2000. Mouse Fc-hinge fragments were immobilized
by amine coupling chemistry (to a density of ~250—850 RU) and
BlAcore experiments carried out as described previously, using
soluble mouse FcRn in Dulbecco’s phosphate-buffered saline
(DPBS) plus 0.01% Tween pH 6.0 or 7.4 as analyte [27]. FcRn binds to
two sites on IgG that are not equivalent [27]. This results in Kp
estimates for two dissociation constants, and the values for the
higher affinity interaction sites are presented. The data were pro-
cessed as described previously [27].

2.7. T cell stimulation assay

Fc-MBP fusions were added to 96-well plates containing PL-8 or
PL-8:FcRn cells (5 x 10* cells/well) and MBP1—9:1-A%-specific T cell
hybridoma #46 cells (5 x 10% cells/well). IL-2 levels in culture su-
pernatants following 24 h of incubation were assessed using a
sandwich ELISA with the following reagents: rat anti-mouse IL-2
capture antibody (clone, JES6-1A12; Becton-Dickinson, San Jose,
CA), biotinylated rat anti-mouse IL-2 detection antibody (clone,
JES6-5H4; Becton-Dickinson, San Jose, CA) and ExtrAvidin-
Peroxidase (Sigma-Aldrich, St. Louis, MO).

2.8. Pharmacokinetic experiments

6-10 week old female B10.PL mice were fed 0.1% Lugol (Sigma-
Aldrich, St. Louis, MO) in water for 72 h before i.v. injection in the
tail vein with ®°I-labeled IgGs or Fc-MBP fusions (10—15 pg per
mouse). Levels of radioactivity in 10 pl blood samples were deter-
mined at the indicated times by gamma counting. To determine the
AUC for IgGs and Fc-MBP fusion proteins, data were fitted to a bi-
exponential decay model using custom software written in MAT-
LAB (Mathworks, Natick, MA). The area under each of these bi-
exponential model curves between time t = 0 and the time at
which the extrapolated curve reaches 1% of the injected dose was
calculated.

To investigate whether the Fc-MBP fusions affected the activity
of FcRn in regulating the clearance rate of IgG, 6—10 week old male
B10.PL mice were fed 0.1% Lugol (Sigma-Aldrich, St. Louis, MO) in
drinking water for 72 h prior to i.v. injection with 10—15 pg of 1*I-
labeled mouse IgG1 (anti-hen egg lysozyme, D1.3). 24 h later, the
mice were i.v. injected with 1 pg Fc-MBP fusion or vehicle (DPBS)
control. Levels of radioactivity in 10 pl blood samples were
analyzed at the indicated times by gamma counting and B-phase
half-lives following injection of Fc-MBP fusion or vehicle deter-
mined as described previously [28].

2.9. Analyses of proliferative responses of transferred antigen-
specific T cells

Antigen-specific CD4" T cells were isolated from the splenocytes
of MBP1-9:1-A"-specific TCR transgenic mice (1934.4 tg [18] and T/
R* tg [19]) through negative selection using a MACS CD4" T cell
isolation kit (Miltenyi Biotec, San Diego, CA). Female B10.PL mice
were i.v. injected with 1 pg Fc-MBP fusion. One hour (‘Day 0’), 3 or 5
days following Fc-MBP fusion delivery, 5 x 10° CFSE-labeled CD4+ T
cells were injected i.v. into the mice. Three days later, splenocytes
and LN cells were isolated for flow cytometry analyses.

2.10. Induction of EAE

8-10 week old male B10.PL mice were immunized subcutane-
ously at four sites in the flanks with 200 pg acetylated MBP1-9 (CS
Bio, Menlo Park, CA) emulsified with complete Freund’s adjuvant
(Sigma Aldrich, St. Louis, MO) containing an additional 4 mg/ml
heat-inactivated Mycobacterium tuberculosis (strain H37Ra, Becton-
Dickinson, San Jose, CA). In addition, 200 ng pertussis toxin (List
Biological Laboratories, Campbell, CA) was injected i.p. on days
0 (0 h) and 2 (45 h).

Scoring of disease activity was as follows: 0, no paralysis; 1, limp
tail; 2, moderate hind limb weakness; 3, severe hind limb weak-
ness; 4, complete hind limb paralysis; 5, quadriplegia; and 6, death
due to disease. Clinical signs of EAE were assessed for up to ~30
days after immunization (prophylaxis) or disease onset (therapy).

2.11. Prophylactic and therapeutic treatment of mice with Fc-MBP
fusions

For tolerance induction in a prophylactic setting, male B10.PL
mice were injected i.v. with 1 ug Fc-MBP fusion and seven days
later, immunized with MBP1-9 and treated with pertussis toxin to
induce EAE. In some experiments, mice were treated with 5 doses
of 1 pug Fc(v.short)-MBP (starting at 7 days prior to immunization, at
36 h intervals) or with a single dose of 5 ug Fc(v.short)-MBP
delivered 7 days prior to immunization. For tolerance induction
during ongoing disease, mice were injected i.v. with 1 ug Fc-MBP
fusion at the onset of EAE (mean clinical score of 1-2).

2.12. Antibodies and flow cytometry analyses

Single cell suspensions from spleen, draining LNs (axillary,
brachial and inguinal), brain and spinal cord were obtained by
mechanical disruption and forcing through 70 pm cell strainers
(Becton-Dickinson, San Jose, CA). For experiments involving ana-
lyses of immune cells in the CNS, mice were perfused with hepa-
rinized DPBS before collecting the organs. Splenic cell suspensions
were depleted of erythrocytes using red blood cell lysis buffer.

Mononuclear cells from CNS cell suspensions were obtained
using Percoll (1131 g/ml, GE Healthcare) gradients. Briefly, cells
were washed with 37% Percoll and suspended in 30% Percoll which
was then layered over 70% Percoll and centrifuged at 2118 g.
Following centrifugation, the cells at the interface were collected,
washed with DPBS and used for flow cytometry analyses.

For intracellular staining to detect Foxp3 and T-bet, cells were
initially surface-stained, followed by fixation and permeabilization
using Foxp3 staining buffer set (eBioscience, San Diego, CA). Per-
meabilized cells were incubated with fluorescently labeled anti-
Foxp3 or anti-T-bet antibodies and washed with DPBS.

To detect antigen-specific CD4™ T cells, single cell suspensions
from spleens, LNs, brains and spinal cords were incubated with PE-
labeled MBP1-9(4Y):I-A" tetramers for 90 min at 12 °C, followed by
washing with DPBS.
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Flow cytometry analyses were performed using a FACSCalibur
(Becton-Dickinson, San Jose, CA) or LSRFortessa (Becton-Dickinson,
San Jose, CA) and data analyzed using Flow]Jo (Tree Star, Ashland,
OR). Antibodies specific for the following were purchased from
either Becton-Dickinson (San Jose, CA), eBioscience (San Diego, CA)
or Biolegend (San Diego, CA): CD4 (RM4-5), Foxp3 (FJK-16s), T-bet
(4B10), CD40L (MR1), F4/80 (BMS8), PD-1 (29F.1A12), CTLA-4 (UC10-
4B9), LFA-1 (H155-78), CXCR3 (CXCR3-173), a4 (R1-2), 1 (HMP1-
1), @4p7 (DATK32) and CD45 (30-F11).

2.13. Statistical analyses

Tests for statistical significance for flow cytometric analyses of
cell numbers and pharmacokinetic data were carried out using
two-tailed Student’s t-test in the statistics toolbox of MATLAB
(Mathworks, Natick, MA). Due to the longitudinal nature of the
measures of clinical scores over time, we compared the clinical
score profiles between the groups of mice in disease experiments
using the linear mixed effects model with AR(1) covariance struc-
ture with Statistical Analysis System software (SAS Institute Inc.,
Cary, NC). p values of less than 0.05 were taken to be significant.

3. Results

3.1. Generation of Fc-antigen fusion proteins with different in vivo
dynamics

The binding of wild type (WT) mouse IgG1 or corresponding Fc
fragment to mouse FcRn is highly pH-dependent, with binding at
pH 5.5—6 (early-late endosomes) that becomes negligible at pH
7—7.4 [11]. Engineered IgGs with higher binding affinity than WT
IgG1 for FcRn at both acidic and near-neutral pH show increased
(receptor-mediated) uptake of the antibody, limited exocytic
release during recycling, entry into lysosomes and reduced
persistence [28,29]. Two sets of Fc mutations that alter FcRn
binding were selected for this study: mutation-set (m-set)-1
(T252L/T254S/T256F/E380A/H433K/N434F) [30—32] and m-set-2
(T252Y/T256E/H433K/N434F) [29]. Based on the effects of these
mutations on the equilibrium dissociation constants (Kps) of the
interactions of mouse IgGl-derived Fc-hinge fragments with
mouse FcRn (Table 1), Fc fragments or IgG molecules harboring m-
set-1 and m-set-2 mutations would be predicted to have distinct
dynamic properties in vivo [11]. To confirm this, the pharmacoki-
netics of full length mouse IgG1 molecules harboring m-set-1 and
m-set-2 mutations were compared with their WT counterpart in
mice (Fig. 1A). The exposure to these proteins (area under the curve,
or AUC, of injected dose vs. time) decreases in the following order:
WT > m-set-1 > m-set-2 (Fig. 1B).

We next generated Fc-MBP fusions comprising WT or mutated
Fc fragments linked to MBP1-9. Although multiple studies have
demonstrated that this MBP peptide requires N-terminal acetyla-
tion for T cell recognition, the replacement of the acetyl group with
glycine generates an analogous epitope [24]. Further, the fusion
proteins contain the ‘4Y’ analog [MBP1-9(4Y)] of this peptide, in

Table 1
Binding properties of mouse Fc fragments.

Fc fragment Binding to FcRn (Kp, nM)

pH 6.0 pH 7.4
WT 218.2 N.B.*
m-set-1 2.6 114.6
m-set-2 1.1 204

2 N.B. = no detectable binding.

which lysine at position 4 is substituted by tyrosine. This analog has
higher binding affinity for I-A" than its parent peptide whilst
retaining recognition by autoreactive T cells [24,33]. The pharma-
cokinetics of the Fc-MBP fusions were analyzed in mice (Fig. 1C).
Despite the lower persistence of the Fc fusions compared with the
corresponding parent IgGs, most likely due to the binding of the
epitope extending from the CH3 domain of the Fc fragment to the
MHC Class Il molecule, I-A" [34], the in vivo exposure (AUC) to the
proteins decreased in the same order (Fig. 1C). Throughout these
studies, fusion proteins containing WT or Fc fragments with m-set-
1 and m-set-2 mutations were therefore designated Fc(long)-MBP,
Fc(short)-MBP and Fc(v.short)-MBP, respectively. Although the
difference in exposure (AUC) between Fc(short)-MBP and
Fc(v.short)-MBP was significant, this difference was much lower
than that for Fc(short)-MBP compared with Fc(long)-MBP (Fig. 1C).
Consistent with the differences in exposure for the Fc-MBP fusions,
the percentage remaining of the injected dose after 1 h was
16.33 + 0.63% and 9.62 + 0.28% for Fc(short)-MBP and Fc(v.short)-
MBP, respectively, whereas for Fc(long)-MBP, 10.54 + 0.5% of the
injected dose remained after 118 h.

3.2. Antigen persistence affects the proliferation of antigen-specific
T cells in vivo

The effect of the distinct properties of the Fc-MBP fusions on the
in vivo proliferation of MBP1-9:I-A"-specific CD4" T cells was next
investigated. CFSE-labeled, purified CD4" T cells isolated from
MBP1-9:1-A"-specific TCR (VB8™) transgenic mice were used in
adoptive transfers. Prior to T cell transfer into WT B10.PL (I-A")
mice, 1 ug Fc-MBP fusion was injected into recipients on different
days (day —5, —3 and 0, referring to 5, 3 and 0 days before the cell
transfer, respectively, Fig. 2A). The percentage of divided
CD4"CFSE*VPB8™ T cells was assessed in the spleens and lymph
nodes (LNs) three days following T cell transfer. As a control
throughout these studies, an Fc-MBP fusion in which the T cell
contact residues, GIn3 and Pro6, of the MBP peptide [35] are
replaced by Ala [Fc(long)-MBP(3A6A)] was used. Fc(long)-MBP
induced higher levels of proliferation in the spleens and LNs than
Fc(short)-MBP for all treatments (Fig. 2B). We have previously
characterized the properties of Fc(v.short)-MBP in analogous assays
[10], and the behavior of Fc(short)-MBP is very similar (Fig. 2B). As
expected, Fc(long)-MBP(3A6A) induced no detectable proliferative
response. Collectively, the data indicate that the increased affinity
for FcRn at near neutral pH of Fc(short)-MBP and Fc(v.short)-MBP
confers decreased in vivo persistence relative to Fc(long)-MBP,
which in turn results in lower T cell responses in vivo (Fig. 2B).

3.3. The induction of tolerance under prophylactic conditions is
regulated by antigen persistence

We next investigated the activity of low doses (1 pg/mouse;
~50 pg/kg) of the Fc-MBP fusions in inducing T cell tolerance in a
prophylactic setting. These low doses of fusion protein do not affect
the activity of FcRn in regulating IgG half-life (Fig. S1). B10.PL mice
were pretreated with 1 pg Fc-MBP fusion and immunized 7 days
later to induce EAE. Fc(long)-MBP(3A6A) was used as a control. The
majority of mice developed either no, or low grade, disease
following pretreatment with Fc(long)-MBP (Fig. 3A). Treatment of
mice with Fc(short)-MBP was less effective in ameliorating EAE,
whereas Fc(v.short)-MBP treatment had no protective effect
(Fig. 3A). Thus, low dose antigen induces prophylactic tolerance,
but only if antigen persists above a threshold level.

In addition to the shorter half-life of Fc(v.short)-MBP, the
inability of Fc(v.short)-MBP to induce tolerance (Fig. 3A) could be
due to differences between this fusion and Fc(long)-MBP in
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Fig. 1. IgGs or Fc-MBP fusions containing m-set-1 and m-set-2 mutations are cleared more rapidly in mice compared with their WT counterparts. B10.PL mice (n = 4—5 mice/group)
were injected with '?’I-labeled IgGs (A, B) or Fc-MBP fusions (C). (A) Remaining radioactivity levels in blood samples. (B, C) Areas under the curve (AUCs, cpmxh), calculated for
fitted data following extrapolation to 1% injected dose. Error bars indicate SEM and significant differences (p < 0.05; two-tailed Student’s t-test) are indicated by *.
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Fig. 2. In vivo persistence governs the response of cognate T cells to Fc-MBP fusions. (A) Flow chart describing the experimental design. B10.PL mice were injected with 1 pg Fc-MBP
fusion 0, 3 and 5 days before the transfer of CFSE-labeled antigen-specific (VB8™) T cells. CD4"CFSE*Vp8* T cell proliferation was analyzed three days later by flow cytometry. (B) %
divided VB8'CFSE" T cells of total CD4" cells in spleens and LNs for the different treatments, normalized to the group injected with Fc(long)-MBP on day 0. Data are combined from
at least two independent experiments (n = 3—4 mice/group). Error bars indicate SEM and significant differences (p < 0.05; two-tailed Student’s t-test) are indicated by *.

endolysosomal trafficking behavior which influences antigen pre-
sentation by FcRn-expressing APCs [10,36]. Specifically, the binding
of engineered Fc fragments to FcRn at near neutral pH results in
efficient receptor (FcRn)-mediated uptake and accumulation in the
endolysosomal pathway in FcRn-expressing cells, by contrast with
WT Fc fragments that enter cells by fluid-phase pinocytic processes
[11]. Consequently, using FcRn-transfected B lymphoblastoid
(PL8:FcRn) [10] cells as APCs, Fc(short)-MBP induced significantly
higher IL-2 production by cognate T cell hybridoma (#46 [26]) cells
than Fc(long)-MBP (Fig. 3B), whereas in the presence of PL8 cells
(that do not express FcRn), the Fc-MBP fusions induced similar
levels of cytokine production (Fig. 3B; [10]). Analogously, in earlier
studies we observed that Fc(v.short)-MBP stimulates T cells at
around 600—3000 fold lower concentrations than Fc(long)-MBP in
the presence of PL8:FcRn cells [10]. To investigate whether this
behavior contributed to the inability of a single dose of Fc(v.short)-
MBP to induce tolerance (Fig. 3A), we therefore compared the tol-
erogenic activity of five doses of 1 pg Fc(v.short)-MBP at 36 h in-
tervals, starting at 7 days prior to immunization, with a single,
equivalent bolus dose (5 pg) delivered at 7 days prior to EAE

induction. Importantly, treatment with multiple doses of
Fc(v.short)-MBP offered partial protection against EAE, whereas
bolus administration of a five-fold higher dose of this Fc-MBP
fusion did not affect disease activity (Fig. 3C). These observations
indicate that antigen longevity, rather than endolysosomal traf-
ficking behavior, is a dominant factor governing T cell tolerance. In
addition, given the relatively small difference in the pharmacoki-
netic behavior of Fc(short)-MBP and Fc(v.short)-MBP in mice
(Fig. 1C), the threshold of antigen persistence necessary for effective
prophylaxis is stringent.

3.4. Antigen specific T cell numbers are reduced during prophylactic
T cell tolerance

To investigate the mechanism of prophylactic tolerance induc-
tion, Fc-MBP fusions were delivered prophylactically and splenic
antigen-specific T cells quantitated using fluorescently labeled
MBP1-9(4Y)-I-A" tetramers [25] ten days following immunization
with MBP1-9. Antigen-specific T cell numbers in the treated mice
decreased in the order: Fc(v.short)-MBP (similar to control
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Fig. 3. Prophylactic tolerance induction is determined by antigen persistence. (A) B10.PL
mice were pretreated with 1 ug Fc-MBP fusion and immunized seven days later with
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two independent experiments (n = 13—30 mice/group). (B) IL-2 production by antigen-
specific T cell hybridoma (#46 [26]) cells in response to the Fc-MBP fusions in the
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1 pg of Fc(v.short)-MBP (starting at 7 days prior to immunization, at 36 h intervals) or
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mice) > Fc(short)-MBP > Fc(long)-MBP (Fig. 4A, B). In addition,
prophylactic delivery of a single dose of 5 pg Fc(v.short)-MBP
resulted in higher numbers of antigen-specific T cells compared
with treatment using five repeated doses (1 pg/dose) of this Fc-MBP
fusion (Fig. 4C). Further, there were no significant differences be-
tween the numbers of CD4"Foxp3™ Tregs in mice treated with the
different Fc-MBP fusions (Fig. S2). Consequently, there is a corre-
lation between antigen longevity, disease blockade and reduction
in antigen-specific T cell numbers.

3.5. Antigen persistence regulates T cell tolerance induction during
ongoing disease

To assess therapeutic tolerance induction, mice were immu-
nized with MBP1-9 to induce EAE and treated with the different
fusion proteins (1 pg/mouse; ~50 ng/kg) following the onset of

disease (EAE score of 1-2). Severe disease was observed in the
control group of mice within 4—5 days of disease onset, whereas
treatment with Fc(long)-MBP resulted in either almost complete
recovery or lowered disease to a score of 1-2 following a transient
increase in disease score (Fig. 5A). The therapeutic effect of
Fc(short)-MBP was analogous to that of Fc(long)-MBP, whereas by
analogy with prophylactic tolerance, the treatment of mice with
Fc(v.short)-MBP had no effect on ongoing disease. This indicates a
requirement for the Fc-MBP fusion to reach a threshold level of
persistence for therapeutic tolerance, with the threshold being
tightly bounded by the in vivo dynamics of Fc(short)-MBP and
Fc(v.short)-MBP (Fig. 1C). Importantly, the delivery of a molar
equivalent of MBP1-9(4Y) peptide (33 ng/mouse), which is ex-
pected to be rapidly cleared (~2—30 min [5]) by renal filtration, was
less effective in treating EAE than Fc(long)-MBP (Fig. 5B).

3.6. The mechanisms of prophylactic and therapeutic tolerance
induction are distinct

To elucidate the mechanism through which Fc-MBP fusions
induce therapeutic tolerance, cells from spleens and draining LNs
were analyzed in mice from Fc(long)-MBP and control treatment
groups six days following treatment. Unexpectedly, and by marked
contrast with the prophylactic setting, the numbers of antigen-
specific CD4™ T cells in the spleens and LNs of tolerized mice
were approximately 10- and 4-fold higher, respectively, than in
control mice (Fig. 6A). By contrast, quantitation of the antigen-
specific T cells in the brain and spinal cord revealed around 10-
fold lower numbers in the spinal cord of Fc(long)-MBP-treated
mice, whereas similar numbers were detected in the brain
(Fig. 6B). In the majority of murine EAE models, inflammation
predominates in the spinal cord rather than the brain [37]. Also,
MBP1-9-induced EAE in B10.PL mice is primarily Th1 cell-mediated
[38,39] and it is well established that Th1 cells promote the accu-
mulation of macrophages in the central nervous system (CNS)
during EAE [40]. Consistent with the reduced T cell infiltrates in the
spinal cords of tolerized mice, macrophage numbers were also
decreased at this site (Fig. 6C).

The increased numbers of antigen-specific T cells in the pe-
riphery of tolerized mice, combined with their reduced numbers in
the CNS, prompted us to further characterize these cells by quan-
titating their levels of the following markers: CXCR3, o431, a4p7,
LFA-1, CTLA-4, PD-1 and CD40L. In addition, the intracellular levels
of the master regulator of Th1 lineage development, T-bet, were
analyzed. T-bet and CD40L were the only molecules that were
differentially expressed between the groups. T-bet levels were
significantly lower in splenic antigen-specific T cells obtained from
mice treated with Fc(long)-MBP (Fig. 6D). This trend was also seen
in antigen-specific T cells obtained from draining LNs (constituting
only ~ 20% of the total number of antigen-specific T cells isolated
from both spleen and LNs), but the difference was not statistically
significant (Fig. 6D). Further, approximately threefold lower
numbers of splenic antigen-specific T cells were CD40LM in
Fc(long)-MBP-treated mice by comparison with T cells obtained
from control mice (Fig. 6E). Importantly, mice treated with
Fc(long)-MBP had higher numbers of CD4"Foxp3* Tregs in the
spleen and draining LNs (Fig. 6F) which did not bind to MBP1-
9(4Y):I-A" tetramers. The increase in CD4 " Foxp3™ Tregs, combined
with decrease in antigen-specific CD4 " T-bet™ (Th1) T cells, resulted
in higher Treg:Th1 ratios in tolerized mice (Fig. 6G). The treatment
of mice with Fc(short)-MBP resulted in similar effects on splenic
antigen-specific T cell numbers, their phenotype and CD4"Foxp3™
Treg numbers (Fig. S3), demonstrating antigen-specific tolerance of
splenic T cells combined with the amplification of Tregs in tolerized
mice.
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4. Discussion

The induction of antigen-specific T cell tolerance represents a
highly specific approach for the treatment of autoimmunity.
However, despite extensive preclinical analyses of the efficacy of
immunodominant peptides in tolerance induction, this strategy has
met with limited success in the clinic [2,41—43]. Importantly, the
short half-lives of peptides necessitate the use of relatively high
doses that can provoke anaphylaxis [6,7,44]. Here we have inves-
tigated the role of antigen dynamics in tolerance induction, by
determining the tolerogenic activity of low doses (~50 pg/kg) of Fc
fusions comprising an immunodominant MBP epitope linked to
engineered Fc fragments with different binding properties for FcRn.
These mutated Fc fragments are designed to endow different
pharmacokinetic behavior on the appended antigen. Using this
approach, we have established that the in vivo persistence of an-
tigen is critical for tolerance induction and, in addition, have
identified a requirement for a stringent threshold of persistence to
achieve tolerance in both prophylactic and therapeutic settings.

The in vivo persistence of Fc-MBP fusions is governed by their
interactions with FcRn in endothelial cells and/or hematopoietic
cells [28]. Amongst hematopoietic cells, all professional APCs ex-
press FcRn [10,14,36,45]. Variations in interactions between Fc-MBP
fusions and FcRn therefore also regulate epitope loading onto MHC

class Il molecules and cognate T cell activation. Consistent with our
earlier study [10], Fc-MBP fusions that are recycled efficiently out of
FcRn-expressing cells lead to poor antigen presentation in vitro,
whereas fusions such as Fc(short)-MBP or Fc(v.short)-MBP that
bind to FcRn with high affinity at near neutral and acidic pH
accumulate to relatively high levels in APCs and are efficiently
presented. However, recycled Fc-MBP fusions have prolonged
in vivo persistence, whereas those that accumulate in FcRn-
expressing cells have comparatively short half-lives. Importantly,
the induction of tolerance by five doses of Fc(v.short)-MBP deliv-
ered over a seven day period prior to EAE induction, combined with
the lack of efficacy of an equivalent bolus dose of this fusion protein,
demonstrate that the endolysosomal trafficking properties of this
protein do not mitigate tolerance induction if antigen persistence is
prolonged. In addition, the lack of protection by a single dose of this
Fc-MBP fusion indicates a minimum threshold of persistence of low
dose antigen for tolerance induction that is tightly bounded by the
pharmacokinetic behavior of Fc(short)-MBP and Fc(v.short)-MBP.
Although the benefit of tolerance induction during ongoing
disease is obvious, there are also clinical situations where pro-
phylactic T cell tolerance has potential applications such as the
prevention of transplant rejection and reduction of immune re-
sponses against protein-based therapeutics [46—48]. In addition,
epitope spreading has been observed in patients and animal
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models of MS [49,50] and T cells specific for spread epitopes can
induce EAE relapses [51]. Consequently, prophylactic tolerization of
naive autoreactive T cells specific to potential ‘spreading’ epitopes
combined with tolerization of activated autoreactive T cells may
result in effective treatment.

By analogy with prophylactic tolerance induction, a threshold of
antigen persistence that is delimited by the behavior of Fc(short)-
MBP and Fc(v.short)-MBP is also a requirement for the ameliora-
tion of ongoing disease. Analyses of the effects of Fc-MBP fusions
reveal that although a fusion protein with a shorter persistence
(Fc(short)-MBP) is less effective as a tolerogen in the prophylactic
setting than its longer lived counterpart, Fc(long)-MBP, both fusion
proteins have similar therapeutic activity during active EAE. This is
possibly due to the different sensitivities of naive and primed T cells
to antigenic stimulation [52]. In addition, the mechanisms of pro-
phylactic and therapeutic tolerance are distinct: prophylactic
tolerance induction results in reduced numbers of antigen-specific
CD4™" Tcells in the periphery, indicating T cell deletion or anergy. By
contrast, in a therapeutic setting tolerance is unexpectedly
accompanied by increased numbers of peripheral antigen-specific
CD4" T cells. This also contrasts with the induction of T cell
apoptosis in mice following the delivery of multiple high doses
(400 pg/mouse) of acetylated MBP1-11 following the adoptive
transfer of autoreactive CD4" T cells [3].

Importantly, we observe that the increased numbers of splenic
antigen-specific T cells in the tolerized mice harbor significantly
reduced levels of T-bet, which is essential for the encephalitoge-
nicity of Th1 cells [53] and has been reported to be downregulated
in tolerized Th1 cells [54]. In addition, CD40L levels are substan-
tially lower in the majority of splenic antigen-specific T cells in the
tolerized mice. Studies using both CD40L knock out mice and anti-
CD40L blocking antibodies support a critical role for this molecule
in T cell activation and EAE induction or progression [55,56].
Importantly, the downregulation of T-bet could be a downstream
effect of reduced CD40L levels, since CD40L is required for the in-
duction of co-stimulatory molecules such as B7.1 and B7.2 on APCs
[55]. Our observation that tolerance induction during active EAE is
accompanied by amplification of CD4*Foxp3' Tregs, combined
with reports that durable tolerance is dependent on the expansion
of Tregs [8,57], suggest that Fc-epitope fusions will have long term
effects.

Earlier studies have demonstrated that the delivery of relatively
high doses of hapten-IgG conjugates can result in immunological
tolerance, although the molecular mechanism was not defined [58].
More recent analyses have revealed the presence of conserved T cell
epitopes, or Tregitopes, in IgGs that activate regulatory T cells [59].
Importantly, the Tregitope sequences identified to date are not
altered by the Fc mutations used to generate shorter-lived Fc-MBP
fusions in the current study. However, the doses of Tregitopes
typically used are substantially higher than those of Fc-MBP fu-
sions. Although we cannot exclude a contribution of the tolerogenic
properties of Tregitopes to the amelioration of EAE, our results
show that antigen persistence is a crucial factor for tolerance
induction.

Polystyrene and poly(lactide-co-glycolide) microparticles
coupled with antigenic peptides have also been used to induce
tolerance under both prophylactic and therapeutic conditions in
murine EAE [17]. The doses of peptide used in these analyses was
15—20 pg per mouse, which is ~450—600-fold higher than the
peptide dose used in our studies. Further, by contrast with the
inability of subcutaneously delivered microparticles to induce
tolerance [17], the established use of this pathway for the delivery
of therapeutic antibodies or Fc fusions [60—63] indicate that tol-
erogenic Fc-peptide fusions can be effectively delivered via this
route. The persistence of Fc-antigen fusions can also be modulated

and even increased by Fc engineering [30,32,64] to optimize tol-
erogenic effects, whereas for microparticles such tuning is not
readily achievable.

MS is a very heterogeneous disease in terms of clinical course,
the characteristics of demyelinating lesions and response to ther-
apy [65]. Nevertheless, in the active lesions corresponding to the
different disease types (pattern I-IV), T cells and macrophages
predominate in the inflammatory infiltrates [66]. Hence, in the
current study we employed an EAE model for which autoreactive T
cells and macrophages are drivers of demyelination [38,40]. By
contrast with the immunodominance of acetylated MBP1-9 in
B10.PL mice [67], T cells specific for multiple neuroantigen-derived
epitopes contribute to pathology in MS [49,50]. Importantly, Fc
fusions harboring multiple peptides can be readily generated. In
combination with the emergence of approaches to define T cell
epitopes for pathological or protective immune responses in in-
dividuals [68], this provides support for the clinical translation of
tolerance induction using long-lived Fc fusions.

In summary, by using Fc engineering to tune antigen dynamics,
this study reveals that a stringent threshold of antigen persistence
is a prerequisite for antigen-specific T cell tolerance induction. Low
doses of relatively long-lived, Fc-epitope fusions are effective in
ameliorating EAE in both prophylactic and therapeutic settings. Our
observations not only provide mechanistic insight into tolerance
induction, but also have direct relevance to the development of
tunable, efficient and safer tolerogens.
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