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Highlights
Improved knowledge of FcRn at both
molecular and cellular levels can be
used towards better designing of novel
classes of therapeutic antibodies.

Engineering antibodies to modulate their
interaction with FcRn has resulted in sev-
eral strategies to alter their dynamic
behavior.

Half-life extended therapeutic antibo-
dies with substantial increases in persis-
tence in the body have been developed
and are currently in clinical trials.

Antibodies that bind to their target anti-
gen in a pH-dependent way (‘acid-
switched’ antibodies) have been
shown to be superior agents for the
clearance of inflammatory cytokines,
regulators of cholesterol levels, etc.,
from the body.

Engineered inhibitors that block the bind-
ing of antibodies to FcRn could provide a
new generation of therapeutics to reduce
the levels of pathogenic antibodies.
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The MHC class I-related receptor FcRn serves multiple roles ranging from the
regulation of levels of IgG isotype antibodies and albumin throughout the body
to the delivery of antigen into antigen loading compartments in specialized
antigen-presenting cells. In parallel with studies directed towards understand-
ing FcRn at the molecular and cellular levels, there has been an enormous
expansion in the development of engineering strategies involving FcRn to
modulate the dynamic behavior of antibodies, antigens, and albumin. In this
review article, we focus on a discussion of FcRn-targeted approaches that have
resulted in the production of novel antibody-based platforms with considerable
potential for use in the clinic.

The Motivation behind Modulating Antibody Dynamics in the Body
The efficacy of current antibody-based therapeutics largely depends on homeostatic regu-
lation of antibody levels at the appropriate site in the body. For example, for maximum
efficacy of a therapeutic antibody in the treatment of cancer, it is necessary for sufficient
antibody levels to be maintained over extended time periods at the tumor site [1]. By
contrast, for antibody-mediated autoimmune diseases such as myasthenia gravis or
idiopathic thrombocytopenic purpura, the levels of pathogenic antibodies are too high
and approaches to reduce antibody concentrations are desirable [2]. Similarly, during
diagnostic or theranostic imaging (see Glossary) with (radio)labeled antibodies, the
background signal can be problematic due to the prolonged persistence of the antibody
in the circulation, leading to poor contrast and possibly nonspecific organ damage [3,4]. A
fundamental question is therefore what are the molecular and cellular processes that control
antibody levels, particularly those of the IgG class that are typically used as therapeutics?
Furthermore, how can this knowledge be used to tune the level and distribution of
therapeutic or endogenous antibodies?

The neonatal crystallizable fragment receptor FcRn is an MHC class I-related receptor that
interacts with antibodies of the IgG class as a heterodimer of a heavy (a) chain and b2-
microglobulin and that binds to the constant or fragment crystallizable (Fc) region of IgG
(Figure 1A). FcRn is a key player in regulating the dynamic behavior, including distribution,
transport, and persistence, of IgG antibodies throughout the body [5–7]. The identification of
these activities extends the role of this Fc receptor well beyond its original identification as the
transporter of IgG from mother to young (hence the name ‘n’, for neonatal), prompting
extensive analyses of the molecular and cellular properties of FcRn. In parallel, the relevance
of FcRn to antibody-based therapeutics has motivated the development of technologies to
modulate the dynamic properties of these biologics and, in some cases, their cognate antigens
in vivo. Given the enormous expansion of the use of antibodies in therapy over the past decade,
this review article provides a brief overview of FcRn biology followed by a discussion of
engineering approaches to generate improved, new generation therapeutics. Because of
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Glossary
Allotype: a polymorphic variant of an
antibody gene. Antibody alleles
frequently vary between individuals
within a species, giving rise to
allotypic variation.
Cross-presentation: the loading of
peptides derived from exogenous
proteins onto MHC class I molecules
following the internalization of the
protein into the antigen presenting
cell.
Fluid phase pinocytosis: the
internalization of molecules into cells
via the pinching off of vesicles that
contain extracellular fluid.
Internalization is not mediated by
binding of the molecules to receptors
but instead is dependent on the
extracellular concentration of the
molecule of interest.
Intravenous immunoglobulin
(IVIG): a preparation of IgG prepared
from plasma pooled from multiple
human donors. This preparation is
used to treat autoimmune and
immunodeficiency diseases in the
clinic.
Isoelectric point (pI): the pH at
which a protein (or other molecule)
has no net positive or negative
charge.
MHC: a group of proteins (class I or
class II) that is recognized by
immune cells called T cells and are
involved in inducing an immune
response to destroy pathogens, or in
the case of autoimmunity, to cause
tissue damage. MHC proteins can
vary from one person to the next;
consequently, they are major players
in transplant rejection if the donor
and recipient are not matched. A
minority of MHC class I-related
molecules, such as FcRn, do not
play a role in activating T cells, but
instead serve other functions.
Off-rate: the rate at which two
proteins or other molecules
dissociate from each other.
On-rate: the rate with which two
proteins or other molecules associate
with each other. The ratio of the off-
rate to on-rate yields the dissociation
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Figure 1. The Molecular Nature of
the IgG–FcRn Interaction. (A) Sche-
matic representation of the IgG–FcRn inter-
action. The constant regions and variable
domains (Fv) of the antibody IgG are
colored blue and red, respectively. FcRn
is a heterodimer of an a chain (green) and
b2-microglobulin (b2m, black) and is
shown in its transmembrane form. Fc,
the constant or fragment crystallizable
(Fc) region. (B) The location of the residues
(Ile253, His310, His435, and Tyr436) at the
CH2–CH3 domain interface of the Fc
region of human IgG1. These residues play
a central role in binding to FcRn. The figure
was drawn using the X-ray crystallographic
structure of human IgG1-derived Fc frag-
ment [100] and Pymol (The PyMOL Mole-
cular Graphics System, Version 2.0
Schrödinger, LLC).
space limitations, we do not discuss the role of FcRn in regulating albumin levels and the related
implications for therapy (see Box 1 for a brief overview of this topic).

The Molecular Details of FcRn–IgG Interactions
IgG residues that are critical for the binding of mouse or human IgG1 to FcRn include Ile253,
His310, His435, His436 (mouse) or Tyr436 (human) that are located on the exposed loops at
the CH2–CH3 domain interface of IgG1 [5,8–10] (Figure 1B). In general, these amino acids are
well conserved across IgG isotypes and species, although amino acids such as residues 435
constant of the interaction.
Phage display library: the
generation of bacteriophage
particles, using molecular biology
methods, that bear a ‘library’ (i.e.,
large number) of different
recombinant proteins such as
antibody variable domains or Fv/Fab

Box 1. Role of FcRn in Regulating Albumin Levels and Related Implications for Therapy

Beyond the IgG-related functions of FcRn, the identification of this receptor as a transporter of albumin has resulted in
the engineering of albumin–FcRn interactions, or albumin binding proteins, to generate therapeutics [6,96,97], in
addition to the recent use of FcRn inhibitors to accelerate the clearance of toxic drug-albumin complexes [98]. Through
the ability of FcRn to bind and recycle albumin away from lysosomal degradation, this receptor can also regulate nutrient
supply to cells by controlling the intracellular supply of albumin-derived amino acids [99].
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fragments. The phage bearing
antibody fragments or domains that
bind to target antigen can be
selected, with the selected phage
harbouring the genes encoding the
displayed fragment or domain.
Plasmapheresis: treatment of the
blood of a patient to remove plasma
components such as autoreactive
(pathogenic) antibodies. This
procedure involves the separation of
plasma from blood cells, followed by
the replacement of the plasma with
saline, albumin, and/or specially
prepared plasma.
Rab GTPase: a class of G coupled
proteins that are involved in the
regulation of intracellular trafficking
pathways, such as the movement of
vesicles along microtubules or in
membrane fusion. Typically, different
cellular compartments have specific
Rab GTPases associated with them,
allowing Rab GTPases to be used as
markers of early endosomes, late
endosomes, etc.
Theranostic imaging: the use of
imaging to identify patients that are
likely to respond to treatment due to
the presence of the molecular target
of a specific therapeutic agent.
Transcytosis: the transport of
proteins or other macromolecules
across cellular barriers, such as
polarized epithelial or endothelial
cells. For some receptors such as
FcRn, this process can occur in both
directions across the cells and is
therefore bidirectional.
and 436 show higher variability than Ile253 and His310 [11]. The His residues of IgG interact
with acidic residues of FcRn [9,12]. The interaction of the protonated imidazole side chain of His
(pKa �6) with these acidic residues at pH �6.0 confers the characteristic pH-dependent
binding (relatively high affinity at acidic pH, with very weak to negligible binding at pH 7.3–7.4)
that is observed for the majority of IgGs [13,14]. Consistent with this, isotypes such as mouse
IgG2b and a human IgG3 allotype that contain Tyr and Arg, respectively, at position 435 do not
go through protonation/deprotonation cycles between pH 6.0 and pH 7.4 and have signifi-
cantly higher binding affinity for FcRn at near-neutral pH compared with other isotypes or IgG3
allotypes containing His at position 435 of IgG [13–15]. This gain of binding at pH �7.3–7.4 has
marked functional consequences that are discussed in detail below.

A further confounding factor concerning FcRn–IgG interactions relates to the cross-species
differences for FcRn–IgG interactions, interactions for which the molecular basis has been
defined [16,17]. These observations have led to the conclusion that mouse models have
limitations for the preclinical pharmacokinetic analyses of therapeutic antibodies, particularly if
they have been engineered to increase their affinity for FcRn [18]. This issue has motivated the
development of mice that transgenically express human FcRn instead of mouse FcRn [19,20].
The use of such mice provides valuable insight into the pharmacokinetic behavior of engineered
antibodies that can be translated to non-human primates and humans.

The Subcellular Trafficking Behavior of FcRn and IgG
Understanding the subcellular trafficking behavior of FcRn is important for understanding the
mechanisms that maintain IgG homeostasis, in addition to providing insight into the design of
engineered antibodies with altered dynamic properties in the human body. This has led to multiple
studies directed towards elucidating the cell biology of FcRn [21–29]. FcRn is ubiquitously
expressed in both parenchymal (endothelial, epithelial) and hematopoietic cells [30–32], and
the majority of cellular trafficking studies of FcRn and its IgG ligand have been carried out in
endothelial or epithelial cells [21–29]. Live cell imaging of endothelial cells following transfection
with FcRn tagged with GFP (to track FcRn in live cells) demonstrates that FcRn-IgG complexes are
internalized primarily by fluid phase pinocytosis (due to the very low affinity of FcRn for most IgG
subclasses at extracellular, near-neutral pH), sorted in early (sorting) endosomes away from
lysosomal degradation and recycled back to the cell surface for exocytic release [24–26] (Figure2).
The acidic pH in early endosomes (pH �6.0) is permissive for FcRn–IgG interactions, whereas the
extracellular, near-neutral pH (pH �7.4) for most cell types enables efficient dissociation of IgG
from FcRn during fusion of exocytic compartments with the plasma membrane. The primary
pathway for internalization of IgG into cells involves fluid phase pinocytosis, although receptor
(FcRn)-mediated uptake becomes dominant for IgG molecules that naturally bind, or are engi-
neered to bind, to FcRn at near-neutral pH [33,34]. In contrast to IgGs that interact with FcRn,
those that are either mutated to ablate binding, or naturally do not bind due to cross-species
differences (e.g., mouse IgG1 to human FcRn [16]), fail to be sorted intracellularly and enter
lysosomes [25]. These endosomal sorting processes provide a framework for the cellular mecha-
nisms through which FcRn regulates the levels of IgGs in the body. For example, when the
intracellular levels of IgG increase, all FcRn molecules are in the bound state and the excess free
antibodies are degraded in lysosomes. Furthermore, IgG recycling assays using transiently
transfected, FcRn-GFP-expressing endothelial cells can serve as a predictor of in vivo dynamics
[18] and have been followed by the development of a stably transfected endothelial cell system to
obtain correlates with behavior in mice transgenically expressing human FcRn [35].

FcRn can be distinguished from many other receptors through its ability to undergo both
recycling and transcytosis [21]. The complex intracellular processes involved in FcRn
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Figure 2. Model for the Activity of
FcRn as an IgG Homeostat. IgG
enters cells by fluid phase pinocytosis in
small tubulovesicular transport carriers
that fuse with larger, FcRn-positive early
(sorting), acidic endosomes in which
binding to FcRn can occur. Bound IgG
molecules are recycled and released by
exocytosis involving fusion of recycling
compartments with the plasma mem-
brane. By contrast, IgG that does not bind
to FcRn in sorting endosomes enters
lysosomes and is degraded.
trafficking, along with their molecular coordinators such as the Rab GTPases [36,37], have
been investigated in both endothelial and polarized epithelial cells [28,38]. Live cell imaging of
endothelial cells has been used to track highly motile FcRn+ tubulovesicular transport carriers
(TCs) and reveals a dynamic network of TCs that can be identified by the presence of different
complements of Rab GTPases [23]. These TCs mediate the transport of vesicles between
different subcellular compartments or the plasma membrane [23], thereby playing a central role
in determining the intracellular fate of internalized IgG. Analyses in endothelial cells have
revealed that the Rab GTPase Rab11A is associated with recycling compartments that lead
to exocytosis of FcRn-IgG complexes, indicating that Rab11A plays a central role in IgG salvage
and recycling [38]. Interestingly, although Rab11A is involved in exocytosis in polarized
epithelial cells, it is not required for transcytosis [28]. Instead, Rab25 and the microtubular
motor protein myosin Vb regulate the bidirectional transcytosis of FcRn [28]. Recent studies
have resulted in the identification of multiple effectors that differentiate the transcytotic and
recycling pathways in epithelial cells [39,40]. Combined with electron microscopy studies in rat
intestinal epithelial cells, the subcellular trafficking analyses demonstrate that early (sorting) and
recycling endosomes are structurally diverse, forming a network that is connected via small,
highly motile TCs [41,42].

The Subcellular Trafficking of Multimeric IgG-Antigen Complexes
In contrast to monomeric IgG molecules that, with or without bound antigen, are typically
recycled by FcRn, multimeric immune complexes (ICs) comprising antigen-antibody
complexes have very short in vivo persistence due to internalization and trafficking into
lysosomes [43]. This internalization is typically mediated by other Fc receptors, FcgRs, on
FcgR-expressing cells that, in contrast to FcRn, can bind to ICs at near-neutral pH [44]. The
delivery of ICs to lysosomes has several important consequences for host defence. First, this
pathway leads to the destruction of antibody-opsonized pathogens. Second, this may prevent
the transcytosis of pathogens bound to antibody across epithelial barriers, although the delivery
of ‘small’ ICs across the intestine can stimulate protective immunity [45]. Third, for hemato-
poietic cells, internalization of multimeric ICs by FcgRs in antigen-presenting cells is followed by
‘handover’ to FcRn, which is not typically involved in uptake due to the near-neutral extracellular
pH, in early endosomes leading to antigen delivery into both the cross-presentation (involving
MHC class I) and MHC class II presentation pathways to stimulate T cell-mediated immunity
[46,47]. Consistent with a role for FcRn in antigen presentation, overexpression of this receptor
Trends in Pharmacological Sciences, October 2018, Vol. 39, No. 10 895



in transgenic mice increases T cell responses [48]. The contribution of FcRn to antigen
presentation pathways is not discussed further here, but for a comprehensive review of this
topic, see [49].

FcRn as a Regulator of the In Vivo Half-Lives of IgG
The identification of FcRn as a global regulator of IgG levels more than two decades ago has led
to studies directed towards engineering antibodies for longer in vivo persistence [5,6]. This was
initially achieved by mutagenesis of IgG residues in the vicinity of the FcRn interaction site to
generate a library of engineered Fc fragments derived from mouse IgG1. These mutated genes
were used to produce a phage display library from which Fc fragments with mutations that
conferred higher affinity for FcRn at pH 6.0 (early endosomal pH) were selected [50]. Subse-
quently, similar approaches, or molecular modelling based on structural data, have been used
to generate human IgG (IgG1 or IgG4) variants with increased affinity for human FcRn, resulting
in two- to fivefold increases in half-life in monkeys and humans [51–58]. For example, the
analysis of antibodies specific for staphylococcal a-toxin with the ‘YTE’ half-life extending
mutations [Met252 to Tyr, Ser254 to Thr, Thr256 to Glu that are all in proximity to the key
residues of IgG that interact with FcRn (Figure 1B) [59]] during Phase II clinical trials demon-
strated half-lives ranging from 80 to 112 days, compared with �20 days for wild-type (WT)
human IgG1 [52]. Importantly, half-life extended antibodies have been shown to have superior
efficacy as therapeutics against tumor xenografts in mice and in the prophylaxis of simian-HIV
infection in non-human primates [57,60].

A challenge associated with the engineering of antibodies for increased affinity for FcRn at
acidic pH (pH �6.0) is to retain sufficiently low affinity for FcRn at near-neutral pH (pH 7.4), to
enable efficient exocytic release following recycling or transcytosis. The possibility of a negative
effect of increased binding of IgG to FcRn at near-neutral pH (pH 7.4) on the in vivo IgG
persistence was first introduced in 1997 [50]. As the affinity of the FcRn–IgG interaction at pH
6.0 is enhanced, the binding at pH 7.4 tends to increase in parallel in most cases [56,61].
Furthermore, although increased binding of an engineered antibody at near-neutral pH can be
offset by higher affinity at endosomal pH (pH �6.0) to result in slower IgG clearance, analyses of
mutated respiratory syncytial virus-specific antibodies with a range of binding properties have
revealed a requirement for the dissociation constant of IgG–FcRn interaction to be greater than
�400 nM at pH 7.4 for half-life extension to be achieved [61]. By contrast, pharmacokinetic and
modelling analyses of a panel of vascular endothelial growth factor-specific antibodies dem-
onstrated that as the dissociation constant of the IgG–FcRn interaction at pH 7.4 decreases
below �104 nM, further improvements in persistence are not observed [62]. This apparent
discrepancy between the two studies is due to the consideration of different affinity thresholds,
namely, the threshold for a reduction in persistence below that of the WT parent versus the
threshold where the affinity starts to counteract the improved interaction at acidic pH (pH �6.0),
while still maintaining a longer half-life than the WT. Nevertheless, in both cases, at the cellular
level the increased binding at near-neutral pH (pH �7.4) results in decreased exocytic release of
IgG at the cell surface.

Although the nature of binding of the Fc region of the antibody with FcRn is a major determinant
of its pharmacokinetic behavior, the antigen binding fragment (Fab) arms (Figure 1B) can also
modulate IgG–FcRn interactions [63–66]. This effect can be attributed to electrostatic inter-
actions of regions of high density of positively charged residues in the complementarity
determining regions (CDRs) located in the variable fragment (Fv) of the antibody [65,66]. Such
interactions can slow dissociation of the antibody from FcRn at near-neutral pH, which can be
quantitated using pH gradient FcRn affinity chromatography [64]. Clearly, this secondary,
896 Trends in Pharmacological Sciences, October 2018, Vol. 39, No. 10



Fv-mediated interaction can also be modified by the binding of the antigen to the antibody. This
regulation of IgG–FcRn interactions via antigen binding represents an additional pathway to
alter antibody pharmacokinetics. Furthermore, other factors such as the isoelectric point (pI)
of the antibody that can also be related to the presence of charged residues in the CDRs can
affect internalization into cells [65–69], thereby contributing to the regulation of the dynamic
behavior of antibodies.

Engineering Antibodies for Enhanced Antigen Clearance
Monoclonal antibodies are widely used to neutralize toxins or inflammatory molecules such as
cytokines. However, these antibodies typically bind to one or two target molecules (due to the
presence of two antigen binding sites per antibody molecule) and, unless the binding site on
their target is repeated, delivery of these agents does not result in immune complex formation.
Consequently, such antibodies can have the undesirable effect of acting as carriers for their
targets, thereby prolonging rather than reducing the persistence of these unwanted molecules
(Figure 3A) [70,71]. This effect can reduce the efficacy of antibodies that are delivered to
neutralize such deleterious molecules. In addition, in some cases antigen binding to antibody
can increase the clearance rate of the antibody, resulting in lower effective doses, through
pathways that are not completely understood but that can be determined by the clearance
behavior of the target antigen following entry of the antibody-antigen complex into cells [72,73].
To circumvent these problems, several groups have used antibody engineering approaches to
generate novel antibody platforms that are discussed below.

Acid-Switched Antibodies
Acid-switched antibodies bind to their target with higher affinity at near-neutral pH than at acidic
pH. These antibodies dissociate from their antigen in acidic endosomes following internalization
into cells [72,74,75] (Figure 3B). The consequence of acid-switching is that while the antibody is
recycled by FcRn, the antigen is delivered to lysosomes and degraded. Each antibody therefore
avoids lysosomal degradation and can be loaded multiple times with an antigen, with the
advantage that the iterative use of such antibodies confers a need for sub-stoichiometric doses
relative to antigen load. This strategy has been used to generate acid-switched antibodies
specific for targets such as the IL-6 receptor (IL-6R), IL-6, proprotein convertase subtilisin kexin
type 9, complement component 5, C-X-C motif chemokine 10, and connective tissue growth
factor [72–77]. Most acid-switched antibodies have been generated for antigens that exist in
soluble form, with the exception of the IL-6R, which can be membrane bound or soluble [74].

The anticipated effects of acid-switching on endosomal dissociation have been corroborated
by cell biological analyses using fluorescence microscopy [73,75]. These studies show the
appearance of antigen in the endosomal lumen followed by delivery to lysosomes, whereas the
antigen-specific antibody remains on the FcRn-positive membrane of the endosome and is
recycled. Based on analyses of antibodies with a range of target binding properties, an upper
estimate of 20–70 s for the half-life of the antibody-antigen complex at acidic pH has been
estimated to enable endosomal dissociation [76,78]. Collectively, these studies have led to the
conclusion that the dissociation rate (‘off-rate’) at acidic, endosomal pH is a dominant factor,
rather than the relative ratios of dissociation constants at pH 6.0 to pH 7.4, in determining the
efficiency of antigen clearance [78,79]. Nevertheless, for antibodies with a very fast on-rate for
antigen binding at acidic pH, rebinding may mitigate the effects of rapid dissociation. Interest-
ingly, the analysis of the effect of combining acid-switching with half-life extension through
enhancement for FcRn binding has met with mixed results, showing benefit for target antigen
clearance over acid-switching alone in some, but not other, studies [73,74,76,78]. Importantly,
for antigens that can contribute to antibody clearance due to endo-lysosomal trafficking of
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Figure 3. Enhancement of Antigen
Clearance by Acid-Switching. (A)
pH-independent binding. Antibodies that
bind to antigen with similar affinity in the
pH range 6.0–7.4 enter cells by fluid
phase pinocytosis in small tubulovesicular
transport carriers (TCs) that fuse with
early (sorting) endosomes in which bind-
ing to FcRn can occur, followed by recy-
cling of the IgG-antigen complex and
exocytic release at the plasma
membrane. This results in the buffering
effect that prolongs the half-life of the
targeted antigen. (B) Acid-switched bind-
ing. By contrast, pH-dependent or acid-
switched antibodies have substantially
higher affinity for antigen at near-neutral
pH relative to acidic, endosomal pH. Fol-
lowing internalization into cells by fluid
phase pinocytosis in small tubulovesicular
TCs, the complexes enter acidic sorting
endosomes in which antigen dissociates
from antibody and enters the lysosomal
pathway. The FcRn-bound antibody is
recycled and exocytosed. This results in
increased clearance of antigen combined
with recycling of antibody for re-use.
antibody-antigen-cognate receptor complexes, the interplay between antigen–receptor,
antigen–antibody, and antibody–FcRn interactions is complex, possibly leading to different
‘rules’ for effective acid-switching in such systems.

Calcium-Switched Antibodies
An alternative approach to acid-switching has been described that exploits the substantially
lower levels of calcium (Ca2+; �2 mM) in endosomes relative to the extracellular space (�2 mM)
[80]. Specifically, Ca2+-switched antibodies can be engineered that bind to their antigen
with higher affinity at millimolar Ca2+ concentrations relative to micromolar concentrations.
Significantly, the 1000-fold difference in Ca2+ concentration results in a larger ‘dynamic range’
for engineering endosomal dissociation relative to a pH change of �1.5 pH units (i.e., �30-fold
difference in proton concentration).
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‘Sweeping’ Antibodies
The knowledge that the cellular uptake of proteins by fluid phase processes is substantially less
efficient than that of receptor-mediated internalization has prompted the generation of anti-
bodies that are both acid-switched and engineered at the sites on IgG interacting with FcRn.
These engineered antibodies have increased binding to FcRn at near-neutral pH (such
mutations have been identified in previous studies using phage display or other approaches;
see ‘FcRn as a Regulator of the In Vivo Half-Lives of IgG’) and are known as sweeping
antibodies [76,79,81].

Live cell imaging shows that FcRn is exposed at the cell surface during exocytic release,
followed by internalization to maintain low steady-state surface levels [24]. This behavior
enables the rapid accumulation of sweeping antibodies within cells [33]. The increased
internalization of these antibodies bound to cognate antigen into early endosomes results
in more effective clearance of targeted antigen, due to increased endosomal delivery of
antibody-antigen complexes [76,79,81]. However, as the binding affinity of an antibody for
FcRn at near-neutral pH increases, its half-life decreases due to enhanced accumulation and
retention within cells, culminating in lysosomal delivery [82,83]. Thus, there is a trade-off
between increasing the delivery of an antibody-antigen complex and decreasing the in vivo
persistence of the (therapeutic) antibody. How these two parameters interplay to achieve the
required effect on target antigen will be dependent upon the dynamic behavior of the particular
antigen and the longevity of the desired pharmacodynamic effect.

Targeting FcRn to Modulate IgG Levels
The role of FcRn as a global regulator of IgG provides opportunities for the use of FcRn inhibitors
to reduce the levels of antibodies that cause symptoms in diseases such as autoimmune
disorders [33,84,85]. The FcRn inhibitors bind to FcRn with higher affinity than naturally
occurring IgGs in the pH range 6.0–7.4 [33,84–89]. Consequently, they compete with endog-
enous antibodies for FcRn binding, driving such antibodies into degradative lysosomes [33].
Importantly, clinical studies have demonstrated that greater than 50% reductions in pathogenic
antibody levels in several autoimmune diseases can result in therapeutic benefit [90,91],
indicating that even partial reduction by FcRn inhibitors could be effective. A further application
area is to use FcRn inhibitors to decrease background and improve contrast during diagnostic/
theranostic imaging with (radio)labeled antibodies [89]. FcRn inhibition also offers an alternative
to current strategies to reduce pathogenic antibody levels, such as plasmapheresis, intra-
venous immunoglobulin (IVIG) delivery, or B cell depletion, all of which can have undesirable
side effects.

To date, FcRn inhibitors ranging from peptide/small protein to antibody-based blockers have
been generated [33,84–89,92], and several of these are in various stages of clinical trials
following preclinical analyses in animal models. One class of antibody-based inhibitors called
Abdegs (for antibodies that enhance IgG degradation) (Figure 4A) involves the use of Fc
engineering to generate competitive IgG molecules with substantially increased affinity for
FcRn at both near-neutral and acidic pH [33]. Furthermore, several antibody-based FcRn
inhibitors have been generated that induce similar effects on endogenous IgGs by binding to
FcRn through their variable domains [86,87].

The competitive advantage of Abdegs and variable domain-based FcRn blockers over WT
IgG occurs at several levels. First, they accumulate in FcRn-expressing cells via receptor-
mediated processes rather than fluid phase pinocytosis [33]. Second, they have higher affinity
for FcRn at acidic, endosomal pH. In this context, Abdegs also have higher affinity at
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Figure 4. Antibody Engineering
Strategies to Reduce Endogenous
IgG Levels. (A) In the presence of an
inhibitor of FcRn such as an Abdeg (for
antibodies that enhance IgG degradation)
that binds to FcRn with increased affinity
at both near neutral and acidic pH, the
inhibitor is internalized by receptor (FcRn)-
mediated processes and competes with
endogenous IgGs for FcRn binding in
acidic endosomes. Consequently, endo-
genous IgG molecules are driven into
lysosomes and are degraded. The inhibi-
tor shown binds through its Fc region to
FcRn, whereas other classes of inhibitors
can be peptide-based inhibitors or anti-
bodies that bind through their variable
domains [33,84–89,92]. (B) A specific
class of engineered proteins comprising
antibody Fc regions fused to an antigen
(one antigen molecule per Fc fragment)
can be used to deplete antigen-specific
antibodies. This fusion protein, named a
Seldeg (for selective degradation of anti-
gen-specific antibodies), is engineered to
bind to FcRn via its Fc region with
increased affinity at both near neutral
and acidic pH. Seldeg-antibody com-
plexes are internalized into FcRn-expres-
sing cells by receptor-mediated uptake
and subsequently follow the constitutive
degradation pathway of FcRn into lyso-
somes [83], leading to the breakdown of
the targeted antibody. Because of their
different mechanism of action, Seldegs
can be used at lower doses than Abdegs
and do not affect the levels of antibodies
that are not specific for antigen.
endosomal, acidic pH than at extracellular, near-neutral pH for binding to FcRn, due to the
use of the ‘natural’ interaction sites on FcRn and IgG that confer pH dependence (see ‘The
Molecular Details of FcRn–IgG Interactions’). By contrast, antibodies that bind through their
variable domains typically involve distinct sets of interacting residues and do not have this
property [93]. These variable domain-binding antibodies interact with FcRn with affinities in
the nanomolar range across pH 6.0–7.4 [86,87] and can also bind with four functional sites
per antibody (two in the variable domain and two in the Fc fragment). Based on previous
studies, these differences are expected to result in distinct pharmacokinetic and pharmaco-
dynamic behavior [18,82]. Specifically, variable domain-based agents may induce a more
rapid inhibitory effect and have shorter intrinsic half-lives due to reduced exocytic release from
FcRn-expressing cells. Interestingly, however, studies in non-human primates and humans
have revealed that despite very rapid clearance, a prolonged reduction in serum IgG levels
that extended beyond that based on the pharmacokinetic behavior of the inhibitor was
observed [86,87]. This may be due, in part, to the assays used to assess remaining levels
900 Trends in Pharmacological Sciences, October 2018, Vol. 39, No. 10



Outstanding Questions
What is the maximum increase in half-
life that is achievable for an IgG?

How can we predict the optimal bind-
ing properties of acid-switched/
sweeping antibodies for clearance of
antigens that differ in the rates at which
they are generated (biosynthesized), in
their concentrations in the body, etc.?

How does the binding and subcellular
trafficking behavior of an FcRn inhibitor
affect its activity as a therapeutic to
treat autoimmune disease?
of inhibitor: typically, serum levels are analyzed and do not yield insight into intracellular load.
The rapid internalization of FcRn blockers into FcRn-expressing cells may result in higher
intracellular versus circulating concentrations [33,86,87].

To date, the results from studies in non-human primates and clinical trials for several FcRn-
based inhibitors indicate that they induce significant and sustained decreases in endogenous
IgG levels in healthy volunteers and also have beneficial effects in the autoimmune disease
myasthenia gravis [86,87] (www.argenx.com). Although such FcRn inhibitors have consider-
able potential in the clinic for the management of autoimmunity, they induce a global reduction
in IgG levels. This has motivated the development of an approach to selectively deplete
antibodies of a particular binding specificity, while not affecting the clearance of antibodies
of distinct specificities, using engineered antigen-Fc fusions called Seldegs (for selective
degradation of antigen-specific antibodies) [94] (Figure 4B). Seldegs comprise an antigen
molecule fused to an engineered Fc fragment that, through knobs-into-holes mutations that
are designed to insert protrusions and cavities in the Fc chains [95], heterodimerizes with a
second Fc fragment with no antigen (Figure 4B). Heterodimer formation results in monomeric
display, and the Fc fragment is engineered to bind to FcRn with increased affinity in the pH
range 6.0–7.4. As such, Seldegs bind to, and are rapidly internalized by, surface-exposed FcRn
followed by entry into the lysosomal pathway. Consequently, antibodies that bind to the
antigen-Fc fusion protein are co-opted into this degradative pathway, resulting in their destruc-
tion. To date, Seldegs have been shown to specifically clear antigen-specific antibodies without
affecting the levels of antibodies of irrelevant specificities. The mechanism of action of Seldegs
requires only a subset of FcRn molecules to be targeted; consequently, relatively low doses that
do not lower total IgG levels are sufficient for efficacy [94]. This contrasts with FcRn inhibitors
that are used at higher doses to achieve quantitative binding to functional FcRn in the body,
resulting in effective competition with endogenous IgG.

Concluding Remarks and Future Directions
The identification of FcRn as a major player in the regulation of IgG pharmacokinetics has
prompted several waves of antibody engineering to produce novel antibody-based platforms.
Half-life extension technology has been implemented to result in longer-lived antibodies. The
development of antibodies with prolonged in vivo persistence has been followed by technol-
ogies to inhibit/block the salvage function of FcRn and thereby reduce the levels of endoge-
nous IgG. More recently, strategies to expedite the clearance of deleterious antigens and
antigen-specific antibodies have been developed through acid-switching and/or sweeping
approaches. The ongoing clinical trials implementing several of these strategies present an
exciting era for FcRn-based therapeutics. Despite these developments, there are multiple
outstanding questions (see Outstanding Questions) such as how does the molecular nature
of FcRn–IgG and antigen–IgG interactions correlate with the dynamic behavior of IgG or
antigen at the whole-body level? Furthermore, how do the FcRn interaction properties of
different FcRn inhibitors affect their therapeutic efficacy in distinct disease settings? Address-
ing these questions using a combination of molecular and cellular approaches is expected to
lead to important insight into these issues that, in turn, could result in improved therapeutics
for human disease.
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